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Second-order Møller–Plesset perturbation theory without basis set
superposition error. II. Open-shell systems

P. Salvadora) and I. Mayer
Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary

~Received 5 November 2003; accepted 5 January 2004!

The basis set superposition error-free second-order Møller–Plesset perturbation theory of
intermolecular interactions, based on the ‘‘chemical Hamiltonian approach,’’ which has been
introduced in Part I, is applied here to open-shell systems by using a new, effective computer
realization. The results of the numerical examples considered (CH4...HO, NO...HF) showed again
the perfect performance of the method. Striking agreement has again been found with the results of
thea posterioricounterpoise correction~CP! scheme in the case of large, well-balanced basis sets,
which is also in agreement with a most recent formal theoretical analysis. The difficulties of the CP
correction in open-shell systems are also discussed. ©2004 American Institute of Physics.
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I. INTRODUCTION

In Ref. 1 ~henceforth Part I! we used the so-called
‘‘chemical Hamiltonian approach’’~CHA! in order to de-
velop a special second-order Møller–Plesset perturba
theory for treating intermolecular interactions, which is fr
of the basis set superposition error~BSSE!. As is known,
BSSE appears when one considers the interaction betw
two or more molecules~‘‘monomers’’! by using finite
monomer-centered basis sets, if the latter are not la
enough to provide a~nearly! exact description of theinternal
electronic structure of the individual monomers. As t
monomer basis is incomplete, the function which one obta
by applying the intramonomer Hamiltonian on the mon
mer’s wave function also contains components which can
be expanded by using the monomer basis set. As a co
quence, nonzero overlaps and matrix elements of theintra-
monomerHamiltonian appear between the monomer wa
function and some wave functions containing basis functi
of the other monomer~s! and lying in the orthogonal comple
ment to the original monomer basis. This leads to some l
ering of theintramonomerenergy, i.e., causes BSSE. Su
an energy lowering takes place both in the ‘‘ghost-orbita
calculations of the individual monomers and in the stand
calculations performed for the ‘‘supermolecule.’’ The clas
cal ‘‘counterpoise correction’’~CP! method of Boys and
Bernardi2 uses the uncorrected total energy of the superm
ecule and utilizes the energy lowerings obtained in the gh
orbital calculations to get BSSE-corrected interaction en
gies.

As opposed to this, the CHA method omits all the ter
in the orthogonal complements to the monomer basis
and obtains in this manner BSSE-free supermolecule w
functions which keep consistency with the results of
monomer calculations performed in the original free mon

a!Permanent address: Department of Chemistry and Institute of Comp
tional Chemistry, University of Girona, 17071 Girona, Spain. Electro
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mer basis sets. In other words, instead of correcting
BSSEa posterioriby adjusting the monomer energies to t
supermolecule problem, in CHA one calculates the wa
functions by identifying and omitting those terms of th
Hamiltonian which are responsible for BSSE~for a survey
see Ref. 3!.

The CHA version of the second-order Møller–Ples
~CHA-MP2! method described in Part I had been tested o
number of closed-shell van der Waals complexes and hy
gen bonded systems and exhibited a remarkable agree
with the results of the standard CP scheme: as the basi
improves, the difference between the CHA-MP2 and CP c
rected conventional MP2 results diminishes much faster t
BSSE disappears from the uncorrected results.~This type of
behavior has been observed at other levels of the the
including pivoting full configuration interaction calculations4

as well.!
Comparing these methods from a practical point of vie

one may note that CHA is a rather complex theory, while
CP scheme requires several calculations to be performe
order to get a single corrected interaction energy value.
two interacting subsystems the computational costs of
two schemes are roughly comparable, while for clusters c
sisting of more than two subsystems the number of indep
dent calculations rapidly increases in the CP framewo5

while the CHA scheme can be realized in the manner that
computational work is essentially independent of whether
system is considered as consisting of two interacting s
systems or is divided into an arbitrary number of ones.

