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Abstract: Topological indices have been applied to build @SAodels for a set of 20 an-
timalarial cyclic peroxy cetals. In order to evakidhe reliability of the proposed linear
models leavarout and Internal Test Sets (ITS) approaches haee lbonsidered. The pro-
posed procedure resulted in a robust and consenm@gliction equation and here it is
shown why it is superior to the employed standambsvalidation algorithms involving
multilinear regression models.
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Introduction

The objective of the present work is to study tpuediction possibilities in a congeneric group of
antimalarials by using graph-theoretical indicesradecular descriptors. Malaria is one of the most
concerning diseases in developing countries. Thairmhg of an effective vaccine is a far expectiv
The increasing of resistant strains to chloroqunas raised the search of new potential drugs [d] an
artemisin-like substances are promising candidatesrder to control this epidemic and intensive
research is being made on cyclic peroxy compouids [

Graph-theoretical indices, also known as Topoldgicalices (Tl), are non-empirical graph
invariants calculated from the intuitive represéintaof the molecules [2-5]. They encode informatio
on molecular size, shape and branching, the mgsbri@nt features of the molecular structure. The
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computation of Tl is very swift and they have thiwantage of being true structural invariants. Tibat
their values are independent of molecular confoionat Their usefulness in the modeling of physical
[6,7], chemical and biological [8] properties suah different therapeutical activities as well as
toxicological properties [9], the drug-like chamrcf10,11] and the molecular similarity/diversity2f

15], has been firmly established, even within striadly heterogeneous groups of compounds, making
Tl apt for their application in drug design [16-21Recent papers deal with the prediction of
antimicrobial [22,23], specific anti-mycobacterja#,25], anticonvulsant activities [26], drug-album
binding affinity [27], brain-blood distribution [38 and antioxidant character [29], among others.
Three-dimensional versions of the graph-theoreirdices have been also proposed [30-32]. But, in
fact, it is very common to find studies in whicle topostructural and topochemical indices expla@ t
majority of the system variance, and that the isicln of molecular geometry-dependent parameters
does not result in significantly improved predietimodels [33].

On the other hand, in the QSAR field oftentimes heatatical models are presented as a linear
equation of some descriptors selected in some wtyavgood adjustment for the experimental data
within the series. These models usually come acenmegd by a test of validation of leave-one-out
type in which the value of the property for eachienale is evaluated by an equation obtained wigh th
whole rest of the population, in a manner that sbkected variables remain fixed. To the apparent
guarantees that supposes this validation methodnwabpplying the equations to molecules that don't
appear in the series of training, the results eflmtion of the property are usually very poorphrt,
this is due to the particular procedure which heenfollowed in order to perform the cross-validati
In this work, two related algorithmic designs axglered. First, a standard leamesut (LnO) protocol
normally considered when MLR models are searcheddllibe seen how and why this procedure does
not warrant reliable models, even in the caseswbich sound statistical parameters are being
obtained. The important thing is that in order totain reliable models, it is advisable to obtain
acceptable results for test molecuéiernal to the training group, although the predictionside it
were not so remarkable. This encompasses the sevetiibd explored here: as it will be seen,
Internal Tests Sets (ITS) protocol constitutes aersevere hO procedure. Basically, this method
internally generates external molecular test satsvhich true predictions must be performed. Hare,
leave-one-out variant will be presented. This mahag one at a time, each molecule in the original
family is momentarily removed, a model is foundngsihe data of the remaining molecules (even
relying in an internal hO protocol) and a prediction is done for the hiddempound. If fact, this
procedure is equivalent to amfold cross-validation test and constitutes anatige and exhaustive
process with reposition. The consequence is thparécular prediction equation is built for each
removed structure and the selection of the relevamiables entering in models can vary among
equations. Our experience reveals us that thisedeshows the automatic identification of outliers.

Calculations
Data

This study is made on the set of 20 cyclic peroatals previously published by Posner et al. [34].
Table 1 shows the molecular structure of the studiempounds and their activities obtained
experimentally by a reported method [35]. Actisti@are expressed as logarithm ofsod@50%
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inhibitory concentration, C, in nM units). Thusetmost active compounds show low values.

