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In order to explain the speed of Vesicular Stomatitis Virus �VSV� infections, we develop a simple model that
improves previous approaches to the propagation of virus infections. For VSV infections, we find that the delay
time elapsed between the adsorption of a viral particle into a cell and the release of its progeny has a very
important effect. Moreover, this delay time makes the adsorption rate essentially irrelevant in order to predict
VSV infection speeds. Numerical simulations are in agreement with the analytical results. Our model satisfac-
torily explains the experimentally measured speeds of VSV infections.
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I. INTRODUCTION

Mathematical models of infectious diseases are a field that
has advanced substantially during the last decades �1�. It
makes use of many methods from Physics, e.g., reaction-
diffusion equations and front speed computations. On the
other hand, in the last century vaccination has become one of
the best tools against infection spreading, and some models
including vaccination strategies have been developed re-
cently �2,3�. Moreover, new computer technology advances
have played an important role on infection spreading re-
search, since they have made it possible to introduce novel
methods such as complex networks �4–6�. However, in ad-
dition with macroscopic epidemiology studies �1–3,5�, the
effects of infectious diseases at a cellular levels �as well as
microscopic viral infection front propagation� are also of sci-
entific interest �7–12�.

When a virus infects a cell, some time � elapses before the
new generation of viruses is released from the cell. Some
years ago, it was shown that this delay time � has an impor-
tant effect and can satisfactory explain the infection front
speeds of T7 viruses infecting E. Coli bacteria �13–15�. In
Ref. �15�, we mentioned that it should be possible to apply
the same model to Vesicular Stomatitis Viruses �VSV�,
which replicate on mammalian or insect cells �not on bacte-
ria�, because there is again a delay due to the time elapsed
between virus adsorption into a cell and the release of its
progeny. Detailed measurements of infection front speeds for
VSV were not available when we developed our models
�8,13�, but such measurements have been performed recently
�16,17�.

Some very recent models for the spread of VSV infections
have been proposed by Haseltine et al. �17�. Their models
include the reaction-diffusion process, as well as some addi-
tional relevant biological phenomena, in order to explain the
experimental images of this phenomenon. In this paper we
revisit the approach by Haseltine et al. �17� to reduce the
complexity of the models, and to better account for the ex-
perimental speeds. We will present a simple model, using as
few unknown parameters as possible, and compare its pre-
dicted front speeds to VSV experimental data �16�. We will
show that it is necessary to take it into account the effect of
the delay time � in order to explain properly the front speeds
of VSV infections.

The plan of this paper is as follows. In Sec. II we present
a time-delayed model using as few free or adjustable param-
eters as possible. In Sec. III we derive some approximate
explicit equations for the front speed. In Sec. IV, we perform
numerical simulations to check the validity of our theoretical
model. In Sec. V we compare to experimental data. Section
VI is devoted to concluding remarks, especially the impor-
tance of the delay time � for VSV infections. We will also
find that this delay-time effect leads to the front speed being
approximately independent of the adsorption constant k1
over four orders of magnitude. This is very important in
order to compare predicted speeds to experimental ones be-
cause the value of k1 is very uncertain.

II. MODEL

The infection and virus replication processes can be sum-
marized by the reactions

V + C→
k1

I→
k2

YV . �1�

In Eq. �1�, k1 is the adsorption rate of viruses V into un-
infected cells C, k2 is the rate constant for the death of in-
fected cells I, and the yield Y is the number of new viruses
produced per infected cell. In contrast to some previous pa-
pers �8,13–15�, here we use the symbol C instead of B be-
cause VSV infections propagate on mammalian or insect
cells �not on bacteria, in contrast to T7 infections�.

The experiments reported in Refs. �16,17� were per-
formed in agar, such that cells are immobilized and only
viruses diffuse. The extracellular model by Haseltine et al.
�see Eq. �5a� in Ref. �17�� uses the following reaction-
diffusion equations for the concentrations at large infected
distances, r→� �where r=0 corresponds to the initial inocu-
lation point of viruses into a medium of uninfected cells�
�18,19�,

��V��r,t�
�t

= D
�2�V��r,t�

�r2 − k1�V��C��r,t� + k2Y�I��r,t� ,

�2�

��C��r,t�
�t

= − k1�C��r,t��V��r,t� , �3�
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��I��r,t�
�t

= k1�V��r,t��C��r,t� − k2�I��r,t� , �4�

where D is the diffusion coefficient, � . . . � denotes concentra-
tion and t is the time. The set of Eqs. �2�–�4� can be further
improved for two reasons, which we now discuss.

