
Volume 0(1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Fast Inverse Reflector Design (FIRD)

Albert Mas, Ignacio Martín and Gustavo Patow

IIiA, UdG, Girona, Spain

Abstract

This paper presents a new inverse reflector design method using a GPU-based computation of outgoing light
distribution from reflectors. We propose a fast method to obtain the outgoing light distribution of a parameterized
reflector, and then compare it with the desired illumination. The new method works completely in the GPU. We
trace millions of rays using a hierarchical height-field representation of the reflector. Multiple reflections are taken
into account. The parameters that define the reflector shape are optimized in an iterative procedure in order for the
resulting light distribution to be as close as possible to the desired, user-provided one. We show that our method
can calculate reflector lighting at least one order of magnitude faster than previous methods, even with millions
of rays, complex geometries and light sources.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Physically
based modeling, I.3.1 [Hardware architecture]: Graphics processors

1. Introduction

This paper presents a new method for a GPU-based compu-
tation of outgoing light distribution for inverse reflector de-
sign. When manufacturers need to produce a desired illumi-
nation, they sometimes do not know what shape the reflector
must be. The usual solution is an iterative process, where a
set of reflectors are manufactured and tested. This process is
usually carried out in a very empirical way by experienced
users that follow a trial and error procedure. This has a high
manufacturing cost, both in materials and time.

In recent years, some research has been done in this field.
Some works propose local lighting solutions, or define a very
restricted set of possible reflectors, such as the families of
parabolic reflector. Other solutions are based on global light-
ing simulation, but they have high computational costs, re-
quiring hours or days to compute a reflector that produces
an illumination distribution reasonably close to the desired
one. However, these algorithms are not able to work with
complex real world reflector shapes.

We propose a method that computes, from a family of pos-
sible reflectors, the best approximation to a given desired
illumination distribution. A very fast GPU algorithm to cal-
culate the reflected rays on the reflector is used to speed up

the optimization process. We are able to compute reflector
outgoing light distribution using millions of rays and highly
complex reflector shapes in a couple of seconds. The set of
reflectors is generated using a parameterizable basis. These
parameters are optimized in an iterative process until the best
solution is reached.

The rest of the paper is organized as follows. We discuss
previous work in Section2. We present an overview of our
method in Section3, we present the fast reflection method in
Section4, and explain the optimization method in Section5.
Then we show the results in Section6 and discuss them in
Section7. Conclusions are presented in Section8.

2. Previous Work

Our method is based on two main research areas: inverse
reflector design and ray tracing on the GPU.

The first problem to solve in this paper can be explained
in the context of inverse illumination problems, where we
know the desired illumination, and we have to compute some
of the parameters that produce it. In this case, we have to
find the reflector shape that produces the desired light distri-
bution. This kind of problem can be classified as an inverse
geometry problem (IGP) [PP05]. To solve the IGP numerical

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

problems, we can use local or global illumination methods.
In [CKO99] a combination of parabolic reflectors is used to
compute the local illumination. In [Neu97] a simple spline
combined with local illumination is used to perform a local
optimization. Unfortunately, these methods are useful only
for really simple configurations. In [PPV04] and [PPV07] a
method that uses global illumination is presented. It starts
from an initial reflector mesh and moves the mesh vertices
in an iterative process, until the generated light distribution
is close enough to the desired one. The main disadvantage of
this method is the high computational cost, which depends
on the number of tested reflectors, the reflector mesh resolu-
tion and the number of rays traced for lighting computation.
To improve the method we need to calculate the ray tracing
of millions of rays on a highly complex reflector shape in a
fast way.

Whe can employ several GPU methods to calculate ray
tracings. On one hand, we do not have a complex generic
scene, so we do not need a full engine [CHH02] or approxi-
mated ray tracing techniques [UPSK07]. On the other, accel-
eration methods based on space partitioning are more inter-
esting in our case, because we can store the reflector geome-
try into a hierarchical subdivision structure. Several methods
have been proposed to traverse the rays through this kind of
structure. A fast algorithm is presented in [RUL00], where
the geometry space is subdivided into an octree. This is a
top-down algorithm where the voxel is selected according
to ray parameters in tangent space. However, this is a CPU
based algorithm, and its implementation in GPU would re-
quire the use of a stack for each fragment.

