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Estimation of electronic coupling in �-stacked donor-bridge-acceptor
systems: Correction of the two-state model
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Comparison of donor-acceptor electronic couplings calculated within two-state and three-state
models suggests that the two-state treatment can provide unreliable estimates of Vda because of
neglecting the multistate effects. We show that in most cases accurate values of the electronic
coupling in a � stack, where donor and acceptor are separated by a bridging unit, can be obtained

as Ṽda= �E2−E1��12/Rda+ �2E3−E1−E2�2�13�23/Rda
2 , where E1, E2, and E3 are adiabatic energies of

the ground, charge-transfer, and bridge states, respectively, �ij is the transition dipole moments
between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this
expression based on the generalized Mulliken-Hush approach, the first term corresponds to the
coupling derived within a two-state model, whereas the second term is the superexchange correction
accounting for the bridge effect. The formula is extended to bridges consisting of several subunits.
The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic
dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to
determine whether the two-state approach can be applied. Based on numerical results, we showed
that the superexchange correction considerably improves estimates of the donor-acceptor coupling
derived within a two-state approach. In most cases when the two-state scheme fails, the formula
gives reliable results which are in good agreement �within 5%� with the data of the three-state
generalized Mulliken-Hush model. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2166232�
INTRODUCTION

Bridge-mediated electron transfer �ET� in � stacks has
recently attracted much attention because of its importance
in several physical and biological processes. For instance,
organic solar cells which are fabricated by sandwiching an
organic layer between two electrodes are the subject of in-
tensive experimental and theoretical investigations.1 Another
example is a long-range charge migration in DNA.2 The ef-
ficiency of ET between donor and acceptor sites �or elec-
trodes� can be essentially regulated by variation of the mo-
lecular structure of the bridge. Theoretical and computational
studies provide very useful results which allow one to eluci-
date the role of electronic, structural, and dynamic factors in
ET through � stacks.3,4 The effective coupling of donor and
acceptor Vda is a key parameter which determines the effi-
ciency of the ET reactions, and therefore quantum-
mechanical calculations of this parameter is of wide
interest.5,6 The application of different computational
schemes to estimate Vda in DNA stacks has been discussed
recently.7

Several years ago, Cave and Newton introduced the gen-
eralized Mulliken-Hush �GMH� method.8,9 This scheme em-
ploys a transformation of adiabatic states to diabatic states
that diagonalizes the dipole moment matrix. The GMH
method has been employed for estimating electronic cou-
plings in various systems. In most studies, a two-state ap-
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proach was used. Within this model, the electronic coupling
can be expressed via the vertical excitation energy E2−E1,
the transition dipole moment �12, and the difference of di-
abatic dipole moments of donor and acceptor �a−�d,

Vda = �E2 − E1�
�12

�a − �d
= �E2 − E1�

�12

���1 − �2�2 + 4�12
2

.

�1�

In turn, the difference �a−�d can be estimated by using only
adiabatic dipole moment matrix elements, �a−�d

=���1−�2�2+4�12
2 . The two-state GMH method allows cal-

culation of electronic couplings in various systems, indepen-
dent of symmetry and geometrical constraints.8,9 This ap-
proach has been successfully applied to biologically relevant
� stacks. Beljonne et al. employed the scheme to study
photoinduced hole transfer in DNA hairpins.10 Zheng et al.
calculated electronic couplings in �-stacked porphyrin-
bridge-quinone systems.11 Very recently, the GMH scheme
has been applied to derive electronic couplings for excess
electron transfer in DNA.12

An important advantage of the GMH method is that it is
able to deal with systems where more than two adiabatic
states enter into the description of relevant diabatic states.8,9

When the diabatic states of interest are represented by a com-
bination of more than two adiabatic states, a multistate
model should be employed. So far, only several papers which
deal with the multistate GMH approach have been published.