First, Eq. �4� implies a virus dynamics that does not agree
with experimental data in homogeneous media �see Eq. �A4�
and the text below it in Appendix A�. In order to improve
this point, it has been proposed �13� that k2�I��r , t� in Eqs. �2�
and �4� should be replaced by a logistic-type growth func-
tion, namely, k2�I��r , t��1− �I��r , t� / IMAX�, which leads to a
virus dynamics that agrees very well with one-step growth
experimental data �see Appendix A�. Such an improved
model is therefore described, instead of by Eqs. �2�–�4�, by
the following set:

��V��r,t�
�t

= D
�2�V��r,t�

�r2 − k1�V��C��r,t� + k2Y�I��r,t�

��1 −
�I��r,t�
IMAX

� , �5�

��C��r,t�
�t

= − k1�C��r,t��V��r,t� , �6�

��I��r,t�
�t

= k1�V��r,t��C��r,t� − k2�I��r,t��1 −
�I��r,t�
IMAX

� .

�7�

This set is more reasonable than Eqs. �2�–�4� because it
agrees better with experimental data in homogeneous media
�see Appendix A�, but we would like to stress that this point
does not affect the analytical results in the present paper
because the infection speeds that we will derive would be the
same if the last term in Eqs. �5� and �7� were neglected �see
Appendix A�.

A second, much more important improvement can be
made. The diffusion dynamics in both Eqs. �5� and �2� �left
side and first term in the right side� is Fickian or nondelayed.
This means that it does not take into account the effect of the
time interval � during which a virus does not move apprecia-
bly because it is inside a cell. The parameter � is the time
interval elapsed from the adsorption of a virus into a cell
until the virus has reproduced inside it and the virus progeny
have left the cell. Obviously, this effect will slow down the
propagation of virus fronts. Indeed, it has been previously
shown that taking into account this delay time is essential to
find good agreement with the experimental observations in
other kinds of virus infections �13�. For this reason, Eq. �5�
must be replaced by a time-delayed diffusion equation �20�,
namely, �see Appendix B for a derivation�

��V��r,t�
�t

+
�

2

�2�V��r,t�
�t2

= D
�2�V��r,t�

�r2 + F�r,t� +
�

2
	 �F�r,t�

�t
	

g

, �8�

where the virus growth function F�r , t� accounts for all
growth processes affecting the virus population density �V�,
i.e.,

F�r,t� 
	 ��V��r,t�
�t

	
g

= − k1�V��r,t��C��r,t� + k2Y�I��r,t�

��1 −
�I��r,t�
IMAX

� . �9�

Note that Eq. �8� simplifies to Eq. �5� if the effect of the
delay time is neglected ��=0�.

The symbol . . . �g indicates that the corresponding time
derivatives in Eqs. �8� and �9� take into account exclusively
growth �i.e., reactive� but not diffusive processes. In a recent
paper �21� it has been shown that taking this subindex prop-
erly into account improves previous results �22� for the speed
of fronts �albeit Refs. �21,22� consider a simpler system with
a single species, whereas here we have three species�. For
this very same reason, Eq. �8� here improves Eq. �6� in Ref.
�13�, and yields a different infection speed that will be de-
rived below. In order to do so, let us further develop the last
term in Eq. �8�,

�

2
	 �F�r,t�

�t
	

g

= −
�

2
k1	 ���V��r,t��C��r,t��

�t
	

g

+
�

2
k2Y	 �

�t

���I��r,t��1 −
�I��r,t�
IMAX

�
	
g

. �10�

From Eqs. �6� and �7�, we can see that there are no diffusive
processes affecting the time derivatives of neither uninfected
C nor infected cells I �physically, this is due to the fact that
cells are immobilized in agar in these experiments�. Thus, in
fact the symbol . . . �g is not required for the last term in Eq.
�10�, and the first term on the right can be written as − �

2k1�V�
��C� /�t − �

2k1�C� ��V� /�t �g. Making use of Eq. �9�, this al-
lows us to rewrite Eq. �8� as

��V��r,t�
�t

+
�

2

�2�V��r,t�
�t2

= D
�2�V��r,t�

�r2 + F�r,t� −
�

2
k1�V��r,t�

��C��r,t�
�t

−
�

2
k1�C��r,t�F�r,t� +

�

2
k2Y

�

�t
��I��r,t��1 −

�I��r,t�
IMAX

�
 .

�11�

This equation has three dependent variables, namely,
�V��r , t�, �C��r , t�, and �I��r , t�, so in order to analyze its
solutions we need two additional equations, namely, Eqs. �6�
and �7�,

��C��r,t�
�t

= − k1�C��r,t��V��r,t� , �12�

DANIEL R. AMOR AND JOAQUIM FORT PHYSICAL REVIEW E 82, 061905 �2010�

061905-2



��I��r,t�
�t

= k1�V��r,t��C��r,t� − k2�I��r,t��1 −
�I��r,t�
IMAX

� .

�13�

Our model will be based on the set of Eqs. �11�–�13�. Before
going ahead, however, we can see better the importance of
the symbol . . . �g by noting that, if it had not been included
in Eq. �8�, Eq. �10� would be the same but without the
symbols . . . �g, so its first term on the right would be
− �

2k1��V�� �C� /�t+ �C�� �V� /�t� and, since the symbol . . . �g
does not appear, we would be unable to substitute Eq. �9�.
Therefore, instead of Eq. �11� we would have obtained

��V��r,t�
�t

+
�

2

�2�V��r,t�
�t2

= D
�2�V��r,t�

�r2 + F�r,t� −
�

2
k1�V��r,t�

��C��r,t�
�t

−
�

2
k1�C�

��V��r,t�
�t

+
�

2
k2Y

�

�t
��I��r,t��1 −

�I��r,t�
IMAX

�
 .