Table 1 Studied molecular structures and experimentaliges.

Descriptors

MeO O0—0O R
Ar — R
Entry Ar R, R Log(IC s¢/nM)
1 Ph Me, Me 3.041
2 Ph cyclopentyl 2.279
3 Ph cyclohexyl 2.447
4 Ph cycloheptyl 2.342
5 4-MeOPh cyclobutyl 2.204
6 4-MeOPh cyclohexyl 2.255
7 4-MeOPh cycloheptyl 2.322
8 3,4,5-(MeO)Ph cycloheptyl 2.079
9 4-CROPh cycloheptyl 1.785
10 4-CIPh cycloheptyl 1.763
11 4-FPh cycloheptyl 1.929
12 4-MeSPh cycloheptyl 1.892
13 4-MeS(Q)Ph cycloheptyl 1.491
14 4-EtPh cycloheptyl 2.255
15 4-MeSPh cyclohexyl 2.204
16 4-MeS(Q)Ph cyclohexyl 1.748
17 4-O,NPh cyclohexyl 1.663
18 4-CIPh cyclohexyl 2.000
19 4-FPh cyclohexyl 2.301
20 4-F,CPh cyclohexyl 2.146

Originally, 90 descriptors were computed for eatncsure. These graph-theoretical indices are
briefly defined in table 2. Detailed definitions thfese descriptors can be found in references @9, 3
41.
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Table 2 Used descriptors.

Symbol Name Definition Reference
N Molecular size Number of non-hydrogen atoms. 19
Vi .

Vertices of degrele Number of atoms havinigbonds o or i, to non-hydrogen 19
_ atoms.
k=3,4
R Ramification Number of single structural branches. 19
W Wiener path number Sum of the distances betwagrveo atoms in terms of bonds. 36
L Length Maximal distance between atoms in termisasfds. 19
PR Pairs of ramifications at| Number of pairs of single branches at distaaoeterms of 19
_ distancek bonds.
k=0-3
. -1/2
e Randk-like indices of ky — Z”: 5
orderk and type path (p), Xe = s i 3738
k=0-4 cluster (c) and path-cluster ' ) !
— &;, number of bondsg or 11, of the atom to non-hydrogen
t=p,c,pc (pc) :
atoms. § jth sub-structure of orddrand typd.
. -1/2
\ N
i Kier-Hall indices of ordek * =2 3"
k=0-4 and type path (p), cluste j=1\ IS, 39
t=p,c,pc (c) and path-cluster (pc) 5, Kier-Hall valence of the atoin
" S.. jth sub-structure of orddrand type.
N-1 N
G, =Y XYM, M |&(k,D;)
G ) o i=1 j=i+l
“ Topological charge indices M=AQ, product of the adjacency and inverse squaredrtist| 19 40
1. of orderk matrices for the hydrogen-depleted molecular grépliistance]
k=1-5 :
matrix. 3, Kronecker delta
v N-1 N v v
G, =ZZ‘MU ~-M;"|3(k,Dy)
Gkv . i=1 j=i+l
Valence topological charge M'=A"Q, product of the electronegativity-modified adjacgn| 19 49
k=1-5 indices of ordek and inverse squared distance matrices for the bgtrdepletec '
molecular graphD, distance matrix3, Kronecker delta
* Pondered topological 3 = G, 19 40
charge indices of ordér KTN-1 '
k=1-5
J Pondered valence G
topological charge indices J)=—k 19,40
k=1-5 of orderk N-1
D, Connectivity differences of
orderk and type path (p), kP —ky _kyv
k=0-4 cluster (c) and path-cluster D= XX 19
t=p,c,pcC (pc)
(= .
Topological charge _ v
_ differences of ordek E =G -Gy 41
k=1-5
Fi Pondered topological
charge differences of order F=J-J 41
k=1-5 Kk
C, Connectivity quotients of ]
orderk and type path (p), ke =X 19
k=0-4 cluster (c) and path-cluster ! Xy
t=p,c,pc (pc)
X Inverse connectivity )
quotients of ordek and kQ, = X 41
k=0-4 type path (p), cluster (c) LS

t=p,c,pc and path-cluster (pc)