Other GPU approaches in hierarchical structures are pre-
sented in [SKU08], where some techniques are presented to
calculate displacement mapping, and the displacement tex-
tures are transformed into hierarchical structures. Related to
them, there is the quadtree relief mapping technique [SG06],
based on relief mapping [POJ05]. Relief mapping is a tan-
gent space technique that tries to find the first intersection
of a ray with a height field by walking along the ray in lin-
ear steps, until a position is found that lies beneath the sur-
face. Then, a binary search is conducted to precisely locate
the intersection point. Quadtree relief mapping is a variation
that takes larger steps along the ray without overshooting the
surface. This is achieved through the use of a quadtree on a
height map. This will be described in more detail in Section
4.2.

3. Overview

The goal of our method is to obtain a reflector shape that
produces a minimum error between the desired and resulting
light distributions.

The method has two components. First, we present a fast
algorithm to calculate the outgoing light distribution from a
given reflector. Second, we optimize a set of possible reflec-
tors, obtaining the one that minimizes the error metric.

As input data we have the light source, the desired outgo-
ing light distribution, and a parametric reflector space. The
light source is represented by a set of rays, each composed
of an origin and a direction (called a rayset). The desired
outgoing light distributions used in this paper are far-field
representations, which are light distributions measured far
from the reflector, so that only directional distribution of
light matters. However, our algorithm can deal with more
complex representations (e.g. near-field) as well.

Reflector light calculation occurs in three steps. The first
one transforms the reflector geometry into a hierarchical
height field, in order to efficiently trace rays in the GPU.
This structure is stored in the GPU as a mip-map of floating
point textures that represents a quadtree, where each node
contains the maximum height of its child nodes. In the sec-
ond step, the set of rays is traced through the height field,
searching for intersections with the reflector. The algorithm
also considers multiple ray bounces (specular BRDF) inside
the reflector. The third step captures all reflected rays and
creates a far-field distribution that is compared with the de-
sired far-field, and an error value is generated. Note that once
the light rays leave the light source, further collisions with it
are ignored.

The overall algorithm is implemented using GPU shaders,
where each GPU fragment processes a light ray. This results
in a very fast algorithm that is able, even for millions of rays
and complex reflector geometry shapes, to calculate the re-
flector lighting in less than 3 seconds, as shown in Section
6.

The optimization procedure searches for a minimum er-
ror among a set of possible reflectors in an iterative pro-
cess, where each reflector parameter is optimized between
two bounding values. Then, for each reflector, a far-field
light distribution is generated and compared with the desired
light distribution. After testing all possible reflectors, the one
which provides the most similar light distribution to the de-
sired one is chosen.

4. Reflector lighting

Reflector light distribution can be calculated in three steps.
After the input data is preprocessed, the first step transforms
the reflector geometry to a hierarchical height field model.
The second one calculates the ray reflections over the reflec-
tor. Finally, the results are compared with the desired illumi-
nation. Figure1 shows the general scheme of reflector light
calculation.

4.1. Preprocessing of the input data

The user-provided data is composed of the desired far-field
illumination specification, the light source characteristics
and the reflector holder dimensions. The far-field is given
by an IES specification. This specification is established

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

Figure 1: Overall scheme of reflector lighting pipeline and
the used shaders and textures.

as an industry standard (IESNA [ANS02], EULUMDAT
[bCL99]), and assumes large distances from the sources
to the lighting environment, so spatial information in the
emission of the light can be neglected, considering it as a
point light source with a non-uniform directional distribu-
tion emittance model. The provided far-field only takes into
account the vectors reflected from the desired reflector, dis-
carding the direct rays from the light source. The light source
specification provides the light source position and dimen-
sions, and the near-field emittance description. Finally, the
reflector holder is used to fit the reflector shape into a bound-
ing box.

In this preprocessing step, a rayset is obtained from the
light source. Next, we discard the rays we are sure will not
intersect with the reflector bounding box. The non-discarded
rays are stored in two textures, one for ray directions and
another for ray origin positions.

Figure 2: The reflector mip-map height texture is con-
structed from the z-buffer, using a view point where all
the reflector geometry is visible. Darker texel colours mean
greater heights.

4.2. Reflector geometry transformation

At this stage, we need to construct a representation of the hi-
erarchical height-field of the reflector. The structure used is
a quadtree represented by a mip-map height texture. Each
quadtree node contains the maximum height of its child
nodes (see Figure2).

