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Energy partitioning for ‘‘fuzzy’’ atoms
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The total energy of a molecule is presented as a sum of one- and two-atomic energy components in
terms of ‘‘fuzzy’’ atoms, i.e., such divisions of the three-dimensional physical space into atomic
regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit
a continuous transition from one to another. By proper definitions the energy components are on the
chemical energy scale. The method is realized by using Becke’s integration scheme and weight
function permitting very effective numerical integrations. ©2004 American Institute of Physics.
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I. INTRODUCTION

The most important result of a quantum chemical cal
lation is the total energy of the molecular system; howev
being a single number, it carries little immediate chemi
information. In order to get connections with genuine chem
cal concepts, one may use the wave functions or den
matrices, and calculate quantities like atomic charges1 and
bond order indices.2 An alternative avenue is to decompo
the total molecular energy~exactly or approximately! into a
sum of atomic and diatomic energy components, which w
reflect the different intramolecular interactions in a natu
way. Similar to the calculation of quantities like bond orde
such an energy analysis may be performed either in the
bert space of the atomic orbitals3 ~by identifying the atom
with its nucleus and the atomic orbital basis orbitals assig
to it! or in the three-dimensional~3D! physical space in
which the molecule is situated. Schemes of Hilbert sp
analysis are simple and convenient for use, but do not p
sess any limits for large basis sets. To accomplish a sch
of an analysis in the physical space, one has to assign~at
least in some sense, see the following! a part of the 3D space
to every atom. Such a decomposition of the physical sp
into ‘‘atomic domains’’~and sometimes domains correspon
ing to the so-called ‘‘non-nuclear attractors’’! is most often
accomplished by using Bader’s ‘‘Atoms in Molecules
~AIM ! theory.4 Bader also presents the molecular energy a
sum of purely atomic contributions, on the basis of apply
the virial theorem to every atomic domain, which is usua
fulfilled with a relatively good accuracy in the practical ca
culations. Recently we have shown that in the AIM fram
work the total self-consistent field~SCF! energy can be pre
sented exactly as a sum of mono- and diatomic ene
components.5 This decomposition scheme has been reali
by performing the necessary numerical integrations in
previous work;6 it gave quite convincing results in goo
qualitative agreement7 with those of the Hilbert-space de

a!Electronic mail: pedro.salvador@udg.es
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composition in Ref. 8. Unfortunately, the complex form
the AIM domains makes these calculations extremely CP
demanding. The point is that every two-electron integral o
the molecular integrals should be decomposed into integ
over their pieces cut to the individual domains. In order
get a modest but acceptable accuracy, we had to use a
40 000 points per atomic domain. Therefore, the numbe
operations necessary to perform the energy decompositio
a small molecule exceeded 1010, thus we had to use supe
computing facilities.

Although there is some work devoted to reduce the co
putational cost of the two-electron integration on disjun
domains,9,10 we propose an alternative scheme of 3D ene
decomposition, which is based on the use of ‘‘fuzzy atom
It is expected to be affordable in practical calculations a
as it will be seen, it has the advantage that permits a spe
modification of the formalism, by which one gets the ener
components on thechemical energy scale. The application of
the present approach may be especially advantageous i
‘‘pure’’ density functional theory~DFT! framework.

II. THEORY

A. ‘‘Fuzzy’’ atoms

Probably ‘‘fuzzy’’ atoms have been first used b
Hirshfeld11 for calculating effective atomic charges in mo
ecules by using the so-called ‘‘stockholders’’ scheme. In t
scheme one introduces for each atom A and every pointr of
the 3D space a non-negative continuous weight funct
wA(r ), measuring to what degree the given point of spa
can be considered to belong to atom A. Thus the wei
functions should satisfy the conditions

wA~r !>0 ~1!

and

(
A51

Natoms

wA~r ![1 ~2!
6 © 2004 American Institute of Physics
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in every point of the 3D space. Thus ‘‘fuzzy’’ atoms do n
have any sharp boundaries but exhibit a continuous trans
from one to another. This is to a great extent in agreem
with the classical chemical notions ofshared electronsre-
quiring that some electronic charge should belong simu
neously to a pair of chemically bonded atoms. As elect
density is a continuous function in the 3D space, sharing
electrons is possible if one assumes a sort of sharing of
physical space, too.