Rust et al. considered in detail the case with three states,
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where two diabatic states �the ground state and a locally
excited state� are localized on the donor and a single-electron
transfer state is localized on the acceptor.13 They developed a
diagnostic for determining when a third state has to be con-
sidered within GMH calculations. Recently, a multistate
GMH approach has been employed for calculating electronic
couplings for charge transfer in DNA � stacks consisting of
three, four, and five base pairs.14 It was found that although
for some systems the two-state scheme provides reasonable
estimates, in general, this model fails to reproduce the elec-
tronic couplings calculated with the multistate approach.14

Using a three-state GMH scheme, Lambert et al. derived
electronic couplings from spectroscopic data and semiempir-
ical calculations for some organic radical cations.15 They
analyzed the dependence of Vda on adiabatic parameters and
suggested that the two-state model is a good approximation
only if the difference of dipole moments of donor and accep-
tor is large compared to transition moments associated with a
bridge state. However, we will see that a diagnostic based
only on comparison of adiabatic dipole moments can be mis-
leading.

In this paper, we suggest a simple formula which takes
into account the effects of the bridge state, develop a diag-
nostic to determine when a multistate treatment must be em-
ployed, and compare donor-acceptor electronic couplings
calculated using the introduced formula with the correspond-
ing values derived from the two- and multistate GMH mod-
els.

RESULTS AND DISCUSSION

Relationship between electronic couplings derived
within the two- and three-state frameworks

Let us consider a donor-bridge-acceptor system, where
two adiabatic states of the lowest energy, �1 and �2 corre-
spond to donor and acceptor and an adiabatic state �3 is
essentially localized on the bridge; E1, E2, and E3 are ener-
gies of these states. In the adiabatic representation, the
Hamiltonian matrix is diagonal,

�E1 0 0

0 E2 0

0 0 E3
� .

Within the three-state model, the adiabatic states �1, �2, and
�3 are transformed into diabatic states �̄d, �̄a, and �̄b of
donor, acceptor, and bridge, respectively. The unitary trans-
formation of the adiabatic Hamiltonian results in a symmet-
ric matrix

� �̄d V̄da V̄db

V̄da �̄a V̄ab

V̄db V̄ab �̄b

� ,

where the diagonal elements �̄d, �̄a, and �̄b are energies and

the off-diagonal elements V̄da, V̄db, and V̄ab are electronic
couplings of these diabatic states. Alternatively, applying the

two-state model to �1 and �2, one obtains diabatic states �d
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and �a with energies �d and �a and a coupling matrix ele-
ment Vda,

� �d Vda 0

Vda �a 0

0 0 �b
� .

In this case, the bridge state �b is identical to the adiabatic
state �3 and �b=E3. Electronic couplings Vda and Vab are
zero because by definition ��1	H	�3
= ��2	H	�3
=0 and �d

and �a are linear combinations of �1 and �2. Let us assume
that the states �d, �a, and �b=�3 are zeroth-order approxi-
mations to the diabatic states �̄d, �̄a, and �̄b. We consider a
perturbed system where the donor and acceptor states are
coupled with the bridge; the matrix elements Vdb� and Vab�
define the coupling. Then, the first-order states of donor and
acceptor are

�̃d � �d +
Vdb�

�d − �b
�b = �d +

Vdb�

�db
�b,

�2�

�̃a � �a +
Vab�

�a − �b
�b = �a +

Vab�

�ab
�b,

where �db and �ab are donor-bridge and acceptor-bridge en-

ergy gaps. The electronic coupling Ṽda between the nonor-
thogonal states �̃d and �̃a is given by5

Ṽda = ��̃dH�̃a
 − 1 � 2��̃d�̃a
���̃dH�̃d
 + ��̃aH�̃a
� . �3�

Substituting Eq. �2� for �̃d and �̃a in Eq. �3� and keeping
only terms of first and second order, we obtain