As mentioned previously, the method does not depend on
reflector geometry complexity. The only restriction is that
the reflector must be able to be manufactured through a
press-forming process, where the reflector shape is deformed
only in the vertical direction. More precisely, the shape must
satisfy certain constructive constraints that require the shape
of the reflector to be the graph of a function defined on a sub-
set of the plane delimited by the reflector’s border. That is,
in our formulation, for the shape to be “build-able”, it must
be a function of typez= f (x,y).

We calculate one orthogonal projection view from which
all reflector geometry is visible. The view direction can be
used as the pressing direction, so in our case, theZ axis
matches the press-forming vertical direction. For our exper-

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

iments, just fitting the viewport to the reflector front is good
enough.

When the viewport is specified, the reflector is rendered,
and then the hardware z-buffer is read, considering theZ
component as heights. Then, a GPU shader creates the mip-
map texture, where the highest map level is a texture with
one texel that contains the maximum reflector height.

To avoid an excessive number of texels representing the
background, we fit the mip-map texture into a tight bound-
ing rectangle around the reflector. Therefore the mip-map
texture is non-power-of-two size, which means the number
of height-field levels will depend on the largest texture di-
mension.

Finally, another GPU shader extracts the reflector normal
vectors, and stores them in a second texture. These normals
will be used later to calculate the reflection vectors.

4.3. Reflections computation

Ray tracing on the reflector is based on quadtree relief map-
ping method (QRM) [SG06], which it is a variation of relief
rapping in tangent space [POJ05]. QRM takes adaptive steps
along the view rays in tangent space without overshooting
the surface, due to the use of a quadtree on the height map.
The goal is to advance a cursor position over the ray until we
reach the lowest quadtree level, thereby obtaining the inter-
section point.

Figure 3: Two ray steps are calculated for a quadtree node.
At the left, tbound is the minimum displacement to quadtree
node bounds tx and ty. At the right, theight is the displacement
to the stored node height h. The final selected step is the
minimum between both.

The method starts at the highest quadtree level, where the
root node has the maximum height. The ray cursor displace-
ment at this point istcursor0 = 0. To advance the cursor, the
ray is intersected with the quadtree node bounds (see Fig.
3, left), and with the stored quadtree node height (see Fig.
3 right). There are two possible node bound intersections in
tangent space:tx andty. From them, we use the nearest one,

Figure 4: Intersection search going down the quadtree hier-
archy.

calledtbound. Also, an intersection calledtheight is obtained
by intersecting the ray with the height value stored in the
node. Iftbound is greater thantheight, it means that the ray in-
tersects with the current quadtree cell. So, the quadtree level
is decreased, and the process starts again with one of the
four child nodes. In this case, the cursor does not advance,
so tcursori+1 = tcursori . Otherwise, the cursor advances to the
cell bound,tcursori+1 = tbound, and the process starts again
with the neighbour cell. This process stops when the mini-
mum quadtree level is reached, or when the cursor position
is out of the texture bounds. In Figure4 there is an example
of this algorithm.

In the QRM algorithm, the first cursor position is found by
intersecting the view ray with the geometry bounding box.
In our case, the first cursor position is the light ray origin
(see Figure4). This means that one more step is processed in
comparison with QRM, because we need to intersect the root
quadtree node in an initial step. However, we avoid the ray-
bounding box intersection calculation that QRM performs.

On the other hand, QRM only processes rays going down
the quadtree hierarchy, being unable to process the rays go-
ing up. This is the case when the light source is inside the
reflector, or when more than one ray bounce inside the re-
flector are considered. We propose an intersection search al-
gorithm going up the quadtree hierarchy. The pseudo-code
for the new algorithm, called RQRM, is presented in Algo-
rithm 1.

The original algorithm assumes that the cursor always ad-

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

Figure 5: Intersection search going up the quadtree hierar-
chy.

Algorithm 1 RQRM(texCoord)

1: RQRMInitialization(texCoord)
2: while level≤ log(max(relie f MapSizexy)) do
3: RQRMCalculateTangentSpaceBounds
4: RQRMStep
5: if OutO f Limits(cursor) then
6: if FirstBouncethen
7: return DISCARDED
8: else
9: return FINISHED

10: end if
11: end if
12: end while
13: f inalPos← re f lectorTex[cursor]
14: f inalNormal← re f lectorNormTex[cursor]
15: re f lectRay← re f lect(rayDir, f inalNormal)
16: return (f inalPos, re f lectRay)

vances in the opposite direction to the height map direction.
Otherwise, QRM discards the ray because it does not in-
tersect with the surface. To solve this case for reflections,
we start the algorithm from the highest quadtree level using
the new ray, composed of the current intersection point and
reflection direction. A small offset is applied as initial cur-
sor displacement to avoid self-intersections, thustcursor0 = δ
(see lines 4-7 of Algorithm 2). Then, we go down through
the quadtree untiltcursori > theight (see Algorithm 3 for tan-
gent space bound calculations), which means the height of
the current cursor position is above the current node height.