Actually Hirshfeld used for calculating the weight fun
tion wA(r ) the ratio of the charge density of the free atom
that of the ‘‘promolecule’’~assembly of noninteracting atom
placed at the positions of the nuclei in the actual molecu!,
but that is essentially irrelevant for our considerations so
based on conditions~1! and ~2! above.

The populations of the ‘‘fuzzy’’ atoms can be introduce
by inserting condition~2! into the normalization integral o
the electron density

N5E r~r !dv

[E (
A51

Natoms

wA~r !r~r !dv

[ (
A51

Natoms E wA~r !r~r !dv

5 (
A51

Natoms

QA ~3!

leading to the natural definition

QA5E wA~r !r~r !dv ~4!

of the atomic electron populations. Most recently12,13 we
have proposed to insert condition~2! into the normalization
integral twice. As a result, one may consider the elect
populationQA as an analogue of Mulliken’s ‘‘gross’’ atomi
population, and present it as a sum of ‘‘net’’ and ‘‘overlap
populationsqAA andqAB as

QA5qAA1 (
B

BÞA

qAB ~5!

with

qAA5E r~r !wA
2~r !dv, ~6!

and

qAB5E r~r !wA~r !wB~r !dv, ~7!

respectively. Obviously, the overlap populationqAB mea-
sures how much electronic charge may be considered as
longing to both atoms A and B,simultaneously. We shall
mention that the AIM theory represents a limiting case of
above formalism with the weight functionswA(r ) equal to
either one or zero. However, no parameter like overlap po
lation may be introduced in the AIM framework, as in th
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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AIM case Eq.~7! leads toqAB[0. @In the AIM case either
wA(r ) or wB(r ) can differ from zero in a given point, but no
both.14#

In what follows we shall first show that a quite simila
technique permits one to decompose the total SCF en
into atomic and diatomic contributions in quite straightfo
ward manner. Then we shall get an improvement of t
simple energy decomposition scheme by subjecting the
netic energy terms to a procedure analogous to that u
above for the introduction of the overlap densities. This p
mits one to get energy components which are on thechemi-
cal energy scale. Both the ‘‘simple’’ and ‘‘improved’’
schemes will be illustrated by a number of examples, cal
lated by using Becke’s integration scheme and wei
functions,15 permitting very effective numerical integration

B. The ‘‘simple’’ energy decomposition scheme

Let us consider the total SCF energy expressed in te
of molecular orbitals

E5 (
A,B

Natoms ZAZB

RAB
12(

i 51

nocc E w i* ~r !ĥw i~r !dv

1 (
i , j 51

nocc E E w i* ~r1!w j* ~r2!
1

r 12
@2w i~r1!w j~r2!

2w j~r1!w i~r2!#dv1dv2 . ~8!

@The restricted Hartree–Fock~RHF! case will be explicitly
treated, generalization to the unrestricted Hartree–Fock
is trivial.#

Now, by using Eq.~2! we may write

E w i* ~r !ĥw i~r !dv5E (
A51

Natoms

wA~r !w i* ~r !ĥw i~r !dv

5 (
A51

Natoms E wA~r !w i* ~r !ĥw i~r !dv

52 (
A51

Natoms E wA~r !w i* ~r !

3S 1

2
D1 (

B51

Natoms ZB

r B
Dw i~r !dv

52 (
A51

Natoms E wA~r !w i* ~r !

3S 1

2
D1

ZA

r A
Dw i~r !dv

2 (
A,B51
~AÞB!

Natoms E wA~r !uw i~r !u2
ZB

r B
dv.

~9!

Similarly
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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E E w i* ~r1!w j* ~r2!
1

r 12
wk~r1!w l~r2!dv1dv2

5E E (
A51

Natoms

wA~r1! (
B51

Natoms

wB~r2!w i* ~r1!w j* ~r2!

3
1

r 12
wk~r1!w l~r2!dv1dv2

5 (
A,B51

Natoms E E wA~r1!wB~r2!w i* ~r1!w j* ~r2!

3
1

r 12
wk~r1!w l~r2!dv1dv2 . ~10!

Thus the SCF~RHF! total energy can be written as

E5 (
A

Natoms

EA1 (
A,B

Natoms

EAB , ~11!

where

EA522(
i 51

nocc E wA~r !w i* ~r !S 1

2
D1

ZA

r A
Dw i~r !dv

1 (
i , j 51

nocc E E wA~r1!wA~r2!w i* ~r1!w j* ~r2!