��̃dH�̃a
 = Vdb + Vdb� Vab� � 1

�db
+

1

�ab
+

�b

�db�ab

 , �4�

��̃d�̃a
���̃dH�̃d
 + ��̃aH�̃a
� =
Vdb� Vab�

�db�ab
��d + �a� . �5�

Then, combining Eqs. �4� and �5�,

Ṽda = Vda + Vdb� Vab� � 1

2�db
+

1

2�ab

 . �6�

Since

� 1

2�db
+

1

2�ab

 =

�d + �a − 2�b

2��d − �b���a − �b�

� ��d + �a

2
− �b
−1

,

E3=�b, and E1+E2=�d+�a �the trace of a matrix is invariant
under a unitary transformation�, we obtain

Ṽda � Vda + Vdb� Vab� �E1 + E2

2
− E3
−1

= Vda +
Vdb� Vab�

Egap
, �7�
where
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Egap = E3 −
E1 + E2

2
.

Thus, the effect of a third state on the donor-acceptor cou-
pling can be approximately described by a superexchange
correction. It should be noted that both three- and two-state
models treat the same adiabatic states �1, �2, and �3 of the
whole d-b-a system, where all interactions between donor,
bridge, and acceptor subunits are accounted for. If the “di-
rect” coupling of donor and acceptor Vda dominate the super-
exchange term, the two-state model will provide reliable re-

sults. However, when the two contributions in Ṽda are of the
same magnitude, their interference can considerably affect
the coupling. Especially strong effects are expected when the

terms interfere destructively. In this case Ṽda will be much
smaller than the two-state coupling Vda. Thus, admixture of a
bridge state to adiabatic states �1 and �2 can considerably
restrict the application of the two-state approach. Numerical
results presented in a subsequent section show that in most
cases when the two-state approach fails to provide reason-
able estimates, the superexchange correction of the two-state
scheme �Eq. �7�� allows one to obtain accurate values of the
donor-acceptor coupling.

A detailed formulation of effective two-state models
based on perturbation theory was presented by Newton.5 Al-
ternative routes which result to a similar expression for the
superexchange term were considered. General expressions
for electronic coupling in donor-bridge-acceptor systems
were derived using different techniques.5,16–18 There is a re-
markable difference between the current analysis and the
previous results. Usually considering superexchange interac-
tion one operates with the diabatic state of isolated subunits.
In such cases a tight-binding approximation is used. In par-
ticular, the direct coupling of donor and acceptor is neglected
because bridge-mediated superexchange coupling clearly
dominates this term. On the contrary, a two-state model,
which is based on adiabatic states of donor and acceptor,
implies that all bridge effects are implicitly included. How-
ever, as noted by Cave and Newton,9 multistate effects may
essentially influence two-state results. Recently, the system-
atic study of DNA � stacks14 has demonstrated that in many
cases the two-state model fails to provide accurate estimates
of electronic couplings and a multistate approach must be
employed for an explicit treatment of bridge states. As we
discussed above, the bridge effects may be accounted for in
terms of the superexchange model �see Eq. �7��.

Formula for the donor-acceptor coupling

So far, we did not specify how to determine the matrix
elements Vdb� and Vab� . The GMH method offers a convenient
way to estimate these quantities. Because for ground-state
thermal processes the diabatic and adiabatic states essentially
coincide at equilibrium configurations,5 applying the two-
state GMH model �Eq. �1�� to pairs of states ��1 ,�2�,
��1 ,�3� and ��2 ,�3� may express the matrix elements Vda,

Vdb� , and Vab� involved in Eq. �7�. Then
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Ṽda =
�E2 − E1��12

��a − �b�
+

�E3 − E1��13

��b − �d�
�E3 − E2��23

��a − �b�
1

Egap
. �8�

Taking into account that

�E3 − E1��E3 − E2� � �E3 −
E2 + E2

2

2

= Egap
2

we obtain

Ṽda = �E2 − E1�
�12

�a − �d
+ Egap

�13

�b − �d

�23

�a − �b
. �9�

The differences of diabatic dipole moments can be expressed
via adiabatic matrix elements �see Eq. �1�� or estimated using
geometric parameters of the system. While in some cases the
adiabatic dipole moment difference can be determined by the
Stark spectroscopy, usually these experimental data are not
available and estimates based on structural parameters are
employed. The diabatic dipole moment difference is set to
eRda, where Rda is the distance between donor and acceptor.
In general, Rda is not well defined, and therefore the value of
��a−�d� is rather inaccurate. However, in � stacks, the situ-
ation is more favorable. One may employ the projections of
adiabatic dipole and transition moments onto an axis perpen-
dicular to the planes of donor and acceptor.

