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The total energy of a molecule is presented as a sum of one- and two-atomic energy components in
terms of “fuzzy” atoms, i.e., such divisions of the three-dimensional physical space into atomic
regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit
a continuous transition from one to another. By proper definitions the energy components are on the
chemical energy scaléfhe method is realized by using Becke’s integration scheme and weight
function permitting very effective numerical integrations. 2004 American Institute of Physics.
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I. INTRODUCTION composition in Ref. 8. Unfortunately, the complex form of
, , the AIM domains makes these calculations extremely CPU-
~ The most important result of a quantum chemical calcUyemanding. The point is that every two-electron integral over
lation is the total energy of the molecular system; howeverhe mojecular integrals should be decomposed into integrals
being a single number, it carries little immediate chemicaly, e their pieces cut to the individual domains. In order to
information. In order to get connections with genuine chemi-get a modest but acceptable accuracy, we had to use about
cal concepts, one may use the wave functions or densityy oog points per atomic domain. Therefore, the number of

matrices, and galgulate quantities like atomic chargersl operations necessary to perform the energy decomposition of
bond order indiceSAn alternative avenue is to decompose 5 small molecule exceeded Y¥pthus we had to use super-

the total molgcular eperg@gxactly or approximatebyintg a  computing facilities.

sum of atomic and diatomic energy components, which will - Ajthough there is some work devoted to reduce the com-
reflect .th.e different mtram_olecular interactions in a nat“ralputational cost of the two-electron integration on disjunct
way. Similar to the calcplatlon of quantities Ilke; bonq Ordersjdomainéj’lo we propose an alternative scheme of 3D energy
such an energy analysis may be performed either in the Hilyecomposition, which is based on the use of “fuzzy atoms.”
bert space of the atomic orb_ltﬁl(;b_y identifying the atom | j5 expected to be affordable in practical calculations and,
W|tr_1 its ngcleus and the _atoml_c orbital basis prb|tals as&_gneQs it will be seen, it has the advantage that permits a special
to it) or in the three-dimensionalBD) physical space in  mqgjfication of the formalism, by which one gets the energy
which the molecule is situated. Schemes of Hilbert SPaC@omponents on thehemical energy scald@he application of

analysis are simple and convenient for use, but do not pospe present approach may be especially advantageous in the
sess any limits for large basis sets. To accomplish a SChemﬁure" density functional theory(DFT) framework.
of an analysis in the physical space, one has to agsign

least in some sense, see the followiagpart of the 3D space
to every atom. Such a decomposition of the physical space

into “atomic domains”(and sometimes domains correspond-”' THEORY

ing to the so-called “non-nuclear attractojsis most often  A. “Fuzzy” atoms
accomplished by using Bader’s “Atoms in Molecules”
(AIM) theory” Bader also presents the molecular energy as Xirs
sum of purely atomic contributions, on the basis of applying
the virial theorem to every atomic domain, which is usually
fulfilled with a relatively good accuracy in the practical cal-
culations. Recently we have shown that in the AIM frame-
work the total self-consistent fieldBCP energy can be pre-
sented exactly as a sum of mono- and diatomic energ
components. This decomposition scheme has been realize
by performing the necessary numerical integrations in our  Wa(r)=0 (1)
previous work it gave quite convincing results in good

Probably “fuzzy” atoms have been first used by
hfeld"! for calculating effective atomic charges in mol-
ecules by using the so-called “stockholders” scheme. In this
scheme one introduces for each atom A and every podft

the 3D space a non-negative continuous weight function
wa(r), measuring to what degree the given point of space
can be considered to belong to atom A. Thus the weight
unctions should satisfy the conditions