Now, we are sure there are not any nodes under the current
one that have a height that intersects with the ray. Hence,
we jump to the neighbour node, sotcursori+1 = tbound, and in-
crease the quadtree level. Iftcursori < theight then there is not
any possible intersection under current level. Thus, we de-
crease the current quadtree level, and do not updatetcursori
(see lines 8-14 of Algorithm 4). The process stops when the
intersection is reached, or when the cursor position falls out
of the texture bounds (see lines 6-10 of Algorithm 1). In the
second case, it is a reflected ray with no more bounces, and it
is stored as an outgoing ray. In Figure5 there is an example
of this algorithm.

Algorithm 2 RQRMInitialization(texCoord)

1: rayPos← rayPosTex[texCoord]
2: rayDir← rayDirTex[texCoord]
3: cursor← Re f lectorMapPro jection(rayPos)
4: if FirstBouncethen
5: tcursor← 0
6: else
7: tcursor← δ
8: end if
9: cursor← cursor+ rayDir · tcursor

10: startPoint← cursor
11: quadrant← (sign(rayDir)+1)div2
12: level← 0

Algorithm 3 RQRMCalculateTangentSpaceBounds

1: bound← ⌊(cursor·2level)+quadrant⌋

2: tbound←
bound
2level−startPoint

rayDirxy

3: tmin←min(tboundx, tboundy)
4: height← relie f Map[cursor, level]
5: heightNorm← (height− rayPosz) ·α
6: t← heightNorm

rayDirz

Algorithm 4 RQRMStep

1: if rayDirz≤ 0 then
2: tcursor←max(tcursor,min(t, tmin+δ))
3: cursor← startPoint+(rayDirxy · tcursor)
4: if t < (tmin+δ) then
5: level← level+1
6: end if
7: else
8: if t > tcursor then
9: level← level+1

10: else
11: tcursor← tmin+δ
12: cursor← startPoint+(rayDirxy · tcursor)
13: level← level−1
14: end if
15: end if
16: return level

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

The algorithm is implemented in a GPU fragment shader.
The rayset data is provided by the previously stored rayset
textures. The textures are mapped into a quad, so each ray
corresponds to a fragment. Each fragment program runs an
iterative process that ends with an intersection point and a
reflection vector. These values are stored in two output tex-
tures, one for the intersection positions, and the another one
for the reflected directions. This shader is executed as many
times as the maximum number of allowed bounces. The re-
sulting textures are used as input textures for the next execu-
tion, thus a GPU ping-pong approach is used.

4.4. Comparison with a desired distribution

At this step we compare the obtained light distribution with
the desired one. Both distributions are converted to far-field
to be compared in the same domain (see Fig.6).

Figure 6: Both the desired distribution and the reflected rays
are classified into histograms. Next, the histograms are com-
pared using the l2 metric.

To convert the reflected rays to a far-field distribution, a
regular grid is used to classify the ray directions. Each grid
cell represents a pair of azimuth and altitude vector direc-
tions in horizontal coordinate system, and contains the num-
ber of rays in this direction. The total azimuth and altitude
ranges are[−π...π] and[π/2...−π/2] respectively. The grid
size depends on the specified far-field directional space dis-
cretization. We use two textures to store both grids, where
each texel represents a grid cell.

We classify the reflected directions by calculating a his-
togram, where each interval represents a grid cell. The algo-
rithm, based on [SH07], has two steps. First, after the last re-
flection step the results are stored into a vertex buffer object.

Next, this vertex buffer is rendered, and a vertex shader clas-
sifies the directions by calculating the fragment coordinates
for each reflected direction. Then, the fragment shader gath-
ers the directions using counters and the hardware blending.

We use the same algorithm to classify the desired distri-
bution. In this case, we do not have to use a counter because
each far-field directional component has its respective emit-
ted energy. To use the same measurement units, both the
number of reflected rays and energy (usually in candelas)
for each cell are transformed to lumens.