Then, �b−�d��a−�b�1/2��a−�d� and ��a−�d�
=eRda, and finally, we have

Ṽda =
�E2 − E1��12

Rda
+

4Egap�13�23

Rda
2 . �10�

In this equation, the transition dipole moments and Rda are in
atomic units. If the transition moments are in debye and the
distance is in angstrom, Rda in Eq. �10� must be replaced by
�fRda� with f =4.803 24. Because the distance between the
planes of donor and acceptor in � stacks is usually well
known, expression �10� may be used for estimating cou-
plings on the basis of spectroscopic data.

Expression �9� can be extended to systems containing
several bridge units:

Ṽda � �E2 − E1�
�12

�a − �d

+ �
j=3

n �Ej −
E1 + E2

2

 �1j

� j − �d

�2j

�a − � j
, �11�

where the energy Ej corresponds to adiabatic state j localized
on the bridge. The differences � j −�d and �a−� j can be
expressed in terms of adiabatic dipole and transition mo-
ments �see Eq. �1��.

Diagnostic to determine whether a two-state model
is applicable

As seen from Eq. �9�, a two-state model may be applied
if the superexchange term is relatively small, i.e.,

� �E2 − E1��12

�a − �d
� � � EgapE13�23

��a − �b���b − �d�
� . �12�
In � stacks, �b−�d��a−�b�1/2��a−�d�, and therefore
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	�E2 − E1��12	 � �4Egap�13�23

��a − �d�
� . �13�

Introducing a parameter 	

	 = 1 +
�E2 − E1���a − �d��12

4Egap�13�23
� 1 +

�E2 − E1�Rda�12

4Egap�13�23
,

�14�

condition �11� can be rewritten as 			�0.
When both terms in Eq. �9� are of the same sign, i.e.,

they interfere constructively, the two-state model will under-
estimate the donor-acceptor coupling. When 	=1, the two-
state term is zero and the donor-acceptor coupling is con-
trolled by the superexchange term; 	
1 indicates that the
direct and superexchange terms interfere destructively �they
are of opposite signs� and the two-state approach will over-
estimate the coupling. The two-state model becomes com-
pletely unreliable when the terms are similar in magnitude
but opposite in sign, 	�0. In this case, the multistate GMH
scheme must be employed.

FIG. 1. � stack of three Watson-Crick pairs �GC, TA, and GC�. The donor
and acceptor sites, GC pairs, are separated by a TA bridge. The distances
between donor, bridge, and acceptor are defined as spacing between their
planes.

TABLE I. Dependence of adiabatic and diabatic pa
10−5 a.u.�.

Parameter F=0 F=6.100

E2−E1 �meV� 20.7 3.50
qd 0.984 0.747
qa 0.007 0.243
qb 0.010 0.010
�2−�1 �D� 31.77 16.43
�3−�1 �D� 15.89 8.22
�3−�2 �D� −15.89 −8.22
�12 �D� 2.68 13.86
�13 �D� 0.51 0.67
�23 �D� 0.51 0.24
�a−�d �D� 32.23 32.23
�a−�d �meV� 20.4 2.0

V̄da �meV� 2.46 2.26

V̄db �meV� 22.0 22.0

V̄ab �meV� 25.4 25.4
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP lic
Effects of external parameters on adiabatic
and diabatic properties

In this section we show that small fluctuations of exter-
nal parameters may cause very big changes in adiabatic di-
pole matrix. Let us consider the effect of the external field on
the adiabatic and diabatic quantities of a stack consisting of
three nucleobase pairs. Two guanine-cytosine �GC� pairs are
the donor and acceptor sites separated by a thymine-adenine
�TA� bridge. The structure of the stack is shown in Fig. 1.
The distance between base pairs in the stack is set to 3.38 Å.
To this end we carried out quantum-chemical calculations
using the Hartree-Fock method with the standard 6-31G* ba-
sis set as described in previous papers.14,19 A weak electric
field along the stack axis will be used as the external param-
eter. The three-state GMH method was employed to estimate
the coupling matrix elements. The results of calculations are
given in Table I. As can be seen, the electric field consider-
ably affects the charge distribution between donor and accep-
tor and adiabatic dipole matrix elements.