CG Topological charge cG. =Sk a1
. k v

k=1-5 quotients of ordek Gy

QG Inverse topological charge QG, = Gy a1

k=1.5 quotients of ordek kG,

459
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The original data matrix dimension was 20x90. Thmglexity of this primary set of indices was
reduced resorting to the Unsupervised Forward 8efe¢UFS) algorithm due to Whitley et al. [42].
UFS procedure eliminates redundant vectors of g#ecs according to the collinearities presentha t
data. In this way the original data matrix has bsleghtly reduced to dimension 20x84, avoiding the
presence of descriptors that did not bring forwang information. Despite only a few vectors have
been discarded, this prevents for the generatidimedr dependences when constructing MLR models,
especially in the cases where several compoundstexedively eliminated during anO or ITS
procedure (see below).

Modeling

A first test of predictability was performed withet 20 molecules of table 1. It was a standar® L
cross-validation, witm ranging from 0 to 2, using Multilinear Regressi®LR) of all the possible
subsets ok independent variables, whek@aries between 1 and 5. In order to select amm@bptsubset
of variables for each and eaclk, the following Algorithm A was used:

Algorithm A(N,n,m,k): Standard MLR-LnO for N molecules for obtaining linear models involving k
indices selected from a set of m.

m
1. Generate all the M:( J combinations of k descriptors taken from the group of m. For every

combination:
2. Perform the LnO test:

N
2.1.Left it apart all the distinct (

n
each set, compute the MLR fitting equation involving the remaining N-n ones. Apply the
obtained linear model to the excluded molecules.

N-1

n-1

value. This constitutes the consensued set of N predictions attached to the k
descriptors.

2.3.Compute the correlation coefficient (R.,) between the N experimental values and the
consensued ones.

3. Final selected variables are those attached to the combination having the highest R, coefficient
in step 2.3 and, additionally, an acceptable statistical significance (in this work, for each
coefficient in the MLR model the probability to be zero is lesser than 1%).

4. Give as final model the MLR fitting equation obtained considering all the N molecules and the
selected variables in the previous step.

] sets of n molecules taken from the group of N. For

2.2.Previous step furnishes with ( ] predictions by molecule. Evaluate the mean

It is well known that algorithm A overestimates thiedictive capabilities of the selected models
[24]. This is so because the final model arisemfeoselection within a very big pool of candid&ies
general the external loop number 1 may generatdionsl of combinations) and the risk of
overparametrization is evident as it is quite phdedo find a combination of indices well correlhte
with the experimental property vector. Despite hes tdrawback, when considering MLR or other
linear techniques this standard algorithm is widedgd for its simplicity and execution speed, apst
2.1 and 2.2 do not need to be explicitly reproduoedLR models, as there is a general theorem that
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allows obtaining the results in an even faster {&}. Even more, the statistical parameters present
accompanying the results (such askhane) where originally designed to evaluate a simgbdel and
not a model selected from a big pool of candidf4d$. This feature helps to optimistically interpre
the obtained fittings.

A second and more robust test of predictability alas performed with the data, this time using the
ITS method. It also constitutes aQ cross-validation, witim ranging from 0 to 2, and considering all
the possible subsets kfindependent variables, whekevaries between 1 and 5. In order to select an
optimal subset of variables for eanhand eachk values, the following Algorithm B implements a
L1O-ITS protocol:

Algorithm B(N,n,m,k): MLR-LnO/L1O-ITS method for N molecules for obtaining linear models involving
k indices taken from a set of m.

1. Consider the N molecules with known activity and left apart one at a time (this is the L10O partin
the ITS formalism). For each set of N-1 remaining molecules:
1.1. Apply the A(N-1,n,m,k) algorithm.
1.2. Consider the MLR model obtained in previous step and apply it over the molecule
excluded in step 1, obtaining in this way the property value prediction and the
corresponding equation.