The comparison between both textures is done with a
shader that calculates, for each fragment, thel2 error met-
ric:

Dl2(a,b) =

√

√

√

√

N

∑
i

(ai −bi)2

In addition, a reduction shader is used to calculate the sum-
mation part of the formula.

5. Optimization

To obtain a reflector shape that produces a light distribution
close to the desired one, we optimize the parameters used
in the parametric reflector shape definition. For each opti-
mization step, a new reflector shape is obtained, and the out-
going light distribution is compared with the desired one.
If the difference value is below a user-specified threshold,
the process stops. If no reflector produces a light distribution
close enough to the objective, the best one is chosen. Figure
7 shows the overall scheme of the optimization algorithm.

We use a standard optimization method, where for each
parameter, a range and a constant step are specified. The al-
gorithm is an iterative process where each parameter is in-
creased inside a given range by its step value [PPV04]. The
mip-map height texture must be regenerated at each itera-
tion, due to reflector geometry changes. Hence, for each iter-
ation we have to recalculate the outgoing light distribution.
However we do not have to recalculate the rayset for each
reflector, so the initial ray intersection step on the reflector
bounding box guarantees that the rayset is valid for any re-
flector inside this box (see Section4.1).

5.1. Method calibration

To test the accuracy of method, we performed a preprocess-
ing step, where the lighting simulation was calculated sev-
eral times using the desired reflector and combining differ-
ent rayset sizes. For each test the light source was resampled.
Table 1 presents the results for theModel A example (see
Section6), showing the means and variances of thel2 errors
from the difference between each result and the desired light
distribution. For each rayset size, 100 lighting simulations
have been calculated.

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

Figure 7: Overall scheme of optimization algorithm.

Rays Mean l2 Variance l2

Error Error
1000 271.68 15078.60

10000 27.97 20.97
100000 2.91 0.04

1000000 0.38 6x10−4

10000000 0.13 3x10−7

Table 1:Results of several lighting simulations on theModel
A using different rayset sizes.

We observe that the variance error decreases when the ray-
set increases. On the rayset of 1 million rays, the mean er-
ror is quite good, so we can use this rayset to perform the
optimizations. The last row shows the calibration values to
consider the goodness of our method.

Moreover, we are interested in knowing the minimum op-
timization parameter step required to consider that two con-
secutive measures are different. For this, we use the semivar-
iogram [Ole99], a statistical measure that assesses the av-
erage decrease in similarity between two random variables
as the distance between the variables increases. The mea-
sure defines a lag called range, at which the semivariogram
reaches a constant value. We can consider that two measures
separated by a distance larger than the range are stochasti-
cally independent, so the range is equivalent to the notion of
influence of an observation. That is, if we want to get sig-

nificant measurements without being influenced by statisti-
cal noise problems, we can not take measurements that are
closer than the range. From this, we can find a lower bound
for the step size in the optimization process.

The semivariogram is defined as follows: Given two loca-
tionsx andx+h inside the domain of a random functionZ,
the semivariogram is:

γ(h) =
1

2n(h)

n(h)

∑
i=1

[Z(xi +h)−Z(xi)]
2

wheren(h) is the number of pairs of measurements at a dis-
tanceh apart. Figure8 presents the semivariogram for one of
the parameters ofModel A. From this graph we can see that
the range of the semivariogram is about 0.1. So, we have to
use values larger than 0.1 as the step size for this param-
eter in the optimization process. We computed this lower
bound for every degree of freedom included in the optimiza-
tion process.

���� ���� ���� ���� ���� ���� ����

����

����

����

����

���	

����

����

����

�

Figure 8: Semivariogram when changing one parameter of
Model A using106 rays.

6. Results

We have tested our method with three cases. The first one,
called Model A, uses a cylindrical light source with a co-
sine emittance along its surface, except for the caps that do
not emit light. The cylinder dimensions are 4.1mm in length
and a 0.65 mm radius. It is placed at (0,0,0), inside a holder
bounding box located between (-30, -20, -20) and (30, 20, 0),
also in mm. The second case, calledModel B, uses a spher-
ical light source with a cosine emittance. It has a radius of
0.5mm, and it is placed at (5, -5, -5) inside a holder bound-
ing box located between (0, -10, -6) and (10, 0, 0). The third
one, calledModel C, uses a spherical light source with a co-
sine emittance. It has a radius of 1mm, and it is placed at
(5, 5, 0) inside a holder bounding box located between (0,

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

Model Effective Max. Reflector lighting Optimization Tested Optimized Best l2

rays bounces mean time (sec.) time (hours) Reflectors parameters error
A 7.38x106 1 1.3 0.63 1728 3 0.599456
B 5x106 5 3.2 2.2 2401 4 0.975587
C 6.05x106 6 2.7 4.9 6561 4 0.245821

Table 2: Results for our three configurations: From left to right, we find the number of traced rays, maximum number of bounces
inside the reflector, mean time of reflector lighting computation, total time of optimization, number of tested reflectors, number
of optimized parameters and resulting error.