3
1

r 12
@2w i~r1!w j~r2!2w j~r1!w i~r2!#dv1dv2 ~12!

and

EAB5
ZAZB

RAB
1«AB1«BA ~13!

with

«AB522(
i 51

nocc E wA~r !uw i~r !u2
ZB

r B
dv

1 (
i , j 51

nocc E E wA~r1!wB~r2!w i* ~r1!w j* ~r2!
1

r 12

3@2w i~r1!w j~r2!2w j~r1!w i~r2!#dv1dv2. ~14!

The expression of«BA can be obtained from«AB by inter-
changing A and B everywhere.

In agreement with the discussion above, the decomp
tion corresponding to the AIM domains5,6 can be obtained
from these expressions as a special case, by assuming th
the domain of atom A the correspondingwA51 and all the
otherwB’s are zero.

C. The ‘‘improved’’ energy decomposition scheme

By inspecting the above expressions, one may see
the kinetic energy operator enters only the one-cent
~atomic! energy component. It is, however, well known16,17

that the kinetic energy plays a complex role in the chem
bond formation, and the kinetic energy componentalong a
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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chemical bondhas a great importance. This contradictio
with our physical picture may be resolved by using ident
~2! once more, and writing

E wA~r !w i* ~r !Dw i~r !dv

[E wA~r ! (
B

Natoms

wB~r !w i* ~r !Dw i~r !dv

5 (
B

Natoms E wA~r !wB~r !w i* ~r !Dw i~r !dv. ~15!

Now, terms containingwA(r )wB(r ) with AÞB should
be moved to the diatomic energy components, and the ato
component will containwA

2(r ). Thus we obtain the expres
sions of our ‘‘improved’’ energy decomposition scheme:

E5 (
A

Natoms

EA81 (
A,B

Natoms

EAB8 , ~16!

where

EA8522(
i 51

nocc E wA
2~r !w i* ~r !

1

2
Dw i~r !dv

22(
i 51

nocc E wA~r !uw i~r !u2
ZA

r A
dv

1 (
i , j 51

nocc E E wA~r1!wA~r2!w i* ~r1!w j* ~r2!

3
1

r 12
@2w i~r1!w j~r2!2w j~r1!w i~r2!#dv1dv2 ~17!

and

EAB8 5
ZAZB

RAB
1«AB1«BA

24(
i 51

nocc E wA~r !wB~r !w i* ~r !
1

2
Dw i~r !dv. ~18!

Expression~14! does not change.
The above regrouping of the kinetic energy terms h

been found necessary to get the energy components on
chemical energy scale.18 No similar transformation is pos
sible in the AIM framework, for the same reasons as d
cussed in connection with the absence of the overlap den

III. ILLUSTRATIVE CALCULATIONS

A. Computational details

We have implemented Becke’s method of multicen
numerical integration15 which reduces the integration ove
the whole 3D space to the sum of integrations over the in
vidual atoms. For that reason he introduces a non-nega
weight factor of every center in every point of space, su
that it is equal to the one on the respective nucleus and
creases by the distance. The division of the space betw
different atoms is performed on the basis of the ratio of th
empirical atomic radii. The weight factors corresponding
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the different atoms sum to one in every point—in oth
words, the weight factors satisfy Eqs.~1! and ~2! above and
can, therefore, directly be utilized in our energy decompo
tion scheme, too. Furthermore, Becke’s scheme15 uses
Chebyshev’s integration for the radial part and Lebede
quadrature19 of the angular part for every atomic sub
problem. We have downloaded the routine for perform
Lebedev quadrature from Ref. 20. Most recently we ha
used the same integration scheme for calculating ove
populations, bond orders, and valences within the ‘‘fuzz
atoms framework.12,13

The kinetic and electron-nuclear attraction terms invo
only one-electron numerical integration, so the respec
one- and two-center energy contributions can easily be c
puted. However, for the Coulomb and exchange terms co
double @i.e., six-dimensional~6D!# integrations are neces
sary. In order to reduce the computational cost of these
integrations, it is very important to use the smallest num
of grid points per atom yet ensuring a good accuracy.
discussed above, our previous energy partition in the fra
work of AIM theory required a large atomic grid~about
40 000 points per atom! due to the complex topology of th
atomic basin. It was necessary at that work to use superc
puter facilities in order to compute the numerous pairw
interactions between the atoms.