When the electric field is zero, F=0, donor and acceptor
are off resonance; the energy mismatch �a−�d is 20.4 meV.
In the ground state, the excess charge is almost completely
localized on the donor. The charges on the acceptor and
bridge sites are found to be 0.007 and 0.010, respectively.
Electron transition �1→�2 results in a considerable change
of the adiabatic dipole moment �2−�1�31.8 D. Because
the state �3 is mainly localized on the bridge, �3−�1=�2

−�3=1/2��2−�1�. The transition moment �12 of �2.7 D is
essentially larger than �13 and �23. The d-a electronic cou-

pling V̄da is by order of magnitude smaller than the matrix

elements V̄db and V̄ab associated with the bridge state.
By applying an electric field of 6.1�10−5 a.u. the energy

mismatch between d and a levels essentially decreases, �a

−�d=2 meV. As can be seen from Table I, the adiabatic di-
pole and transition moments are very responsive to the ex-
ternal perturbation. However, the electronic couplings in the
system retain their values. When the electric field is 6.725
�10−5 a.u., the donor and acceptor states are almost in reso-

ters of the GTG stack on external electric field �in

F=6.725 F=7.000 F=13.450

3.27 3.27 20.4
0.499 0.375 0.006
0.491 0.615 0.987
0.010 0.010 0.007
0.29 −7.76 −31.83
0.14 −3.88 −15.91

−0.14 3.88 15.91
16.11 −15.64 −2.54

0.71 0.71 0.57
0.05 0.04 0.43

32.23 32.23 32.23
0.2 −0.6 −20.0
2.37 2.32 2.34

22.0 22.0 22.0

25.4 25.4 25.4
rame
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nance. The diabatic energy gap �a−�d is calculated to be
0.2 meV; the positive charge is equally distributed between
donor and acceptor, and the dipole moment difference �2

−�1 decreases to 0.29 D. On the contrary, the transition mo-
ment �12 becomes very large, �16 D. By further increase of
the electric field, the acceptor state d-b-a+ becomes lower in
energy than the donor state d+-b-a and corresponds now to
the ground state. The difference of adiabatic dipole moment
changes its sign. The properties calculated at F=13.450
�10−5 a.u. are similar to those obtained at F=0, provided
that the donor and acceptor states are exchanged.

As seen from Table I, the properties of the diabatic states
remain almost unchanged despite the fact that adiabatic di-
pole matrix elements are very sensitive to the external per-
turbation. The calculated differences of diabatic dipole mo-
ments �a−�d=32.23 D and �b−�d=�a−�b=16.11 D are
practically independent of the applied electric field. The cal-
culated value �a−�d=32.23 D is in very good agreement
with an estimate eRda=32.47 D �Rda=6.68 Å�. The cou-

plings V̄db and V̄ab also retain their values. Although V̄da is

found to be more sensitive than V̄db and V̄ab, its variation is
rather insignificant.

Overall, the results demonstrate that small fluctuations of
donor and acceptor energy mismatch due to external pertur-
bations may cause considerable changes in the adiabatic di-
pole and transition moments, while electronic couplings re-
main almost unchanged. Therefore, varying an external
parameter �electric field, geometry of donor or acceptor, and
position of solvent molecules�, one can essentially change
adiabatic dipole and transition moments. Because of that, a
ratio of these quantities cannot be used, in general, to predict
the role of the bridge effects. Lambert et al. concluded that
the two-state model is a good approximation only when the
difference of dipole moments of donor and acceptor is large
compared to transition moments associated with a bridge
state.15 This is the case when F=0 �Table I�. The donor-
acceptor couplings calculated using the two- and three-state

TABLE II. Comparison of donor-acceptor electronic

=1.0 eV. The couplings Vda, V̄da, and Ṽda are calculate
�9�, respectively.