The calculations described in Part I were performed b
program which had been used for testing the new and n
variants of the theory in the more than half decade long qu
for the appropriate CHA generalization of the Møller–Ples
perturbation theory. Accordingly, it is neither simple nor e
fective computationally. In addition, this program can
used for closed-shell systems only. For that reason one o
~P.S.! wrote a new, versatile CHA program which is app
cable for open-shell systems, too~CHA-UHF and CHA-

ta-
2 © 2004 American Institute of Physics
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UMP2 theories! and for any number of interacting frag
ments. This program uses only two routines of the origi
one—those which perform the manipulations necessary
use real arithmetics in the CHA-MP2 calculations even
there are some complex CHA-SCF orbitals. The repea
testing of these routines revealed minor inconsistencies
the formulas published in the Appendix of Part I. Fort
nately, it was the program containing the correct version
the differences were due to some typing errors in the pa
~The corrected formulas are given here in the Append
along with a further equation also corrected for some m
prints.!

In Sec. II we shall give a very concise sketch of the m
important aspects of the CHA-MP2 theory and discuss v
briefly some peculiarities of the new computer realizatio
Then we are going to discuss the results of the applicatio
the CHA-UMP2 theory to two open-shell system
CH4...HO andNO...HF and shall call attention to the fa
that in the open-shell case one has to proceed with spe
care when doing CP corrections. The ghost-orbital calcu
tions for degenerate open-shell fragments should match
that electronic state of the complex, which is actually c
rected for BSSE. As the the symmetry of monomer’s wa
function is lost in the ghost-orbital calculation, this selecti
is sometimes not trivial. This is especially the case when
complex has two~or more! electronic states of the same sym
metry. We have again observed a strikingly good agreem
between the results of CHA calculation and those of
usual CP ones; this will be discussed in light of a rec
formal theoretical analysis which permitted one to und
stand how the CHA method can justify the tacit additiv
assumption inherent in the CP scheme.

II. METHOD OF CALCULATIONS

To carry out the CHA procedure discussed in Sec. I, o
should eventually calculate the wave functions by replac
some one- and two-electron integrals3,10 by their ‘‘CHA
counterparts:’’

^xmuĥuxn&5^xmuĥA1 (
B

~BÞA!

ÛBuxn&⇒$xmuĥuxn% nPA

5^xmuP̂AĥAxn&1^xmu (
B

~BÞA!

ÛBuxn&, ~1!

^xr~1!xt~2!u
1

r 12
uxm~1!xn~2!&⇒$rtumn% m,nPA

5^xr~1!xt~2!uP̂A~1!P̂A~2!
1

r 12
xm~1!xn~2!&,

where ĥA52 1
2D1UA is the intramonomer part of the one

electron Hamiltonian, corresponding to the monomerA and
P̂A is the projector

P̂A5 (
k,lPA

uxk&~S~A!
21!kl^xlu ~2!
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on the subspace spanned by the basis orbitals of monomA.
In Eq. ~2! S(A)

21 is the inverse of the intramonomer overla
matrix.

The CHA integrals are not symmetric with respect
their ‘‘bra’’ and ‘‘ket’’ parts, and if one uses them to set up
Hamiltonian written down in second quantize
framework3,10 then one gets a non-Hermitian CHA Hami
tonian. From a formal mathematical point of view, this no
Hermiticity is the reason why the energy corresponding
the CHA wave function obtained by its use should be cal
lated as a conventional expectation value of the full~origi-
nal! Hermitian Hamiltonian3,11—this is called the ‘‘CHA
with conventional energy’’~CHA/CE! scheme.

We should note that one does not actually compute
CHA integrals over the atomic orbitals~AOs!, except the
one-electron ones; at the self-consistent field~SCF! level the
projectors are adsorbed into a somewhat complex Fo
matrix formula,12 while for correlated calculations one nee
the CHA integrals over the molecular orbitals. The latter c
be calculated efficiently by a method based on the sche
described in Ref. 4; the necessary numerical effort exce
only slightly that of a standard integral transformation.