As it can be seen from the Algorithm B, for eachtipalar value ofk, it provides with a single
model for each left out molecule. Therefore, irstt@se predictions are made without supervision and
the process of selection of subset variables ifopeed without taking into account the information
relative to the excluded structure (the data ofntldecule left out are completely hidden to theteys
at every step) and obtaining in this wairae prediction. Evidently, algorithm B is much more severe
than Algorithm A: first, because it is much monaéi consuming (approximately times more as this
is the number of required internal calls to Algomit A) and, second, because it gives true external
simulated predictions, which can be more unstaRéspect to this last point, the advantage relies in
the fact that if consistent predictions are obtdjribey have an extra value as they where obtained
simulating external predictions. In this way, IT®gedures can be interpreted as a test for asgessin
the true predictive capabilities of the proposediats.

Results and Discussion

Results of prediction performance by using AlgaritA are shown in table 3. In order to compare
models (despite the word of caution above) everthm case of involving distinct number of
parameters, we revert to the clogPP term due tkaPa&ed Ponec [45This statistical parameter is the
co-logarithm of the probability of finding a linearodel involving a certain number of descriptord an
objects and having an equal or greater value ofcthreelation coefficient. It has been recently
demonstrated that this is equivalent to the comjmutaf the statisticalF term [46]. Higher values of
clogPP imply greater model reliability. In generdlwould be ideal to find a maximal value for
clogPP, indicating how many descriptors must bernak the model.
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Table 3. Performance prediction by Algorithm A (MLRRD).

Number of descriptors ()

Model 1 2 3 4 5
R? 0.611 0.778 0.879 0.948 0.965
Leave-0-out (MLRy—0 551 432|555 684 | 870 898
Leave-1-ou R? 0.552 0.658 0.827 0.90p 0.945
clogPP 3.76 3.96 5.60 6.67 7.62
Leave-2-ou R? 0.552 0.658 0.826 0.90p 0.946
clogPP 3.76 3.76 5.59 6.68 7.63

From Table 3, it seems that the most the numberagfbles increases, the best the equations
obtained seems to be. This is a typical resultinrsbme cases a maximum valueRbfor clogPP can
be achieved along a serieskior inn. In the particular case shown here such a maxiwvaime is not
found, but some L10 and L20 results are identisdgha same final models are selected.

By contrast, when algorithm B is executed, the otexh performance varies irregularly, as it can
be seen in Table 4. ITS results in Table 4 preaaqialitative and quantitative improvement when 5
descriptors are being considered in the obtainingternal models (combinations of 6 descriptors
where not tested due to the big computation tintiired). This shows how ITS procedures are
distinct in nature from simple overall fitting amaiches. Authors interpret that the nature of tlesqmt
QSAR problem needs the inclusion of at least 5 rij@scs in order to deal with the molecular
diversity and to achieve an acceptable molecul@gity relationship description. This is revealed by
the ITS procedure, as it forces to make individaiadl transparent predictions for each one of the
compounds. The ITS algorithm can be refined implamg an overall L20 or higher protocols
(making predictions for a couple or more molecualea time) in step number 1. However, according to
our experience the results of L20O are only slighifferent from the results of L1O and they willtno
be shown here. Furthermore, in our case this wasexessary since at the L10 level a quantitative
and instructive leap is already found when pasfiogn k = 3 to 4 as presented in Table 4. The best
models are the ones involving 5 descriptors comgigenternal LOO (ordinary MLR) or L20 models
(L3O models are much more time consuming and havéeen explored here).

Table 4. Performance prediction by algorithm B (MLRWQ/ITS-L10).

Number of descriptors ()

Model 1 2 3 4 5
R? 0.044 0.140 0.003 0.525 0.695
Leave-0-out MLRy— 10 bp | 043 | 056 000| 178 256
Leave-1-ou R? 0.044 0.044 0.016 0.210 0.659
clogPP 0.43 0.16 0.02 0.36 2.25
Leave-2-ou R? 0.094 0.044 0.016 0.211 0.676
clogPP 0.73 0.17 0.02 0.36 2.39
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Figure 1. The predictions obtained from the model involvindescriptors for the ITS-L10
procedure. Internal models where obtained by orgliveLR. R*=0.695, clogPP=2.56.