�14�

This corresponds to the model in Refs. �13,14�. The fourth
term in the right of Eq. �14� is improved by that in Eq. �11�.
The difference is that this term in Eq. �11� corresponds to the
variation of �V��r , t� due to adsorption and replication,
whereas in Eq. �14� it also includes its variation due to dif-
fusion �i.e., Eq. �14� uses ��V��r,t�

�t instead of� ��V��r,t�
�t �g=F�r , t��.

For details, see the derivation of Eq. �8� in Appendix B in the
present paper.

Our model will be based on the set of Eqs. �11�–�13�.
Their front speed will be derived below, and they will be
integrated numerically in Sec. IV.

Equations �11�–�13� can be written in terms of dimension-

less variables C̄
�C� /C0, V̄
�V� /C0, Ī
�I� /C0, t̄
k2t,
and r̄
r�k2 /D and dimensionless parameters �̄
k2�, �

k1C0 /k2, and IMAX= IMAX /C0, where C0 is the initial cell
concentration. Then Eqs. �11�–�13� become

�̄

2
V̄t̄t̄ + V̄t̄ = V̄r̄r̄ + F̄ −

�̄

2
�V̄C̄t̄ −

�̄

2
�F̄C̄ +

�̄

2
Y� Ī�1 −

Ī

IMAX

�

t̄

,

�15�

C̄t̄ = − �V̄C̄ , �16�

Īt̄ = �V̄C̄ − Ī�1 −
Ī

IMAX

� , �17�

where F̄ is the dimensionless growth function defined as

F̄ = − �V̄C̄ + YĪ�1 −
Ī

IMAX

� . �18�

For simplicity, in Eqs. �15�–�18� we have used de notation

V̄t̄, C̄t̄, and Īt̄ to indicate, respectively, the partial time deriva-

tives of V̄, C̄, and Ī. Moreover, we have omitted the depen-
dences of the dimensionless population densities and growth

function �i.e., V̄�r̄ , t̄�, C̄�r̄ , t̄�, Ī�r̄ , t̄�, and F̄�r̄ , t̄� appear as V̄,

C̄, Ī, and F̄�. In Eq. �15� V̄t̄t̄ and V̄r̄r̄ stand for the second

partial time and second partial space derivatives of V̄, respec-
tively.

We look for solutions depending only on the new variable
z̄
 r̄− c̄t̄, where c̄�0 is the dimensionless wave front speed,
which is related to dimensional speed c by c̄=c /�k2D. As
usual, we linearize our Eqs. �15�–�18� around the unstable

steady state ��V� , �C� , �I��= �0,C0 ,0�, i.e., �V̄ , C̄ , Ī�= ��V ,1
−�C ,�I�, where �� = ��V ,�C ,�I�=��0 exp�−�z̄�. For nontrivial
solutions ��V ,�C ,�I�� �0,0 ,0� to exist, the determinant of
the matrix corresponding to the linearized set of three evo-
lution equations must vanish. Therefore, the following char-
acteristic equation must be satisfied:

�3 +
− c̄2�1 + 	� + 1

c̄�1 − 	c̄2�
�2 +

��	� − 1� + 	�Y − 1

1 − 	c̄2 �

+
�1 − 	����Y − ��

c̄�1 − 	c̄2�
= 0. �19�

For simplicity, we have introduced the parameter 	= �̄ /2.
According to marginal stability analysis �23�, the wave front
speed can be calculated numerically from

c̄ = min
��0

�c̄���� , �20�

where c̄��� is given implicitly by Eq. �19�.

III. APPROXIMATE EXPLICIT EQUATIONS
FOR THE SPEED

In this section we derive explicit expressions for the di-
mensionless front speed c̄. Its exact value is given by the
implicit Eq. �20�. Since an exact explicit equation for the
speed would be very complicated, some assumptions and
approximations will be made.

In order to avoid nonpositive values for concentrations,
we must impose that the three solutions for � in Eq. �19� are
real, so it must be satisfied that

− 4C1
3C3 + C1

2C2
2 + 18C1C2C3 − 4C2

3 − 27C3
2 
 0, �21�

where C1, C2, and C3 are the coefficients of second, first, and
zeroth powers of �, respectively. We rewrite condition �21�
in terms of �= c̄2 and then we get

a3�3 + a2�2 + a1� + a0 
 0, �22�

where the coefficients ai are easily derived from condition
�21�. However, the exact expressions for ai are rather long.
Fortunately, they can be simplified under some simple ap-
proximations that take into account typical values of the pa-
rameters in the present paper, namely, a high value of the
yield �e.g., Y =2.77�105� and a small value of � �e.g., �
=2.15�10−3�. In Sec. V we will give a detailed discussion of
these and other parameter values. Then the coefficients ai can
be written as
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a3 � 4�3Y3	4 − 12�2Y2	3 + ��2�2Y2 − 18�
�2Y2