In the CHA-MP2 theory developed in Part I, the zer
order Hamiltonian is built up on the BSSE-free~but not or-
thogonal and not necessarily real! canonicCHA-SCF orbit-
als and their orbital energies. Then, as usual, the zero-o
energy is the sum of the orbital energies of the occup
CHA orbitals while the sum of the zero- and first-order e
ergies is the expectation value of the total Hamiltonian o
the single determinant CHA-SCF wave functionuC0& ~the
CHA/CE SCF energy!. Owing to the non-Hermiticity of the
CHA Hamiltonian, biorthogonal perturbation theory is us
to obtain the first-order wave functionuC1&:

uC1&5(
i , j

occ

(
a,b

virt
2$ãb̃i i j %8

«a1«b2« i2« j
uC i j

ab&. ~3!

Here the sums are over the occupied and virtualspin-
orbitals, and the primes indicate that the integrations inclu
summations over the spins.uC i j

ab& denotes the determinan
obtained from the unexcited CHA-SCF determinant wa
function uC0& by replacing the occupied spin-orbitalsw i and
w j by the virtual spin-orbitalswa andwb , respectively, and
we have introduced a simplified notation for the CHA tw
electron integrals over the spin-orbitals with exchange pa

$ãb̃i i j %85$w̃aw̃buw iw j%82$w̃aw̃buw jw i%8. ~4!

All integrals are written by using the ‘‘1212’’ convention. I
Eq. ~4! w̃a and w̃b are the biorthogonal counterparts of th
spin-orbitalswa and wb , respectively.~They represent the
left eigenvectors of the non-Hermitian CHA Fockian.!

To get the second-order energy corresponding to
first-order wave function~3! in the CHA/CE framework, one
has to expand the expectation value of the energy by kee
the terms up to second order, and taking into acco
the non-Hermitian character of the unperturbed Ham
tonian; this is accomplished by the generaliz
Hylleraas-functional13 which guarantees the second-ord
energy to be real even in the case of complex CHA-S
orbitals:
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



t-
ie

al

ng
n
ra
te
a

r

is
of
he

nd
c
n

ly

o

r-
n
-
e

n
ts

e
ll
c

i-

the
ingle
ly

on
vel
n

ain
the
he
in

the
o-

lly
rall
red
rg

ub-
ma-
the
le-

will

-

sis

a-
CP-

m

ond

d
the

.H
ar-

r

ith

uc-
°.

ed,
be
cant

5884 J. Chem. Phys., Vol. 120, No. 13, 1 April 2004 P. Salvador and I. Mayer

Down
J25
1

^C0uC0&
@^C1uV̂2E1uC0&1^C0uV̂†2E1* uC1&

1Re~^C1uĤ02E0uC1&!#. ~5!

Here Ĥ0, E0 , andE1 , respectively, are the Møller–Plesse
type zero-order Hamiltonian, zero- and first-order energ
mentioned above, whileV̂ is the difference between the tot
Born–Oppenheimer HamiltonianĤ and the zero orderĤ0.

The explicit evaluation of the matrix elements enteri
the generalized Hylleraas functional was possible by tra
forming all wave functions, creation and annihilation ope
tors to an auxiliary orthonormalized spin-orbital basis rela
to the canonic molecular orbitals by a nonsingular line
transformation of some special type. We refer the reade
Part I for the details; the final expression ofJ2 is reproduced
here in the Appendix with the aim of correcting some m
prints. ~As the derivation in Part I was given in terms
spin-orbitals, the working equations remain valid in t
open-shell case, too.!

The new, effective implementation of the CHA-SCF a
CHA-MP2 methods is based on the observation that one
combine the adjoints of the rectangular matrices correspo
ing to the projectors~2! for individual subunits into a single
square matrix

A5~A1,A2,...,AN! ~6!

permitting one to perform all the projections simultaneous
It can be shown that this matrixA is nothing else than matrix
R first introduced in a somewhat different context.3,14 Then
one can form the block-diagonal projected~effective! intra-
monomer density matrices~s stands for spina or b! Bs,

S Bs1 0 0 ... 0

0 Bs2 0 ... 0

... ... ... ... ...