4.0

Predicted activity by ITS

1.0 ] I ] I ) I ) I )
1.2 1.6 2.0 2.4 2.8 3.2
Experimental activity

For instance, the predictions obtained by the MLéUats are displayed in Figure 1. Similar results
are obtained by the L10 or L20 models. It must béed that in Figure 1, each depicted point
corresponds to a single prediction and is attatbedparticular MLR equation model. Thus, in fae w
are dealing with 20 distinct models. This conséituanother advantage of ITS methodologies: as it
provides many equations, the possibility of perfimgna statistical study is open. For the particular
case we are dealing with, predictions are reasenektept for two cases. The first one, the most
diverging point, is attached to entry 1 in Tablevhjch corresponds to the structure having not anly
extreme value for the biological property, but afgesenting the unique acyclic R,R structure (see
Table 1). The second case corresponds to the enmimber 20 in Table 1. Visually, there is no
structural evidence to consider this molecule apexial case. This shows how the ITS protocol helps
to detect outliers: the fist one possibly due tacttral reasons or to the fact of being an extetjzm,
the second one due to non evident reasons retatestriptor or model deficiencies.

Table 5 shows the frequency with which every indgpears in the final 20 models involving 5
descriptors each. As it can be seen in the tablg, 12 descriptors appear in models more than once.
In Table 5 the data are sorted according to thebmurof times the index was selected in models. The
indices G, &', °C, QG andg’)(IO are the most often used. Additionally, in all tases in the table each
index appears in models preserving the correspgndaefficient sign. This feature constitutes an
indicator for model robustness and, additionallgrnpits to qualitatively correlate each index witie t
experimental property variation.

Actually, the model involving the 5 most voted dgstors in Table 5 coincides with the one
presented in Table 3 for a LOO (MLR) procedure. &pun 1 below shows the explicit model formula
and the attached statistical data. Figure 2 shiwvscorresponding adjusted predictions against the
experimental ones. For this particular case, iieigealed that Equation 1 could be obtained in ackvan
by the first numerical investigations which wererigal out (Table 3), but ITS method allowed us to
corroborate that the selected model bears extnaevdlie to the coefficients sign stability and the
popularity along all the individual models surveyed able 5.
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Table 5. Frequency of use of the indices along the 20 MLd&Rlets of 5 descriptors selected by

Algorithm B.
Cardinal Index Frequency Coefficient
of use sign
1 G 16 _
2 5 14 +
3 °Ce 12 R
4 QG 12 _
5 o 10 R
6 Es 3 R
! G 3 _
8 3 3 .
9 Gy’ 3 .
10 *Coc 2 N
11 3 2 .
12 Qe 2 B

Equation 1. Global MLR model involving the 5 descriptors sééekin the ITS-L10 procedure.
Coefficient intervals are given at the 95% conficefevel. All significance levels for coefficierdse
less than 0.3% (probability for each coefficienb&zero).

Log(ICsg/nM) = 0.241563¢0.077253)x, — 2.23930£0.47090) G + 35.3656£5.8769) d'
+ 0.798064£0.165968)C, — 0.825473(0.482103) QG— 2.78771£1.25679)
n=20, R’=0.965 (clogPP=8.98F=77.59,p<0.00001.

Figure 2. Fitting results obtained by using Equation 1.
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2.8
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Conclusion

A QSAR study of a set of antimalarial agents hasnbperformed. It has been shown that the
reliability of the resulting model is crucially inenced by its quality. Standard MLR Leaw®ut
procedures with supervision have a much lower pted power than allowing the process to be
unsupervised. This is especially due to hidden mar@metrization or instability problems. The last
choice implemented in terms of Internal Tests Setstocol, also prevents from these eventual
problems and can be additionally useful for outtietection. ITS models are more valuable because
they can perform potentially well in interpolatiosusd extrapolation predictions.
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