− 27
2�2Y2�	2 + �− 2�2�Y + 18�
�Y�	 − 4�3
�Y ,

�23�

a2 � − 4�3Y3	3 + �− 2��2Y2 + 18
�2Y2 + 12�2Y2�	2

+ �18�
�2Y2 + 54
2�2Y2�	 + 12�2
�Y − 18�
�Y ,

�24�

a1 � �2Y2	2 − 18
�2Y2	 − 27
2�2Y2, �25�

a0 � 4
�Y , �26�

where �=1+	, 
=�	−1, we have assumed the typical val-
ues mentioned above and made the approximation �Y −1�
�Y. Even at this point, an exact solution for the front speed
would be extremely cumbersome. Therefore, below we
present two special cases where a manageable expression for
the front speed can be found. First, we deal with the case
	�1. Then, Eqs. �23�–�26� can be simplified as

a3 � 4�3Y3	4, �27�

a2 � − 4�3Y3	3, �28�

a1 � �2Y2	2, �29�

a0 � 4
�Y , �30�

where we have just kept the highest-order power of 	 for
every coefficient ai. The critical condition to obtain the
propagation speed is given by Eq. �22� when the equality
holds. Then, substituting Eqs. �27�–�30� into Eq. �22�, it is
easy to see that the only real, positive solution if 	�1 is
simply

c̄ �
1

�	
. �31�

Note the interesting fact that the velocity is seen to be
independent of � �hence, independent of k1� and Y in this
limit. In Sec. V we will check this point by means of numeri-
cal simulations and discuss it in more detail.

On the other hand, we can easily obtain a solution for the
nondelayed case ��=0�. Then 	=0 and all of the terms con-
taining 	 in Eqs. �23�–�26� vanish. We substitute the result-
ing coefficients ai in Eq. �22� and obtain

c̄	=0 = �−
�2

3�3
−

21/3�− �2
2 + 3�3�1�Y�

3�3�− 2�2
3 − �3

3�1 + 9�3�2�1�Y + ��3�− �2
2 + 3�3�1�Y�3 + �− 2�2

3 − �3
3�1 + 9�3�2�1�Y�2�1/2�1/3

+
�− 2�2

3 − �3
3�1 + 9�3�2�1�Y + ��3�− �2

2 + 3�3�1�Y�3 + �− 2�2
3 − �3

3�1 + 9�3�2�1�Y�2�1/2�1/3

3 · 21/3�3
�1/2

, �32�

where �3=4, �2=6, and �1=−27.

IV. NUMERICAL SIMULATIONS

We have integrated numerically the set of Eqs. �15�–�17�, in order to check the exact speeds obtained from Eqs. �19� and
�20� and the approximate speeds from Eqs. �31� and �32�. Numerical simulations are also interesting because they make it
possible to obtain not only the front speed, but also profiles for the concentrations of the three species, namely, �V�, �C�, and
�I�.

In the experiments that we want to explain, the virus concentration of the initial inoculum is �17�

�V�0 = �
v0, r � 0.075 cm,

�1 −
20

cm
�r − 0.075 cm��v0, 0.075 cm � r � 0.125 cm,

0, r � 0.125 cm,
� �33�

where �V�0 is the concentration of viruses at t=0 and v0
=9.3�108 /ml.

The initial condition �33�, together with �C�=C0 every-
where at t=0 and �I�=0 everywhere at t=0, was used in all
simulations. We used finite differences to approximate the
partial derivatives in Eqs. �15�–�17�. Typical values for the
space and time steps used in our simulations �e.g., in Fig. 1
and most of the simulations in Fig. 2�b�� were 1.5 s and
1�10−5 cm, respectively �dimensionless values for these

steps were computed in order to use Eqs. �15�–�17��. How-
ever, in some cases a higher resolution was required in order
to find good agreement with the theoretical front speeds.
When high values of the parameters �Y, k, or �� were ex-
plored, the steps of space and time had to be reduced to
1�10−6 cm and below 0.3 s, respectively. Moreover, the
same high resolution was required when very low values of
the same parameters were used. Such step reductions lead to
a substantial increase in computing time. Such higher reso-
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lution was needed in some of the simulations in Figs. 2�a�
and 3.

Figure 1 depicts an example of the concentration profiles
�V�, �C�, and �I� after 48 h of infection. In Fig. 1 we observe
that the profile of the uninfected cells C has the shape of a
front �full curve�, whereas that of the infected cells I has the
shape of a pulse. This was to be expected intuitively, because
the infection �first reaction in Eq. �1�� decreases the number
of uninfected cells C, which transform into infected cells I
and eventually die. On the other hand, their death releases
new viruses V �second reaction in Eq. �1�� after some delay
time �, which explains the fact that the virus profile lags
substantially behind that of infected cells I �in contrast to
what is observed in numerical simulations of nondelayed
models �24��. Finally, let us compute the distance traveled by
the infection front during 48 h. This should be 48 h times
0.053 cm/h �from Fig. 2�a�, rhombus with ��8 h�, i.e., 0.25
cm. Adding 0.10 cm from the initial condition �33� we obtain
0.35 cm for the front position, in agreement with Fig. 1.