0 0 0 ... BsN

D , ~7!

the elements of which are expressed with those of the c
ventional density matrixPs and those of matrixA as

Brl
sA5(

s
Prs

s Asl
A ~r,lPA! . ~8!

When forming the CHA Fock matrix, integrals of inte
monomer type15 should be treated as in the conventional u
restricted Hartree–Fock~UHF! case. The contributions aris
ing from the integrals of intramonomer type will have th
form of the matrix productAXs, where matrixXs has the
elements

Xtn
a 5(

l,r
Brl

a @tlinr#1(
l,r

Brl
b @tlunr#. ~9!

As the process is driven by the intramonomer integrals,
multiplications with the zero off-diagonal B-matrix elemen
will take place.

After the CHA Fockian is obtained, one can use a som
what formal trick of obtaining the CHA solutions with fu
machine accuracy by using an artificially Hermitized effe
tive Fock matrix.16 This permits one to avoid the costly d
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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agonalization of nonsymmetric matrices. However, after
convergence has been achieved, one has to perform a s
cycle in which the true non-Hermitian Fock matrix is direct
diagonalized, as the success of CHA-MP2 scheme relies
the fact that the BSSE effects appearing at the SCF le
manifest in the non-Hermiticity of the CHA Fockian and o
the distinction of its right and left eigenvectors.

The CHA integrals over the molecular orbitals can ag
be effectively computed by using the distinction between
AO integrals of the intra- and intermonomer type. While t
latter contribute to a CHA two-electron integral exactly as
the conventional integral transformation, the integrals of
intramonomer type contribute to the integral over the m
lecular orbitals~MOs! by replacing the matrixC̃ of the bior-
thogonal MO coefficients by the projected matrixD5C̃A.

The use of the combined projection matrixA permits the
CPU requirement of the CHA procedure to be practica
independent of the number of subunits in which the ove
system is divided. At the same time, the CPU time requi
for a CP calculation—even if the simplest Turi–Dannenbe
scheme6 is used—increases sharply with the number of s
units, as one should perform a complete integral transfor
tion and MP2 calculation for each subsystem, by using
whole supermolecule basis. Further details of the new imp
mentation and applications to clusters of increasing size
be described elsewhere.17

III. RESULTS AND DISCUSSION

We present UMP2-CHA results for two open-shell com
plexes, namely, NO...HF and CH4...OH. For the former we
discuss both radial and angular PES for two different ba
sets and for two electronic states (2A8 and 2A9). For the
later, full numerical geometry optimization of two conform
tions was carried out and have been compared with the
optimized structures obtained with analytical gradients.

The NO...HF complex has been previously studied fro
both experimental18 and computational19,20 points of view. It
has been found that the H atom can form a hydrogen b
with either O or N atoms, presenting a planar geometry (Cs)
that breaks the degeneracy of the2P state of the NO mol-
ecule intoA8 andA9 states. In theA8 case, we have studie
the conformation depicted in Fig. 1. We have optimized
structure at the UMP2~no frozen-core! level with the 6-31
11G** basis set. A minimum has been found for a NO..
angle of 134.7° and practically linear hydrogen bond
rangement~FHO angle 179.75°!, in good agreement with the
previous studies. For theA9 state, the minimum is found fo
a collinear arrangement (C`v), where the twoA8 and A9
states ‘‘collapse’’ into the2P state.

Figures 2 and 3 show the angular PESs computed w
the 6-3111G** and 6-31111G(2d f ,pd) basis sets, re-
spectively, obtained by using the previously optimized str
ture and varying only the NO...H angle from 90° to 180
The twoA8 andA9 states are computed at the uncorrect
CP-corrected and CHA-UMP2 levels of theory. It can
seen that, even with the larger basis set, there is a signifi
BSSE~exceeding the uncorrected interaction energy!, which
is roughly independent of the NO...H angle.~That indepen-
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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dence prevents an inversion of the relative stability of
two states as a consequence of BSSE.! At the same time, the
CP and CHA methods give extremely close results, e
with the modest 6-3111G** basis set.