System �12 �D� �13 �D� �23 �D�

1 5.0 1.0 1.0
2 5.0 1.0 −1.0
3 2.5 1.0 1.0
4 2.5 1.0 −1.0
5 1.3 1.0 1.0
6 1.3 1.0 −1.0
7 1.0 1.0 1.0
8 1.0 1.0 −1.0
9 0.5 1.0 1.0

10 0.5 1.0 −1.0
11 1.0 0.1 1.0
12 1.0 0.1 −1.0
13 0.0 1.0 ±1.0
14 1.0 0.0 1.0
15 1.0 0.0 0.0
schemes are 1.72 and 2.46 meV, respectively. If donor and
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acceptor are almost in resonance �F=6.725�10−5 a.u.�, the
difference �2−�1=0.29 D is remarkably smaller than �13

=0.71 D. However, the two- and three-state couplings are
similar �1.63 and 2.37 meV� to the estimates found at F=0.
Furthermore, according to our experience, in nonsymmetric
systems the difference �2−�1 is often essentially larger than
transition moments; however, the performance of the two-
state model strongly depends on the system being consid-
ered.

Numerical estimation

As shown above, adiabatic dipole matrix elements in a
d-b-a system can vary in a wide range depending on external
parameters, while electronic couplings essentially retain their
magnitude. Moreover, structural fluctuations in � stacks are
found to cause considerable changes in the electronic
coupling.20,21 Thus, adiabatic transition dipole moments ap-
pear to be very sensitive to structural features of � stacks.

Now we compare electronic couplings Ṽda, Vda� , and V̄da es-
timated by using Eq. �8� and the two- and three-state GMH
schemes, respectively. Table II provides numerical results for
the couplings calculated for several sets of adiabatic param-
eters. In the calculations, the difference of diabatic dipole
moments �a−�d was assumed to be 32.66 D. In line with
calculation results �Table I� we assumed that �3−�1=�2

−�3=1/2��2−�1�. In turn, ��2−�1� can be estimated as
�2−�1=���a−�d�2−4�12

2 . These physically reasonable
constraints allow us to decrease a number of variable param-
eters of the model. For all systems we assumed that E2−E1

and Egap are 0.1 and 1.0 eV, respectively. Since electronic
coupling depends on the product �Ej −Ei��ij, similar values
of the coupling can be found in systems with quite different
adiabatic properties when the corresponding products are
close to each other.

In system 1, all transition dipole moments are positive,
and consequently, both terms in Eq. �9� interfere construc-

¯

lings in d-b-a stacks with E2−E1=0.1 eV and Egap

using the two- and three-state GMH schemes and Eq.

da	 �meV� 			 	Vda/ V̄da	 	Ṽda/ V̄da	

18.80 5.08 0.82 1.01
11.71 3.30 1.31 0.99
11.30 3.04 0.68 1.01
3.95 1.04 1.94 0.99
7.68 2.06 0.52 1.01
0.26 0.06 15.60 0.90
6.77 1.82 0.453 1.01
0.66 0.18 4.61 1.04
5.25 1.41 0.29 1.01
2.20 0.59 0.70 1.01
3.32 9.16 0.92 1.04
2.57 7.16 1.19 1.05
3.06 0.0 0.0 1.01
2.94 Inf 1.04 1.04
3.06 Inf 1.00 1.00
coup

d by

	V̄
tively. The electronic coupling Vda calculated with the three-
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state approach is 18 meV. As can be seen from Table II, the
two-state scheme underestimates the matrix element by

about 20%. The value Ṽda given by Eq. �10� deviates from

V̄da by less than 1%. In system 2, �13 is negative and the
coupling becomes smaller when the superexchange correc-