I . . and
qualitative agreemehtwith those of the Hilbert-space de- N
atoms
— > Wa(r)=1 2
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in every point of the 3D space. Thus “fuzzy” atoms do not AIM case Eq.(7) leads togag=0. [In the AIM case either
have any sharp boundaries but exhibit a continuous transitiow,(r) or wg(r) can differ from zero in a given point, but not
from one to another. This is to a great extent in agreemertoth?]
with the classical chemical notions shared electronse- In what follows we shall first show that a quite similar
quiring that some electronic charge should belong simultatechnique permits one to decompose the total SCF energy
neously to a pair of chemically bonded atoms. As electrorinto atomic and diatomic contributions in quite straightfor-
density is a continuous function in the 3D space, sharing ofvard manner. Then we shall get an improvement of this
electrons is possible if one assumes a sort of sharing of theimple energy decomposition scheme by subjecting the ki-
physical space, too. netic energy terms to a procedure analogous to that used
Actually Hirshfeld used for calculating the weight func- above for the introduction of the overlap densities. This per-
tion wu(r) the ratio of the charge density of the free atom tomits one to get energy components which are onctinemi-
that of the “promolecule’(assembly of noninteracting atoms cal energy scale Both the “simple” and “improved”
placed at the positions of the nuclei in the actual molegule schemes will be illustrated by a number of examples, calcu-
but that is essentially irrelevant for our considerations solelylated by using Becke’s integration scheme and weight
based on condition€l) and (2) above. functions®® permitting very effective numerical integrations.
The populations of the “fuzzy” atoms can be introduced
by inserting condition2) into the normalization integral of

the eleciron density B. The “simple” energy decomposition scheme

N:f p(r)dv Let us consider the total SCF energy expressed in terms
of molecular orbitals
Natoms
E w (r)p(r)dv Natoms Z.Z Noce
Feri E= > RA B+22 oF (Nhe;(r)dv
N A<B AB
atoms
= > | wahp(r)dv
A=1 f f ¢ (r)ef(ra) [2¢.(r1)<PJ ra)
Natoms ! ] '
= AZl Qa (3 —¢j(r1)ei(rz)]dv,dv,. ®
leading to the natural definition [The restricted Hartree—FodlRHF) case will be explicitly
treated, generalization to the unrestricted Hartree—Fock one
_ 4 is trivial.] _ .
Qa fWA(I’)p(I’)dv @ Now, by using Eq(2) we may write

of the atomic electron populations. Most recettt? we
have proposed to insert conditi@®) into the normalization
integral twice. As a result, one may consider the electron
populationQ, as an analogue of Mulliken’s “gross” atomic N
population, and present it as a sum of “net” and “overlap” B §"‘S
populationsgaa andqag as

Natoms

f«:r(r)ﬁwi(r)dv: > ()t (Dheyndy

Wa(r)@f (1 he;(r)du

Natoms
Qa=0ant 2 dae (5) =- 2 | wanet
B#£A
with 1 Natoms
A+ D, )(p,(r)dv
) 2 B=1 I'p
qAAzJ’ p(r)wy(r)dv, (6)
and =- Z WA(r) @i (1)
qAB:f p(r)Wa(r)wg(r)dv, () X(%A-&- ?) @i(r)dv
A

respectively. Obviously, the overlap populatiopg mea-

sures how much electronic charge may be considered as be- Natoms )

longing to both atoms A and BsimultaneouslyWe shall B 2 WA(")| i(r)] _dv
mention that the AIM theory represents a limiting case of the (A#B)

above formalism with the weight functions,(r) equal to (9)

either one or zero. However, no parameter like overlap popu-
lation may be introduced in the AIM framework, as in the Similarly
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1 chemical bondhas a great importance. This contradiction
j f @l (r)ej(ra) r—qu(fl)<P|(rz)dvldvz with our physical picture may be resolved by using identity
(2) once more, and writing
atoms atoms
f f 2 Wa(r1) X “~ We(r2) @i (r)ej (r2) J Wa(r)e* (N Agi(r)du
atoms
Xr_‘Pk(rl)(Pl(rZ)dvldUZ Wa(r) 2 wg(r) e (rAgi(r)do
atoms Natoms
A 2, | [ wtrwstraer et =3 | waOws(n)e (NAgi(r)do. (15
1 Now, terms containingv(r)wg(r) with A#B should
X— dvqdv,. 10 ' A B
rlz(P"(rl)qD'(rZ) v1tva (10 be moved to the diatomic energy components, and the atomic

component will containNi(r). Thus we obtain the expres-

Thus the SCRRHP) total energy can be written as sions of our “improved” energy decomposition scheme:

Naloms Natoms NatOmS Natoms
= + ! !
E= 2 Eat 2 Eng, (1) E- 3 Ept S Ele, (16
where where
Noce n
N 1 ZA occ
EA:_ZZl Wa(r)e; (1) §A+—A @i(r)dv :—22 WA(r) @ (r) = A(p,(l’)dv
nOCC Noce
Ij ffWA(rl)WA(r2)¢| (r)ef(ra) —221 wa(r)] i I‘)|2—dv
- “
1 nocc
X [26i(1)i(r2) = g1 gi(r2)Jdvado, (12) ”wm JWa(F2) @ (r) ¥ (1)
i,j=1
and 1
2.7 Xr—[2<Pi(r1)<Pj(r2)_@j(fl)QDi(rz)]dUldvz (17)
AZg 12
Eag=5— R.. TeasTeBA (13
AB and
with ZaZg
Noce Eas= RAB_"'SAB"‘SBA
eae= =22 | Wa(r) |<p.<r>|2—dv L
i —42, | waWe(Nef' (N5 Ag(Ndv. (18
e J J Wa(r)Wa(r2) @i (ra) f (rZ)_ Expression(14) does not change.

The above regrouping of the kinetic energy terms has
X[2¢i(r1) @j(ra) —¢j(r1)ei(rz)Jdvidv,. (14 been found necessary to get the energy components on the
chemical energy scaf&.No similar transformation is pos-
sible in the AIM framework, for the same reasons as dis-
cussed in connection with the absence of the overlap density.

The expression 0éga can be obtained frona g by inter-
changing A and B everywhere.

In agreement with the discussion above, the decomposi-
tion corresponding to the AIM domaih& can be obtained
from these expressions as a special case, by assuming thatlin ILLUSTRATIVE CALCULATIONS
the domf;lln of atom A the correspondimg,=1 and all the A. Computational details
otherwg’s are zero.

We have implemented Becke’s method of multicenter
numerical integratiol? which reduces the integration over
the whole 3D space to the sum of integrations over the indi-
vidual atoms. For that reason he introduces a non-negative

By inspecting the above expressions, one may see thateight factor of every center in every point of space, such
the kinetic energy operator enters only the one-centerthat it is equal to the one on the respective nucleus and de-
(atomig energy component. It is, however, well knoWh’  creases by the distance. The division of the space between
that the kinetic energy plays a complex role in the chemicabifferent atoms is performed on the basis of the ratio of their
bond formation, and the kinetic energy componaling a  empirical atomic radii. The weight factors corresponding to

C. The “improved” energy decomposition scheme
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the different atoms sum to one in every point—in otherTABLE I. One- and two-center energy componefdsu) obtained for se-

words. the Weight factors satisfy qu_) and(2) above and lected molecules by using the “simple” energy decomposition scheme and
' . - . .6-31G(d,p) basis set.
can, therefore, directly be utilized in our energy decomposi-