The radial PESs presented in Figs. 4 and 5 were obta
starting from the optimized structure of theA8 state and

FIG. 1. Geometry of the planar NO...HF complex.

FIG. 2. Angular dependence of the stabilization energy of the NO..
complex at the UMP2/6-3111G** level of theory for states 2A8 and 2A9.
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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varying the O...H distance. The same conclusions can
drawn as for the angular PES. The BSSE is very importan
bonding distances of 2.0–2.4 Å, but the two BSSE-correc
methods give practically indistinguishable results.21 The re-
sults found with the large basis set show that after BS
correction theA9 PES essentially becomes repulsive. T
modest 6-3111G** basis set cannot reproduce this effe
even after removing BSSE.

In order to obtain a state-specific energy for both t
uncorrected or the CHA methods, one has simply to cho
the proper initial guess for the orbitals in the SCF procedu
In the case of the CP method, the situation is different
cause one has choose what state of the open-shell frag
~in our case of the NO radical! is to be computed by using
the whole supermolecule basis set for calculating the BS

F

FIG. 3. Angular dependence of the stabilization energy of the NO..
complex at the UMP2/6-31111G(2d f ,pd) level of theory for states 2A8
and 2A9.

FIG. 4. Radial dependence of the stabilization energy of the NO...HF c
plex at the UMP2/6-3111G** level of theory for states 2A8 and 2A9.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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correction to the energy of a given supermolecule electro
state.~For instance, the orientation of the unpaired elect
in the space is irrelevant for a free monomer, but not in
ghost orbitals calculations.! In principle, following the CP
recipe, one should try to perform a ghost-orbital calculat
with the respective orbitals resembling those of the ac
electronic state of the complex. Since the symmetry of
individual fragments is usually lost in the ghost-orbital c
culation, this selection is sometimes not trivial. In close
shell systems the loss of the symmetry usually does
cause problems because the ground and excited elect
states are well separated in the energetic sense. How
when one is dealing with degenerate open-shell fragm
that can form several supermolecule electronic states of
same symmetry, then there can be several ghost-orbitals
lutions which should be considered.

We had not experienced any problem with the select
of the ghost orbitals solutions for the NO...HF comple
since we were dealing withCs geometries andA8 and A9
states, so we could easily select the proper ghost-orbital
erence calculation by using the symmetry. However, m
different UHF solutions for the NO fragment exist in th
ghost orbitals calculations, especially in the vicinity of t
collinear configuration, as the in-plane and out-of-plane A
can also mix. Hence, if theCs symmetry of the complex
were broken, then getting a proper reference ghost-orb
NO energy would be a difficult task. No such problem wou
arise in the CHA case, however.

Another application has been carried out for t
CH4...OH complex. It has recently been studied22,23 as a
possible entrance channel complex for the hydrogen abs
tion reaction CH41OH→CH31H2O.

Two configurations ofC3v symmetry have been consid
ered, namely methane acting as a proton donor to form
C–H...O type hydrogen bond~Fig. 6, complex B! and the H
atom of the OH interacting with the center of a tetrahed
face of the methane moiety~Fig. 6, complex A!. The results

FIG. 5. Radial dependence of the stabilization energy of the NO...HF c
plex at the UMP2/6-31111G(2d f ,pd) level of theory for states 2A8 and
2A9.
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of the geometry optimizations for several basis sets
BSSE correction methods are gathered in Tables I and II.
found that the complexA is more stable thanB and upon
BSSE correction the difference is smaller. As pointed out
Ref. 23, very large basis set is necessary to properly desc
the dispersion forces responsible for the formation of
complex. This seems to be particularly dramatic for t
rather unconventional complex A.

-

FIG. 6. Geometries of the two CH4...OH complexes considered.

TABLE I. Total energies~a.u.!, interaction energies~kcal/mol! and some
internuclear distances~Å! of the complex A~see Fig. 6! with several basis
sets, with and without BSSE correction.