Figure 9: Cross section views of reflectors and their associ-
ated light sources used to test our method.

0, -6) and (10, 10, 0). The cross sections of the three cases
and light source relative positions are shown in Figure9. For
Models AandC, the light sources emit 10 million rays, and
5 million rays forModel B. All of them have an overall en-
ergy of 1100 lumens. Also, for all cases, the mip-map height
texture resolution is 1200× 800, and a quadtree is created
with 9 subdivision levels.

The optimization results for each case are shown in Fig-
ures10, 11 and12. The desired and obtained reflectors are
shown, with the respective far-field distributions and differ-
ence images. In the figures, both far-field and difference im-
ages are represented by false-colour histograms. These his-
tograms are defined like far-field textures, thus the columns
of the texture grid correspond to horizontal angles, and the
rows correspond to vertical angles. The directional space

Figure 10: Results for our Model A. At the top, the desired
and obtained reflectors. In the middle, the desired and ob-
tained far-field histograms in false-colour, indicating the re-
spective angle domains. At the bottom, the histogram differ-
ence between both

resolution is 1800× 900 for horizontal and vertical angles
respectively. Therefore, each histogram cell represents an
angle of 0.2× 0.2 degrees. The colour scale represents the
amount of energy for each histogram cell.

Table 2 provides a summary of the data for the overall
inverse reflector search process for each model. The num-

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

Figure 11: Results for our Model B. At the top, the desired
and obtained reflectors. In the middle, the desired and ob-
tained far-field histograms in false-colour, indicating the re-
spective angle domains. At the bottom, the histogram differ-
ence between both.

ber of effective rays is the number of non-discarded rays
from the initial rayset. ForModel B there are not any dis-
carded rays because the light source is inside the reflector
bounding box, and all the rays intersect the height map. The
time needed to compute the reflector lighting depends on the
number of effective rays and the number of maximum al-
lowed bounces. All models have a similar number of effec-
tive rays, butModel Ahas the lower computation time be-
cause only one bounce is specified. The optimization time
depends on the reflector lighting time and the number of
tested reflectors, and the number of tested reflectors depends
on the number of optimizable parameters and on the range
and offsets applied in the optimization procedure.

Table3 summarizes the broken down times for each re-
flector lighting step. The height map creation times are simi-
lar because all the models use the same mip-map height tex-
ture resolution. The intersection search time depends on the

Figure 12: Results for our Model C. At the top, the desired
and obtained reflectors. In the middle, the desired and ob-
tained far-field histograms in false-colour, indicating the re-
spective angle domains. At the bottom, the histogram differ-
ence between both.

Model Heigh map Intersection Error
construction search calculation

A 56 976 277
B 34 2963 278
C 86 2406 263

Table 3: Mean times (in milliseconds) broken down into the
three main algorithm sections.

number of traced rays, on the maximum number of allowed
bounces and on the height map levels.

Figure13 shows the progress in the optimization process
The results are very similar between the three different mod-
els, because they have the same height map texture sizes
(thus, the same number of quadtree levels), and the number
of traced rays is also similar. The GPU parallel processing
involves a linear computational cost on rayset size. There-

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Albert Mas and Gustavo Patow and Ignacio Martín / FIRD

fore, the most important factor in the intersection search pro-
cedure is the maximum number of allowed bounces. Finally,
the error calculation has similar times for all cases, since the
outgoing textures have the same size.

7. Discussion

As is shown in the previous section, we cannot obtain the de-
sired reflector with zero error. This is because the optimiza-
tion algorithm tests different parameterized reflectors by
changing the parameter values in a constant step size and in
a floating point space. On the other hand, we can improve the
results by optimizing in very small steps, thereby guarantee-
ing convergence to a better solution, but this would strongly
affect the processing times. Also, the semivariogram gives
us a lower bound to the step size for each parameter in the
optimization.