We have observed that the two-electron terms, in p
ticular the exchange ones, are the main source of error~A
modest grid of 30 radial and 110 angular points per atom
been found sufficient to reproduce the molecular kinetic
ergy and the electron-nuclear attraction with a very go
accuracy.! The largest problem comes from the electrons
positions close in space: if we use the same grid for
integration over the coordinates of both electrons, then
are forced to discard the points wherer15r2 . To solve this
difficulty, we have used for integration over the two electro
two identical grids which were, however, rotated with r
spect to each other along the anglew of spherical coordinate
system in such a way that the points of one grid are roug
halfway between the points of another. In this manner
could obtain an acceptable overall accuracy with a grid c
sisting of 40 radial and 146 angular points for each atom.~In
some cases like sulfur, we have increased the radial gri
50 points!. For the 146 point angular grid of Lebedev int
gration, the rotation of the second grid along anglew consti-
tuted 0.229 rad~13.12°!.

For a typical molecule, the computational cost of t
exchange contribution normally represents more than 90%
the overall computational cost. This is because, accordin
Eqs.~12! and~14!, one must perform a double integration f
each pair of molecular orbitals. On the contrary, the C
lomb part can be calculated at once by integrating the e
tron density. Therefore, our method seems especially suit
for the ‘‘pure’’ DFT exchange–correlation functionals~i.e.,
those not containing the Hartree–Fock exchange! where the
double integration of this type of contribution is avoided.

The test calculations presented in the following used
simplest set of weight functions: that originally proposed
Becke for performing numerical integration by and maki
use of the empirical atomic radii.~As already noted, it satis
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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fies conditions~1! and ~2! necessary for that purpose.! Fol-
lowing Becke’s recipe, we used the Slater–Bragg effect
atomic radii21 and accepting his suggestion, we increased
radius of hydrogen to the value 0.35 Å. However, for fluori
we used the value 0.9 Å, representing the average of
covalent and ionic radii. For further details we refer to o
recent work12 in which bond orders and valences of ‘‘fuzzy
atoms are calculated. Our program uses as sole input
‘‘formatted checkpoint file’’ generated in aGAUSSIAN run.
For interfacing parts of the programAPOST5 have been
adapted. Each one- and two-center contribution can be
culated independently, so that one can obtain relativ
quickly the relevant or interesting energy contributions o
molecular system without computing all the contribution
We have made available our program for downloading.22

B. Results of calculations

Tables I–III contain some results obtained by the abo
two variants of the energy partitioning in terms of ‘‘fuzz
atoms’’ for one basis set for the ‘‘simple’’ decompositio
scheme and for two different basis sets for the ‘‘improve
one. In all calculations the geometries were fully optimiz
for the given basis set.

Table I gathers the results for a number of molecu
calculated at the SCF level by using the ‘‘simple’’ ener
decomposition scheme. The values for the two-center c
ponents correlate reasonably well with the relative bo

TABLE I. One- and two-center energy components~a.u.! obtained for se-
lected molecules by using the ‘‘simple’’ energy decomposition scheme
6-31G(d,p) basis set.

Molecule Atom E(A) Atomic pair E(A,B)

H2 H 20.4477 H,H 20.2360
N2 N 253.9935 N,N 20.9569
HF H 20.3679 H,F 20.3163

F 299.3293
CO C 237.4171 C,O 20.9550

O 274.3691
SO S 2397.1004 S,O 20.9223

O 274.2489
SO2 S 2396.6782 S,O 20.9726

O 274.2853
SO3 S 2396.2293 S,O 20.9713

O 274.3019
NH3 N 253.9834 N,H 20.3193

H 20.4116
H2O O 274.4748 O,H 20.3740

H 20.3954
CH4 C 237.3747 C,H 20.2784

H 20.4222
C2H6 C 237.3201 C,C 20.3912

H 20.4161 C,H 20.2722
C2H4 C 237.3108 C,C 20.6102

H 20.4172 C,H 20.2736
C2H2 C 237.3109 C,C 20.8078

H 20.4175 C,H 20.2707
C6H6 C 237.2563 C,C 20.4803

H 20.4128 C,H 20.2677
B2H6 B 224.3012 B,Hbr 20.1573

Hbr 20.3566 B,Ht 20.2751
Ht 20.4106 B,B 20.1952
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. One- and two-center energy components, atomic promotion energies with respect to the a
ROHF energies, and error of integrationD for selected molecules obtained by using the ‘‘improved’’ ener
decomposition scheme and 6-31G(d,p) basis set.