tion scheme, too. Furthermore, Becke's sch®meses  Molecule  Atom E(A) Atomic pair  E(A,B)
Che(;aystheé\és ;ntte;]gratlon 1;or the tra:cdlal part antd LgbedZVS H, H 0.4477 HH 0.2360
quadrature” of the angular part for every atomic sub- N, N _53.9935 NN —0.9569
problem. We have downloaded the routine for performing  HF H —-0.3679 H,F —0.3163
Lebedev quadrature from Ref. 20. Most recently we have F —99.3293
used the same integration scheme for calculating overlap €© g ‘gz-‘g‘égi c.0o —0.9550
populations, bonl%d2 logrders, and valences within the “fuzzy S0 S 3971004 5.0 —0.9223
atoms framewor o . ' o —74.2489
The kinetic and electron-nuclear attraction terms involve  so, S —396.6782 S,0 —0.9726
only one-electron numerical integration, so the respective 0 —74.2853
one- and two-center energy contributions can easily be com- S S —396.2293 S0 ~0.9713
o] —74.3019
puted. However, for the Coulomb and exchange terms costly ,, N _53.9834 N H 03193
. . . . . . 3 . ’ .
double [i.e., six-dimensional6D)] integrations are neces- H —0.4116
sary. In order to reduce the computational cost of these 6D H,0 0 —74.4748 O,H —0.3740
integrations, it is very important to use the smallest number H —0.3954
of grid points per atom yet ensuring a good accuracy. As M S ’_%7;13272427 CH ~0.2784
discussed above, our previous energy partition in the frame- . ,, c 373201 cc 03912
work of AIM theory required a large atomic gritabout H —0.4161 CH —0.2722
40000 points per atopdue to the complex topology of the CoH, C —37.3108 (off -0.6102
atomic basin. It was necessary at that work to use supercom- H —0.4172 C.H —0.2736
puter facilities in order to compute the numerous pairwise CoH, c —37.3109 c.c ~0.8078
: . H -0.4175 CH -0.2707
interactions between the atoms. _ CeHq c _37.9563 c.Cc —0.4803
We have observed that the two-electron terms, in par- H —0.4128 CH —0.2677
ticular the exchange ones, are the main source of efor. B,Hs B —24.3012 B, H; —0.1573
modest grid of 30 radial and 110 angular points per atom has Hio: —0.3566 B.H —0.2751
H, —0.4106 B.,B -0.1952

been found sufficient to reproduce the molecular kinetic en-
ergy and the electron-nuclear attraction with a very good
accuracy). The largest problem comes from the electrons at

positions close in space: if we use the same grid for thgjeg conditions(1) and (2) necessary for that purpogd=ol-
integration over the coordinates of both electrons, then Weowing Becke’s recipe, we used the Slater—Bragg effective
are forced to discard the points wherg=r,. To solve this  atomic radif* and accepting his suggestion, we increased the
difficulty, we have used for integration over the two electronsyadius of hydrogen to the value 0.35 A. However, for fluorine
two identical gridS which were, however, rotated with re- we used the value 0.9 A, representing the average of the
spect to each other along the anglef spherical coordinate covalent and ionic radii. For further details we refer to our
system in such a way that the points of one grid are roughlyecent work? in which bond orders and valences of “fuzzy”
halfway between the points of another. In this manner westoms are calculated. Our program uses as sole input the
could obtain an acceptable overall accuracy with a grid con*formatted checkpoint file” generated in GAUSSIAN run.
sisting of 40 radial and 146 angular points for each atdm. For interfacing parts of the programpos'{s have been
some cases like sulfur, we have increased the radial grid tadapted. Each one- and two-center contribution can be cal-
50 pointg. For the 146 point angular grid of Lebedev inte- culated independently, so that one can obtain relatively
gration, the rotation of the second grid along angleonsti-  quickly the relevant or interesting energy contributions of a
tuted 0.229 rad13.129. molecular system without computing all the contributions.

For a typical molecule, the computational cost of thewe have made available our program for downloadig.
exchange contribution normally represents more than 90% of
the overall computational cost. This is because, according to .
Egs.(12) and(14), one must perform a double integration for B. Results of calculations
each pair of molecular orbitals. On the contrary, the Cou-  Tables I-Illl contain some results obtained by the above
lomb part can be calculated at once by integrating the eledwo variants of the energy partitioning in terms of “fuzzy
tron density. Therefore, our method seems especially suitabktoms” for one basis set for the “simple” decomposition
for the “pure” DFT exchange—correlation functionalse.,  scheme and for two different basis sets for the “improved”
those not containing the Hartree—Fock exchangeere the one. In all calculations the geometries were fully optimized
double integration of this type of contribution is avoided. for the given basis set.

The test calculations presented in the following used the Table | gathers the results for a number of molecules
simplest set of weight functions: that originally proposed bycalculated at the SCF level by using the “simple” energy
Becke for performing numerical integration by and makingdecomposition scheme. The values for the two-center com-
use of the empirical atomic radi{As already noted, it satis- ponents correlate reasonably well with the relative bond

Downloaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



5050 J. Chem. Phys., Vol. 120, No. 11, 15 March 2004 P. Salvador and |I. Mayer

TABLE Il. One- and two-center energy components, atomic promotion energies with respect to the atomic
ROHF energies, and error of integratianfor selected molecules obtained by using the “improved” energy
decomposition scheme and 6-313§) basis set.