The most time consuming part of our method is the in-
tersection search algorithm. If we use a very refined height
map, we will need more time to traverse the ray through the
quadtree. If we wanted to manage very complex reflector
shapes, we would need height maps with high resolutions.
Therefore, we need to work to find a compromise between
time costs and quality of results.

8. Conclusions and Future Work

We have presented a method for the inverse reflector design
problem that improves on previous approaches. From a wide
set of parameterized reflectors, the one that best approxi-
mates a given desired illumination distribution is found. The
method is based on a very fast GPU algorithm that calculates
the reflected rays on the reflector (with one or more bounces)
in 2 to 3 seconds, using millions of rays and highly complex
reflector shapes. The reflector parameters are optimized in
an iterative process until the generated light distribution is
close enough to the desired one.

We consider, as future work, the use of better optimiza-
tion methods, e.g. adaptive methods, so the desired reflector
can be obtained faster. Another line of research is optimiza-
tion based on a combination of predefined complex reflector
shapes, which can be stored as texture masks.

9. Acknowledgments

This work was done under grant TIN2007-67120 from
the Spanish Government, and under grant 7th Framework
Programme-Capacities (grant No 222550, project EcoStreet-
Light) from the UE.

References

[ANS02] ANSI/IESNA: Lm-63-02. ansi approved stan-
dard file format for electronic transfer of photometric data
and related information, 2002.

[bCL99] BYHEART CONSULTANTS L IMITED :
Eulumdat file format specification, 1999.
http://www.helios32.com/Eulumdat.htm.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The
ray engine. InHWWS ’02: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware(Aire-la-Ville, Switzerland, 2002), Eurograph-
ics Association, pp. 37–46.

[CKO99] CAFFARELLI L. A., KOCHENGIN S. A.,
OLIKER V. I.: On the numerical solution of the prob-
lem of reflector design with given far-field scattering data.
Contemporary Mathematics 226(1999).

[Neu97] NEUBAUER A.: Design of 3d-reflectors for near
field and far field problems. Springer, 1997.

[Ole99] OLEA R.: Geostatistics for Engineering and
Earth Scientists. Kluwer Academic Publishers, 1999.

[POJ05] POLICARPO F., OLIVEIRA M. M., JO A. L.
D. C.: Real-time relief mapping on arbitrary polygonal
surfaces.ACM Trans. Graph. 24, 3 (2005), 935–935.

[PP05] PATOW G., PUEYO X.: A survey of inverse sur-
face design from light transport behaviour specification.
Computer Graphics Forum 24, 4 (2005), 773–789.

[PPV04] PATOW G., PUEYO X., V INACUA A.: Reflector
design from radiance distributions.International Journal
of Shape Modelling 10, 2 (2004), 211–235.

[PPV07] PATOW G., PUEYO X., V INACUA A.: User-
guided inverse reflector design.Comput. Graph. 31, 3
(2007), 501–515.

[RUL00] REVELLES J., URENA C., LASTRA M.: An effi-
cient parametric algorithm for octree traversal. InJournal
of WSCG(2000), pp. 212–219.

[SG06] SCHRODERSM. F. A., GULIK R. V.: Quadtree
relief mapping. InGH ’06: Proceedings of the 21st ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware(New York, NY, USA, 2006), ACM, pp. 61–66.

[SH07] SCHEUERMANN T., HENSLEY J.: Efficient his-
togram generation using scattering on gpus. InI3D ’07:
Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games(New York, NY, USA, 2007), ACM,
pp. 33–37.

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Dis-
placement mapping on the GPU - State of the Art.Com-
puter Graphics Forum 27, 1 (2008).

[UPSK07] UMENHOFFER T., PATOW G., SZIRMAY-
KALOS L.: GPU Gems 3. GPU Gems 3. Addison-Wesley,
2007, ch. Robust Multiple Specular Reflections and Re-
fractions, pp. 387–407.

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

A
lb

e
rtM

a
s

a
n

d
G

u
sta

vo
P

a
to

w
a

n
d

Ig
n

a
cio

M
a

rtín
/F

IR
D

Figure 13: Reflector searching progress, from an initial shape (left), to the desired one (right). From top to bottom, models A, B and C. Below each reflector, there are the
current number of steps in the optimization process and the l2 error

c©
2009

T
he

A
uthor(s)

Journalcom
pilation c©

2009
T

he
E

urographics
A

ssociation
and

B
lackw

ellP
ublishing

Ltd.