UMP2 CHA-UMP2 CP-UMP2

6-3111G**
Etot 2115.916 511 9 2115.915 934 8 2115.915 938 0

r (C...O) 3.649 3.821 3.805
r (C...H) 2.676 2.848 2.831

DEstab 20.829 20.467 20.469

6-31111G**
Etot 2116.005 833 4 2116.005 433 7 2116.005 419 6

r (C...O) 3.644 3.757 3.762
r (C...H) 2.793 2.787 2.793

DEstab 20.772 20.520 20.512

6-31111G(3d f ,pd)
Etot 2116.098 449 0 2116.097 835 0 2116.097 875 5

r (C...O) 3.472 3.576 3.569
r (C...H) 2.504 2.609 2.602

DEstab 21.185 20.800 20.825
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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We have observed also a tiny Jahn–Teller distortion t
breaks theC3v symmetry of the complexes, but for the larg
basis set it is so small that frequency analysis indicates b
the uncorrected and CP-correctedC3v geometries as minima
Therefore we present only the broken symmetry soluti
obtained at the conformation of high symmetry.

The PES is so flat that the effect of the BSSE correct
on the geometry of the stationary points is considera
Even with the 6-31111G(3d f ,pd) basis set, the C...O dis
tance increases in both complexes by 0.1 Å upon BSSE
rection.

However, the main point of the results is that both t
analytical CP-corrected and the numerical CHA-UMP2 op
mizations ~very tight convergence criteria! give practically
coinciding results in all cases. Thus we have again obse
this striking similarity between these methods of complet
different philosophy, which is particularly notable bearing
mind the relative large BSSE contents, especially for co
plex A: the largest difference between the CP-corrected
CHA total energies is 0.025 kcal/mol for the 6-3111
1G(3d f ,pd) basis set, while BSSE is 0.385 kcal/mol.

This similarity can be qualitatively understood if on
reconsiders carefully the tacit assumptions behind the
correction scheme and clarifies the precise meaning of
BSSE-corrected~BSSE-free! interaction energy.24 In the CP
scheme one usually deals with the BSSE-correctedinterac-
tion energywhich for the case of two interacting subsystem
A andB is given as

DEAB
CP5EAB~AB!2EA~AB!2EB~AB!, ~10!

where the notation ‘‘~AB!’’ indicates that every energy valu
is computed in the same supermolecule~AB! basis set. How-
ever, at the infiniteAB distance there is no interaction and n
BSSE, so the total energy of the system isEAB(`)5EA(A)
1EB(B) and this permits one to convert the CP correc
interaction energy~10! into the CP correctedtotal energy
EAB

CP5EAB(`)1DEAB
CP1EA(A)1EB(B). By using Eq.~10!

one gets

TABLE II. Total energies~a.u.!, interaction energies~kcal/mol! and some
internuclear distances~Å! of the complex B~see Fig. 6! with several basis
set, with and without BSSE correction.

UMP2 CHA-UMP2 CP-UMP2

6-3111G**
Etot 2115.916 007 5 2115.915 534 9 2115.915 525 2

r (C...O) 3.881 4.046 4.047
r (O...H) 2.796 2.961 2.962

DEstab 20.513 20.216 20.210

6-31111G**
Etot 2116.005 206 8 2116.004 938 5 2116.004 942 7

r (C...O) 3.931 4.061 4.049
r (O...H) 2.842 2.972 2.960

DEstab 20.378 20.210 20.213

6-31111G(3d f ,pd)
Etot 2116.097 265 3 2116.097 043 4 2116.097 049 3

r (C...O) 3.798 3.919 3.906
r (O...H) 2.714 2.836 2.822

DEstab 20.442 20.303 20.307
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CP5EAB~AB!1@EA~A!2EA~AB!#1@EB~B!2EB~AB!#

5EAB~AB!2dEBSSE. ~11!