tion is accounted for, Vda� Ṽda� V̄da. In this case the two-
state model overestimates the coupling by 30%. Less accu-
rate values are provided by the two-state approach for
systems 3 and 4 with �12=2.5 D—the coupling is underes-
timated by 30% in system 3 and predicted to be almost twice
as large in system 4. In both cases, Eq. �9� gives accurate
estimates of the electronic coupling. When �12=1.3 D �sys-

tems 5 and 6 in Table II�, the absolute values of V̄da and the
correction term are very similar. Because of that, in system 5
Vda is found to be equal only to half of the reference value

V̄da. In system 6, 	�0 and the coupling matrix element is
considerably �by a factor of 15� overestimated if the two-

state GMH model is employed. By contrast, the Ṽda and V̄da

values are in good agreement. While the two-state approach
shows better performance for systems 7–10 the estimates of
the coupling are not very accurate. Note that in all these
cases, Eq. �9� provides reliable results. In systems 11 and 12,
�13 is an order of magnitude smaller than �12 and �23. Be-
cause the parameter 	 in these cases is relatively large, 			
�7, the superexchange term in Eq. �9� is essentially smaller
than the direct coupling, and the two-state model gives good
estimates.

Finally, we consider three special cases. In system 13
with �12=0, the parameter 	 is zero. It means that the d-a
coupling is exclusively defined by superexchange correction.
Obviously, the two-state scheme cannot be applied in this
case. By contrast, in system 14, the superexchange term in
Eq. �9� is zero since �13=0, the parameter 	 is infinitely
large, and the two-state model provides a good estimate for

the coupling, Vda� V̄da. While �13=0, the donor-acceptor

coupling V̄da calculated within the three-state approach de-
pends on �23. However, this effect will not be reproduced by
formula �9�. System 15 with �13=�23=0 represents a rather
unlikely situation. In terms of the GMH scheme, the bridge
state is completely uncoupled and the three-state model re-
duces to a two-state model. It is apparent that in this case the
two-state approach provides accurate values of the donor-

acceptor coupling Vda= V̄da.
Overall, based on the numerical results presented in

Table II, we conclude that estimation of the donor-acceptor
coupling can be considerably improved by employing Eq. �9�
instead of the two-state model. However, when 	�0, the
formula may provide values which are not very accurate, and
therefore the three-state GMH treatment has to be applied in
such cases.

CONCLUSIONS

We analyzed the difference in donor and acceptor elec-
tronic couplings calculated within two- and three-state
schemes based on the generalized Mulliken-Hush approach.
It has been shown that admixture of a bridge state to adia-
batic states of donor and acceptor considerably affects the
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP lic
coupling matrix element derived within the two-state model,
and thus the two-state treatment is limited in use. Using per-
turbation theory, we found that the effects of the bridge states
can be described in terms of superexchange interaction �Eq.
�9��. Based on numerical results we showed that the super-
exchange correction considerably improves estimates of the
donor-acceptor coupling derived within a two-state ap-
proach. In most cases where the two-state scheme fails, Eq.
�9� gives reliable values which are in good agreement �within
5%� with the results of the three-state GMH model.

In �-stacked d-b-a systems, an excess charge migrates
along the axis perpendicular to the planes of donor and ac-
ceptor. In this special case, the difference of diabatic dipole
moments is well defined by the spacing between the planes,
and therefore Eq. �12� may be employed.

We demonstrated that small variations of an external pa-
rameter, which affects the splitting of donor and acceptor
levels, may considerably change charge distribution and
adiabatic dipole matrix elements, while electronic couplings
remain almost unchanged. Because of that, the question
whether a two-state GMH model is applicable cannot be an-
swered when only adiabatic dipole and transition moments
are compared. A diagnostic, where the parameter 	 is defined
by Eq. �14�, has been proposed to determine whether the
two-state model is a good approximation. It is suggested that
the two-state treatment provides reliable results when 			
�5; however, it becomes rather unusable if 			
2.
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