V. COMPARISON TO EXPERIMENT

In this section we apply our model to the specific case of
a VSV focal infection spreading in Baby Hamster Kidney
�BHK� cells. Experimental results of this biophysical system,
including the observed front speeds, have been published in
Ref. �16�. Below we compare the observed speed range to
both simulations and analytical solutions of our model.

First, we briefly discuss the parameter values used in our
computations. Since we have not found any value for IMAX in
the VSV experiments �16�, we assume that IMAX�C0 �in
agreement with Fig. 1�, i.e., that viruses are able to infect
almost all of the cells at large enough times after the infec-
tion. The value of IMAX is thus IMAX�C0=3.8�107 /ml �17�.

The rate constant for the death of infected cells, k2, and
the virus yield, Y, can be easily derived from the one-step
growth data of VSV on BHK cells �Fig. 3�a� in �17�� by
fitting the logistic function �Eq. �A11� in Appendix A�. This

FIG. 1. Radial profiles of the concentrations �V�, �C�, and
�I� after 48 h of infection, obtained from numerical simulations.
The parameter values used are C0=3.8�107 /ml, Y =2.77�105,
k1=1.4�10−10 cm3 /h, k2=2.47 /h, �=8.1 h and D=8.37
�10−5 cm2 /h �see Sec. V for a discussion on these values�.

FIG. 2. Predicted front speed versus the delay time �, for �a� the
value Y =2.77�105 proposed in this paper and �b� the value Y
=4389 proposed in Ref. �17�. The dotted horizontal lines corre-
spond to the nondelayed model ��=0� and the hatched rectangle to
the experimental range, namely, �6.6–8.0��10−3 cm /h �27�. The
curves are the analytical results from Eqs. �19� and �20� and the full
symbols are the numerical simulations. The empty symbols indicate
the approximate analytical speed results. The parameter values used
are C0=3.8�107 /ml, k1=1.4�10−10 cm3 /h, and k2=2.47 /h.
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is the same procedure we already used in Fig. 1 in Ref. �13�
�that figure gives details on the same computation for the
case of T7 viruses infecting E. Coli bacteria�. This yields
k2=2.47 /h and Y =2.77�105 for VSV infecting BHK cells.
The analytical results and numerical simulations for the front
speed are shown in Fig. 2�a� using these values. For com-
parison, in Fig. 2�b� we have used the yield Y =4389 pro-
posed in Ref. �17�. All parameters except Y have the same
values in Figs. 2�a� and 2�b�. Let us now discuss the values
of the remaining parameters.

Since the diffusion coefficient D of VSV in agar solutions
has not been measured, we performed our analytical and nu-
merical computations using two different values of D,
namely, that in agar for other viruses �25,13� �D=1.44
�10−4 cm2 /h, full curves in Figs. 2�a� and 2�b�� and the
only value of D for VSV available, which refers to a very
specific water solution �26� �D=8.37�10−5 cm2 /h, dashed
curves in Figs. 2�a� and 2�b��.

After VSV viruses infect BHK cells, their progeny leave
the cells between ��2 h and ��10 h after infection �see
Fig. 3�a� in �17��. Within this range, the predicted speeds in
our Fig. 2�a� are consistent �for 3���7 h� with the ob-
served range, namely, �6.6–8.0��10−3 cm /h �27�, in spite
of the fact that the value of the diffusivity for the VSV virus
is rather uncertain because �as mentioned above� it has not
been measured through agar �29�. Essentially the same
agreement between theory and experiment is also obtained
for the value of Y proposed in Ref. �17� �Fig. 2�b��. In con-
trast, the nondelayed model ��=0, as assumed in the model
in Ref. �17� corresponding to Eq. �2� in the present paper�
yields a very large error, as it is clear from its mismatch with
the experimental data �compare the dotted horizontal lines to

the shaded rectangle in Figs. 2�a� and 2�b��. This comparison
with the experiments clearly shows the need to take into
account the delay-time effect in order to explain the infection
speed. This conclusion had not been reached before for VSV
infections.

Our approximate solutions for the speed �Eqs. �31� and
�32�� make it possible to understand better the differences
between Figs. 2�a� and 2�b�. If the delay time � is large
enough, according to Eq. �31� the front speed does not de-
pend on Y neither �. Both simulations and exact analytical
results agree with the nondependence of the speed on Y,
since for ��2 h the curves in Figs. 2�a� and 2�b� are ap-
proximately the same. Note also that the approximate Eq.
�31� has been derived assuming a high value of Y. Because
of this, for ��2 h some differences between the exact and
the approximate results arise �specially in Fig. 2�b�, because
the value of Y is two orders of magnitude smaller than in Fig.
2�a��. Similarly, the approximate speed for �=0 �Eq. �32�� is
much more accurate for high values of Y �Fig. 2�a��.