Molecule Atom
EA

~a.u.!
DEA

~kcal/mol!
Atomic

pair
EAB

~a.u.!
EAB

~kcal/mol!
D

~kcal/mol!

H2 H 20.4881 6.4 H,H 20.1553 297.5 20.1
N2 N 254.3761 3.9 N,N 20.1916 2120.2 0.1
HF H 20.4248 46.1 H,F 20.2042 2128.1 21.2

F 299.3846 214.3
CO C 237.7757 261.9 C,O 20.2343 2147.0 22.1

O 274.7313 29.9
SO S 2397.3916 50.7 S,O 20.349 2219.0 26.1

O 274.531 155.6
SO2 S 2397.3339 86.9 S,O 20.3166 2198.7 212.6

O 274.6131 104.1
SO3 S 2397.2011 170.2 S,O 20.3211 2201.5 212.6

O 274.627 95.4
NH3 N 254.2064 110.4 N,H 20.1713 2107.5 0.2

H 20.4848 8.4
H2O O 274.6635 72.5 O,H 20.1849 2116.0 0.2

H 20.4891 5.7
CH4 C 237.6074 43.8 C,H 20.1627 2102.1 1.8

H 20.4788 12.2
C2H6 C 237.5973 50.1 C,C 20.1777 2111.5 0.4

H 20.4722 16.3 C,H 20.1575 298.8
C2H4 C 237.6182 37.0 C,C 20.2243 2140.8 21.6

H 20.4747 14.8 C,H 20.1580 299.1
C2H2 C 237.6429 21.5 C,C 20.2588 2162.4 21.0

H 20.4759 14.0 C,H 20.1549 297.2
C6H6 C 237.6138 39.74 C,C 20.1796 2112.7 23.3

H 20.4692 18.22 C,H 20.1539 296.9
C60 C 237.5775 62.5 C,C~6,6! 20.1723 2108.1

C,C~5,6! 20.1557 297.7
B2H6 B 224.4826 23.1 B,Hbr 20.1117 270.1 24.7

Hbr 20.4032 59.6 B,Ht 20.1836 2115.2
Ht 20.4564 26.3 B,B 20.1025 264.3
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strengths. For instance, the C–C contributions of ethane,
ylene, and acetylene gradually increase. However, the ac
numbers are too large in absolute value to be directly co
pared with the energy changes of chemical interest. Th
exaggerated two-center energies are compensated with
one-center terms showing very large promotion energies w
respect to the isolated atoms. These values are compara
those obtained within the AIM framework,6 except for dibo-
rane where AIM partitioning predicted strong repulsion b
tween the two B atoms.~A similar behavior of the one- and
two-center contributions has also been observed in the o
Hilbert-space energy component analysis.8!

On the other hand, the ‘‘improved’’ energy decompo
tion scheme~in which part of the kinetic energy is given
two-center character analogously to the overlap populat!
shows energy contributions on thechemical energy scale.
The respective results are collected in Tables II and III.
spection of the results indicates that they are in better ag
ment with the actual bond strengths and do not depend m
on the basis set, while basis set dependence may be a se
problem for other methods based on the analysis on the
bert space. Furthermore, the good trends obtained with
previous method are also observed and improved. For
stance, the increasing bond strength of the series C–H, N
O–H, and F–H is reproduced with both basis sets.~The ac-
 to 84.88.138.106. Redistribution subject to AIP licens
th-
al
-

se
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er
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n

-
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ch
ous
il-
he
n-
H,

tual values for the large basis set are2102.7, 2109.8,
2121.1, and2130.6 kcal/mol, respectively.! The promotion
energies defined with respect to the atomic ROHF ener
are, in general, within the chemical scale.~They reflect also
partial ionization effects, which can give some negative
ergy contributions on the electron-receiving atoms and p
tive ones on those losing electrons; in sum intramolecu
ionization may be expected to be slightly energ
consuming.! Since it is sometimes difficult to properl
choose the atomic reference state, we expect this term t
of chemical interest only when comparing the same atom
different environments~provided that the same basis set a
method is used!.

The error of the overall integration~difference between
the sum of all one- and two-center contributions compu
numerically and the exact SCF energy! is, in general, of the
order of 1–5 kcal/mol, which may be considered negligib
Higher errors were obtained for systems containing su
atoms. Integration with a larger radial grid helped to redu
this error, which was, indeed, almost entirely originati
from the one-center sulfur energy.