Ea AEL Atomic Eng Epg A
Molecule Atom (a.u) (kcal/mo) pair (a.u) (kcal/mo) (kcal/mo)
H, H —0.4881 6.4 H,H —0.1553 —-97.5 -0.1
N, N —54.3761 3.9 N,N —0.1916 —120.2 0.1
HF H —0.4248 46.1 H,F —0.2042 —-128.1 -1.2
F —99.3846 —-14.3
(e{0] C —-37.7757 -61.9 C,0 —0.2343 —147.0 -2.1
(e} —74.7313 29.9
SO S —397.3916 50.7 S,0 —0.349 —219.0 -6.1
(@] —74.531 155.6
SO, S —397.3339 86.9 S,0 —0.3166 —198.7 —-12.6
(@] —74.6131 104.1
SO, S —397.2011 170.2 S,0 —-0.3211 —-201.5 —-12.6
(@] —74.627 95.4
NH; N —54.2064 110.4 N,H -0.1713 —-107.5 0.2
H —0.4848 8.4
H,O (@] —74.6635 72.5 O,H —0.1849 —-116.0 0.2
H —0.4891 5.7
CH, C —37.6074 43.8 CH —-0.1627 —-102.1 1.8
H —0.4788 12.2
C,Hg C —37.5973 50.1 Cc,C -0.1777 -111.5 0.4
H —0.4722 16.3 CH —0.1575 —98.8
C,H, C —37.6182 37.0 Cc,C —0.2243 —140.8 -1.6
H —-0.4747 14.8 CH —0.1580 —-99.1
C,H, C —37.6429 21.5 Cc,C —0.2588 —-162.4 -1.0
H —0.4759 14.0 CH —0.1549 —-97.2
CeHs C —37.6138 39.74 Cc,C —0.1796 —-112.7 -3.3
H —0.4692 18.22 CH —0.1539 —96.9
Ceo c —~37.5775 62.5 C,®,6 01723  —108.1
C,C(5,9 —0.1557 —-97.7
B,yHg B —24.4826 23.1 B,k —-0.1117 —-70.1 —-4.7
Hy, —0.4032 59.6 B,H —0.1836 —115.2
H; —0.4564 26.3 B,B —0.1025 —-64.3

strengths. For instance, the C—C contributions of ethane, etlual values for the large basis set ar€l02.7, —109.8,
ylene, and acetylene gradually increase. However, the actual121.1, and—-130.6 kcal/mol, respectivelyThe promotion
numbers are too large in absolute value to be directly comenergies defined with respect to the atomic ROHF energies
pared with the energy changes of chemical interest. Thesare, in general, within the chemical scal&€hey reflect also
exaggerated two-center energies are compensated with tipartial ionization effects, which can give some negative en-
one-center terms showing very large promotion energies witlergy contributions on the electron-receiving atoms and posi-
respect to the isolated atoms. These values are comparabletiee ones on those losing electrons; in sum intramolecular
those obtained within the AIM framewofkexcept for dibo- ionization may be expected to be slightly energy-
rane where AIM partitioning predicted strong repulsion be-consuming. Since it is sometimes difficult to properly
tween the two B atomgA similar behavior of the one- and choose the atomic reference state, we expect this term to be
two-center contributions has also been observed in the oldaf chemical interest only when comparing the same atoms in
Hilbert-space energy component analyis. different environmentsprovided that the same basis set and
On the other hand, the “improved” energy decomposi-method is used
tion scheme(in which part of the kinetic energy is given a The error of the overall integratioftiifference between
two-center character analogously to the overlap populationthe sum of all one- and two-center contributions computed
shows energy contributions on tleemical energy scale numerically and the exact SCF energy, in general, of the
The respective results are collected in Tables Il and Ill. In-order of 1-5 kcal/mol, which may be considered negligible.
spection of the results indicates that they are in better agreddigher errors were obtained for systems containing sulfur
ment with the actual bond strengths and do not depend mucitoms. Integration with a larger radial grid helped to reduce
on the basis set, while basis set dependence may be a seridhgs error, which was, indeed, almost entirely originating
problem for other methods based on the analysis on the Hilfrom the one-center sulfur energy.
bert space. Furthermore, the good trends obtained with the As discussed in Ref. 12, other weight functions can also
previous method are also observed and improved. For inbe used, as long as conditiofs and(2) are fulfilled. As the
stance, the increasing bond strength of the series C—H, N—kjmplest possibility, we plan to adjust in some systematic
O-H, and F—H is reproduced with both basis s€ffie ac- manner the effective atomic radii of the atoms which were
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TABLE Ill. One- and two-center energy components, atomic promotion energies with respect to the atomic
ROHF energies, and error of integratianfor selected molecules obtained by using the “improved” energy
decomposition scheme and 6-31% G(d,p) basis set.