In Figs. 1 and 2 we have used the value k1=1.4
�10−10 cm3 /h proposed in Ref. �17� for the adsorption rate
because the value of k1 has not been measured experimen-
tally for VSV infecting BHK cells. However, the former
value k1=1.4�10−10 cm3 /h was obtained by fitting the ob-
servations to an extracellular model in Ref. �17�. Because
that model does not take into account the role of the delay
time � �compare Eqs. �2�–�11� above�, this value of k1 should
be regarded as highly uncertain. Therefore, we analyzed the
dependence of the front speed on k1. We found the very
interesting result, shown in Fig. 3, that the value of the front
speed is approximately independent of k1 over several orders
of magnitude �provided that the delay time � is taken into
account, as first done in the present paper for VSV infec-
tions�. Indeed, in Fig. 3, the speed remains almost indepen-
dent of the adsorption rate k1 for large enough values of the
delay time �, namely, ��2 h. In contrast, k1 becomes a
relevant parameter for the case �=0. This is reasonable intu-
itively, because a long enough delay � in the release of the
new generation of viruses from the infected cells will sub-
stantially slow down the infection process. Then we should
expect the time needed for the parent virus to cross the cell
membrane �which is measured by k1� to become irrelevant.
This is indeed observed in Fig. 3 for ��2 h. The approxi-
mate solution given by Eqs. �31� and �32� also supports this
conclusion, because for large enough values of � �	�1� ac-
cording to Eq. �31� the speed does not depend on �, hence
neither in k1 �whereas for the nondelayed case ��=0�, Eq.
�32� shows a nonlinear dependence on � and therefore on
k1�. This also illustrates that the conclusions obtained from
delayed and nondelayed models can be very different. Fur-
thermore, this makes it possible to make quantitative predic-
tions of the front speed in spite of the uncertainty in the
value of k1, and strongly supports the validity of our Figs.
2�a� and 2�b�, because it shows that they would remain al-
most the same even if the value of k1 differed several orders
of magnitude from the value used to obtain those figures
�namely, k1=1.4�10−10 cm3 /h, from Ref. �17��.

We can also see that there is good agreement between the
analytical results from Eqs. �19� and �20� �curves in Figs. 2
and 3� and the numerical simulations of Eqs. �15�–�18� �full
symbols�.

FIG. 3. Front speed versus adsorption rate k1 for several values
of the delay time. The hatched rectangle corresponds to the experi-
mental range, namely, �6.6–8.0��10−3 cm /h �27�. The curves cor-
respond to the analytical results from Eqs. �19� and �20� and the full
symbols to the numerical simulations. The empty symbols indicate
the approximate analytical speed results. The parameter values used
are C0=3.8�107 /ml, D=8.37�10−5 cm2 /h, k2=2.47 /h, and Y
=2.77�105.

DANIEL R. AMOR AND JOAQUIM FORT PHYSICAL REVIEW E 82, 061905 �2010�

061905-6



Relative differences between the speeds in Fig. 3 would
not change if a different value of the virus diffusivity D were
used. This is due to the fact that in the dimensionless Eq.
�19�, the parameter D does not appear, thus it is used only
when computing the dimensional speed c from the dimen-
sionless one c̄ as c= c̄�k2D. Thus, using another diffusivity

value D̃ would only change the speeds by the factor �D̃ /D.
Hence, we have shown that the only two parameters that
have not been measured experimentally �namely, D and k1�
do not affect our conclusion that the role of the delay time
cannot be neglected in order to understand VSV infection
speeds.

In this section we have shown that the delay time � is a
strongly significant parameter in models of VSV infection
spread. The authors of Ref. �17� fitted a large number of
parameters �up to 9�. In some cases, this can lead to overfit-
ting the observed phenomena. We also think that it can some-
times lead to unjustified conclusions �e.g., to neglect the role
of the delay time, which here we have found to be of utmost
importance�. In this paper, we have only used two unknown
parameters �D and k1� and shown that they are not strongly
relevant to our main conclusions.

VI. CONCLUDING REMARKS

We have built a simple time-delayed model of VSV infec-
tions. In order to do so, we have improved a model previ-
ously applied to other kinds of viruses �13�. Our analytical
speeds agree well with those from numerical simulations.
They are also in agreement with experimentally observed
VSV infection speeds �Figs. 2�a� and 2�b��. Moreover, we
have derived approximate front speeds that have lead us to
additional understanding on the results and made our conclu-
sions more intuitive.

As expected intuitively, the front speed decreases with
increasing values of the delay time � �Figs. 2�a� and 2�b��.
We have obtained a strong decrease from �=0 to ��1 h,
and a smoother decrease for larger values of �. We have
shown that the introduction of the delay time � is critically
important to account for the front speeds of VSV infections.
Indeed, neglecting the delay-time effect �i.e., �=0� leads to
an infection front speed one order of magnitude faster than
the observed range �Figs. 2�a�, 2�b�, and 3�.