As discussed in Ref. 12, other weight functions can a
be used, as long as conditions~1! and~2! are fulfilled. As the
simplest possibility, we plan to adjust in some systema
manner the effective atomic radii of the atoms which we
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE III. One- and two-center energy components, atomic promotion energies with respect to the a
ROHF energies, and error of integrationD for selected molecules obtained by using the ‘‘improved’’ ener
decomposition scheme and 6-31111G(d,p) basis set.

Molecule Atom
EA

~a.u.!
DEA

~kcal/mol!
Atomic

pair
EAB

~a.u.!
EAB

~kcal/mol!
D

~kcal/mol!

H2 H 20.4890 6.8 H,H 20.1547 297.1 20.2
N2 N 254.3884 4.3 N,N 20.1964 2123.2 0.8
HF H 20.4206 49.7 H,F 20.2081 2130.6 21.3

F 299.4260 218.6
CO C 237.8000 272.0 C,O 20.2310 2145.0 20.9

O 274.7409 38.4
SO S 2397.3712 78.2 S,O 20.3582 2224.8 34.8

O 274.5436 162.2
SO2 S 2397.3222 109.0 S,O 20.3247 2203.8 223.9

O 274.6206 113.9
SO3 S 2397.1996 185.9 S,O 20.3296 2206.8 220.7

O 274.6311 107.3
NH3 N 254.2096 116.5 N,H 20.1749 2109.8 0.2

H 20.4863 8.5
H2O O 274.6700 82.9 O,H 20.1930 2121.1 1.0

H 20.4922 4.8
CH4 C 237.6133 45.1 C,H 20.1636 2102.7 21.1
H 20.4792 12.9

C2H6 C 237.6022 52.1 C,C 20.1784 2111.9 1.8
H 20.4727 17.0 C,H 20.1562 298.0

C2H4 C 237.6243 38.2 C,C 20.2280 2143.1 21.1
H 20.4746 15.8 C,H 20.1580 299.1

C2H2 C 237.6527 20.4 C,C 20.2643 2165.9 1.6
H 20.4736 16.5 C,H 20.1537 296.4

C6H6 C 237.6155 43.13 C,C 20.1828 2114.7 20.7
H 20.4692 19.21 C,H 20.1533 296.2

B2H6 B 224.4935 21.1 B,Hbr 20.1087 268.2 26.0
Hbr 20.4077 57.8 B,Ht 20.1813 2113.8
Ht 20.4562 27.4 B,B 20.0996 262.5
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ties
CA/
a.
the
not determined by Slater aiming at such detailed numer
studies. One may expect, for instance, that slightly differ
effective radii could be used for the carbon atoms in thesp3,
sp2, andsp hybrid states, or possibly even for primary, se
ondary, etc.,sp3 carbons.

We have also tried to apply Hirshfeld’s original idea
using weight functions based on the promolecule densit
According to our experience, the decomposition us
Hirshfeld-type weights has several drawbacks that preven
from recommending their use. The numerical integrations
using Hirshfeld weights are much less accurate and/or m
more expensive. Furthermore, the numerical values obta
were also discouraging because with the ‘‘simple’’ decom
sition scheme both the one- and two-center energy com
nents are exaggerated while with the ‘‘improved’’ schem
one-center energy components lower than20.5 a.u. are sys-
tematically obtained for the hydrogen atoms. The proble
are obviously connected with the significant value of t
Hirshfeld’s weight function of a given nucleus in the vicini
of the others. This means that the atoms are not ‘‘well cu
i.e., do not indeed represent domains of the 3D space w
central part assigned to a given atom and an external
with ‘‘fuzzy’’ boundaries. This is especially the case for h
drogen atoms lacking any core shells.

IV. SUMMARY

The total energy of a molecule is presented as a sum
one- and two-atomic energy components in terms of ‘‘fuzz
 to 84.88.138.106. Redistribution subject to AIP licens
al
t

-

s.
g
us
y
ch
ed
-
o-

s

’’
a
rt

of
’’

atoms, i.e., such divisions of the three-dimensional phys
space into atomic regions in which the regions assigned
the individual atoms have no sharp boundaries but exhib
continuous transition from one to another. By proper defi
tions the energy components are on thechemical energy
scale. The method is realized by using Becke’s integrati
scheme and weight function permitting very effective n
merical integrations. The results are in good agreement w
the chemical picture of molecules and exhibit small ba
dependence.
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