Ea AEp Atomic Eag Eag A
Molecule Atom (a.u) (kcal/mo) pair (a.u) (kcal/mo) (kcal/mo))
H, H —0.4890 6.8 H,H —0.1547 -97.1 -0.2
N, N —54.3884 4.3 N,N —0.1964 —123.2 0.8
HF H —0.4206 49.7 H,F —0.2081 —130.6 -1.3
F —99.4260 —18.6
CcO C —37.8000 —-72.0 [eXe] —0.2310 —145.0 -0.9
(0] —74.7409 38.4
SO S —397.3712 78.2 S,0 —0.3582 —224.8 34.8
(0] —74.5436 162.2
SO, S —397.3222 109.0 S,0 —0.3247 —203.8 —-23.9
(o] —74.6206 113.9
SO, S —397.1996 185.9 S,0 —0.3296 —206.8 —-20.7
(o] —74.6311 107.3
NH; N —54.2096 116.5 N,H —0.1749 —109.8 0.2
H —0.4863 8.5
H,O (6] —74.6700 82.9 O,H —0.1930 —-121.1 1.0
H —0.4922 4.8
CH, C —37.6133 45.1 CH —0.1636 -102.7 -1.1
H —0.4792 12.9
C,Hg C —37.6022 52.1 Cc,.C —-0.1784 -111.9 1.8
H —-0.4727 17.0 CH —0.1562 —-98.0
C,H, C —37.6243 38.2 Cc,C —0.2280 —-143.1 -1.1
H —0.4746 15.8 CH —0.1580 -99.1
C,H, C —37.6527 20.4 Cc,C —0.2643 —165.9 1.6
H —0.4736 16.5 CH —0.1537 -96.4
CeHs C —37.6155 43.13 Cc,C —0.1828 —-114.7 -0.7
H —0.4692 19.21 CH —0.1533 —96.2
B,Hs B —24.4935 21.1 Bg  —0.1087 —-68.2 -6.0
Hp, —0.4077 57.8 B,H —0.1813 —-113.8
H, —0.4562 27.4 B,B —0.0996 —-62.5

not determined by Slater aiming at such detailed numericahtoms, i.e., such divisions of the three-dimensional physical
studies. One may expect, for instance, that slightly differenspace into atomic regions in which the regions assigned to
effective radii could be used for the carbon atoms ingp& the individual atoms have no sharp boundaries but exhibit a
sp?, andsp hybrid states, or possibly even for primary, sec-continuous transition from one to another. By proper defini-
ondary, etc.sp® carbons. tions the energy components are on ttifemical energy
We have also tried to apply Hirshfeld’s original idea of scale The method is realized by using Becke’s integration
using weight functions based on the promolecule densitiescheme and weight function permitting very effective nu-
According to our experience, the decomposition usingmerical integrations. The results are in good agreement with
Hirshfeld-type weights has several drawbacks that prevent ufie chemical picture of molecules and exhibit small basis
from recommending their use. The numerical integrations bylependence.
using Hirshfeld weights are much less accurate and/or much
more expensive. Furthermore, the numerical values obtained
were also discouraging because with the “simple” decompo'ACKNOWLEDGMENTS
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