Moreover, we have shown that the infection speed is al-
most independent of the adsorption rate k1 over four orders
of magnitude for large enough values of the delay time �
�Fig. 3�, a conclusion not previously reached for any kind of
virus infections.
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APPENDIX A: LOGISTIC GROWTH
IN AN HOMOGENEOUS MEDIUM

As mentioned in Sec. II, Eqs. �2�–�4� do not agree with
the experimental data in the so-called one-step growth ex-
periments. To see this, consider the very simple case of a
homogeneous medium �so that �2�V��r , t� /�r2=0 �, com-
posed initially only of infected cells ��C��t��0 and �I�
�t=0�= �I�0 � and free viruses ��V��t=0�= �V�0�. In such a
situation, Eq. �4� becomes simply

d�I��t�
dt

= − k2�I��t� , �A1�

so that

�I��t� = �I�0exp�− k2t� , �A2�

and Eq. �2� simplifies to

d�V��t�
dt

= k2Y�I��t� = Yk2�I�0exp�− k2t� , �A3�

thus

�V��t� = �V�0 + Y�I�0�1 − exp�− k2t�� . �A4�

However, this exponential behavior does not agree with the
experimental data in the so-called one-step growth experi-
ments, because in those experiments a logistic or S-shape
curve is always observed instead �see, e.g., Fig. 1 in Ref.
�13��.

As a solution to avoid this inconsistency, it has been pro-
posed �13� to replace Eqs. �2�–�4� by Eqs. �5�–�7�. In order to
explain this point, let us derive the virus dynamics predicted
by the set �Eqs. �5�–�7�� in one-step growth experiments.
Taking into account again that those experiments are per-
formed in an homogeneous medium �so that the first term in
the right-hand side of Eq. �5� is negligible� and in the ab-
sence of uninfected cells �so that �C��r , t��0 �, Eqs. �5�–�7�
simplify to

d�V��t�
dt

= − Y
d�I��t�

dt
, �A5�

d�I��t�
dt

= − k2�I��t��1 −
�I��t�
IMAX

� . �A6�

Integration of Eq. �A6� yields

�I��t� =
IMAX

1 + � IMAX

�I�0
− 1�exp�k2t�

, �A7�

where �I�0 is the value of �I��t� at time t=0. Note that this
equation leads to �I��t�→0 for t→�, as it should �because
after a sufficiently long time, all infected cells will have died
due to the second of reactions �Eq. �1���.

On the other hand, integrating Eq. �A5� from t=0 to t
→� we come to

�V�� = �V�0 + Y�I�0, �A8�

so the increase in the concentration of viruses is limited by
the initial concentration of infected cells �I�0 and the yield Y,
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as it should �because Y viruses per infected cell are pro-
duced, according to the second of reactions �Eq. �1���.

If we integrate Eq. �A5� from t=0 to t we obtain, instead
of Eq. �A8�,

�V��t� = �V�0 + Y†�I�0 − �I��t�‡ , �A9�

so, again, the increase in virus particles is equal to the de-
crease in infected cells multiplied by the yield. This is much
more reasonable intuitively than Eq. �A4�.

Using Eq. �A7� into Eq. �A9� leads us to

�V��t� = �V�0 + Y�I�0 −
YIMAX

1 + � IMAX

�I�0
− 1�exp�k2t�

.

�A10�

If only a few viruses are present initially ��V�0�Y�I�0 or
�V�0� �V��� and the initial concentration of infected cells is
close to saturation ��I�0� IMAX�, this simplifies to

�V��t� =
YIMAX

c1 exp�− k2t� + 1
, �A11�

where c1
�
IMAX

�I�0
−1�−1. Equation �A11� is the typical logistic

or S-shaped curve which �in contrast to the exponential curve
�Eq. �A4��� agrees very well with experimental data of one-
growth experiments �see Eq. �3� and Fig. 1 in Ref. �13�, and
Fig. 2 in Ref. �16��. We conclude that, both intuitively �see
the text below Eq. �A9�� and from the perspective of provid-
ing good fits to experimental data, Eqs. �5�–�7� are more
reasonable than Eqs. �2�–�4�.

Notwithstanding the former two strong arguments, the
question arises if there is some physical mechanism that can
lead to a dynamics with a quadratic saturation term �last term
in Eq. �A6�� or, equivalently, to its analytical solution �the
logistic expression �A11��. The answer is that there is at least
one such mechanism, namely, to consider that in practice not
all viruses spend exactly the same time inside a cell before
releasing their progeny �i.e., that the value of the delay time
� is not the same for all virus particles�. Then, if we choose
the time origin t=0 when the viruses enter the cells, the
number of viruses at time t will be

�V��t� = �V�0 + �Y − 1��V�0�
0

t

d����� , �A12�

where ���� is the probability distribution of the delay time �.
Note that in the special case that all viruses have exactly the
same value of �, say �0, ���� is a Dirac delta centered at �
=�0 and Eq. �A12� yields �V��t�= �V�0 if t��0 and �V��t�
=Y�V�0 if t��0, as it should. If we consider the following
delay-time distribution,

���� =
YImax

�Y − 1��V�0

c1k2 exp�− k2��
�c1 exp�− k2�� + 1�2 , �A13�

which is bell-shaped �see the full curve in the inset to Fig. 1
in Ref. �15��, using it into Eq. �A12� and integrating yields
the logistic Eq. �A11�, i.e., the solution to the quadratic ex-
pression �A6�. This gives a possible physical reason for the

logistic solution �Eq. �A11��, and thus for the quadratic evo-
lution Eq. �A6�. However, we stress that there are other rea-
sons why such a quadratic evolution equation is more rea-
sonable than a linear one, both intuitively �see the text below
Eq. �A9�� and from the perspective of providing better fits to
experimental data �see the text below Eq. �A11��. In any
case, the inclusion or not of a quadratic saturation term does
not affect the analytical results in this paper, since the infec-
tion speeds derived would be the same if the quadratic term
�last term in Eqs. �5�, �7�, and �A6�� were neglected �because
after linearization, the last term in Eqs. �15�, �17�, and �18�
do not yield any term in Eq. �19��. However, let us empha-
size an important practical advantage of including this qua-
dratic term, namely, that since Eq. �A11� instead Eq. �A4�
gives a much better fit to data, it leads to a more accurate
estimate of the value of k2 �as we have done in the Compari-
son to experiment section�.

Finally, it is worth to note that Y appears multiplying k2 in
all reaction-diffusion equations for �V� discussed in this pa-
per �i.e., Eqs. �2�, �5�, �9�, and �11��. Therefore, the question
arises if it is possible to absorb Y into k2 and, in this way, get
rid of one parameter. The problem is that one-step growth
experiments measure �V��t� but not �I��t� �see, e.g., p. 1736
in Ref. �17��. Thus in order to estimate the parameter values,
it is necessary to fit Eq. �A11� to the experimental data. But
in Eq. �A11� Y no longer multiplies k2. For this reason, Y
cannot be absorbed into k2.

APPENDIX B: TIME-DELAYED REACTION-DIFFUSION
EQUATION

In order to make this paper as much self-contained as
possible, in this appendix we give a derivation of the time-
delayed reaction-diffusion Eq. �8�. Variations in the popula-
tion number density of viruses are due to two processes:
population growth �replication minus adsorption� and dis-
persal. As usual �21�, we Taylor-expand the variation due to
population growth,

��V��x,y,t + �� − �V��x,y,t��g

= �	 ��V��x,y,t�
�t

	
g

+
�2

2
	 �2�V��x,y,t�

�t2 	
g

+ ¯

= �F�r,t� +
�2

2
	 �F�r,t�

�t
	

g

+ ¯ �B1�

where �x ,y� are Cartesian space coordinates, � is the genera-
tion time, the subindex g means growth, and we have intro-
duced the growth function as F�r , t�
� ��V�

�t �g. On the other
hand, the variation due to dispersal is �22�

��V��x,y,t + �� − �V��x,y,t��d

=� � �V��x + �x,y + �y,t����x,�y�d�xd�y − �V�

��x,y,t� , �B2�

where we have introduced the dispersal kernel ���x ,�y�,
defined as the probability per unit area that a virus particle
initially placed at �x+�x ,y+�y� has moved to �x ,y� after a
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generation time �. In a system involving both dispersal and
population growth, the total variation is the sum of both con-
tributions,

�V��x,y,t + �� − �V��x,y,t�

=� � �V��x + �x,y + �y,t����x,�y�d�xd�y − �V��x,y,t�

+ �F�r,t� +
�2

2
	 �F�r,t�

�t
	

g

+ ¯ �B3�

Finally, we Taylor-expand Eq. �B3� up to second order in
time and space and assume an isotropic kernel �i.e.,
���x ,�y�=����, with �=��x

2+�y
2�. This yields �18�

��V�
�t

+
�

2

�2�V�
�t2 = D� �2�V�

�x2 +
�2�V�
�y2 � + F�r,t� +

�

2
	 �F�r,t�

�t
	

g

� D
�2�V��r,t�

�r2 + F�r,t� +
�

2
	 �F�r,t�

�t
	

g

, �B4�

where D is the diffusion coefficient D= ��2�
4� =

��x
2�

2� =
��y

2�
2� . Equa-

tion �B4� is the time-delayed Eq. �8� in our model. Note that
the last term reads� �F�r,t�

�t �g instead of �F�r,t�
�t . This corrects an

error in a previous derivation �22� that was later applied to
T7 virus infection fronts infecting E. Coli bacteria �13,14�.
That error was due to not including the symbol . . . �g in the
last term in Eq. �B1�.
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