Thus the CP scheme is equivalent to the use of a total en
which is corrected by the amount2dEBSSE, where

dEBSSE5EA~AB!2EA~A!1EB~AB!2EB~B! ~12!

is the energy lowering obtained in the ‘‘ghost orbitals’’ ca
culations with respect to the free monomer energies ca
lated in the respective monomer basis sets. The equivale
of Eqs. ~11! and ~10! means that there is no need to assi
any physical significance to the monomer wave functio
calculated in the supermolecule basis, but one has simpl
consider the energy lowering obtained in such a calcula
as anestimateof the lowering of the monomer’s interna
energy taking place within the supermolecule. Obvious
one may use such an estimate only by making the~tacit!
assumption that BSSE is independent of the actual phys
interactions of the systems. i.e., BSSE and true interact
represent additive effects. This additivity assumption ne
to be justified; it does not follow directly from the fact that
the CP scheme ‘‘all quantities are computed by using
same basis set.’’

In fact, there is nofull additivity. The major BSSE ef-
fects, however, can be proven additive, by using
‘‘CHA/CE principle.’’ To see this, we shall consider the fo
lowing simplified analytical model24 using second-order per
turbation theory.

Let us assume that we consider a system described
the Hermitian HamiltonianĤ that can be written as the sum
of the unperturbed HamiltonianĤ0, containing no interac-
tion and no BSSE, and of the perturbationV̂:

Ĥ5Ĥ01V̂. ~13!

Let us also assume that the unperturbed HamiltonianĤ0 is
also Hermitian, and that it has a ground state eigenfunc
uC0

0&5uC0& with the unperturbed energyE0
0. We shall fur-

ther decompose the perturbationV̂ as

V̂5Ŵ1B̂, ~14!

whereŴ is responsible for the true physical interactions
the system andB̂ is that part of the Hamiltonian which give
rise to BSSE.~NeitherŴ nor B̂ are assumed Hermitian, bu
their sum,V̂, is Hermitian.!

The first-order energy is given bŷC0uV̂uC0& in any
variants of the theory. The second-order uncorrected en
will be a sum of terms containinguV0i u2 wherei denotes an
excited unperturbed state. Owing to Eq.~14!, this sum will
contain terms which are quadratic in matrix elements of
therŴ or V̂ as well as ‘‘cross terms’’ containing products o
matrix elements ofŴ and V̂. The presence of these cros
terms causes that the total second-order energy canno
presented as a sum of pure ‘‘physical’’ and ‘‘BSSE-typ
contributions; this was considered as an indication o
non-additivity25 before the CHA/CE concept emerged.11

However, in the CHA/CE frame the second-order ene
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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should be calculated by using the Hylleraas functional~vide
supra!. Owing to the stationary properties of the Hyllera
functional,26 the difference between the uncorrected and
CHA/CE second-order energies should bequadratic in the
differenceuCunc

(1)&2uCCHA
(1) & of the respective first-order wav

functions, i.e., in the matrix elements of the operatorV̂

2Ŵ; actually this energy difference reads24 in terms of the
reduced resolvent26 R̂0,

Eunc
~2!2ECHA/CE

~2! 52^C0uB̂†R̂0B̂uC0&, ~15!

which is nothing other than the second-order energy cor

sponding to the BSSE operator Bˆ alone.27 This is the quan-
tity the CP method tries to estimate by performing the ‘‘gh
orbitals’’ calculations.

This result indicates that the additivity assumption inh
ent in the CP scheme can be justified if~and only if! one
accepts that the correct BSSE-free energy is to be calcul
as the expectation value of the BSSE-free wave func
over the total Hamiltonian, i.e., that it is the CHA/CE energ
In this case all the cross terms between operatorsŴ and B̂,
contained in the uncorrected energyEunc

(2) are absorbed in the
BSSE-free conventional energyECHA/CE

(2) . We may conclude,
therefore, that the CHA and CP schemes corroborate e
other not only numerically but also conceptually.28

Owing to the presence of~nearly! degenerate monome
states, the potential surfaces of open-shell systems are
pected to exhibit numerous ‘‘avoided crossings.’’ In this r
spect the question arises whether one has to perform
BSSE correction according to the adiabatic or for the dia
tic state of the complex. Thus, Alexander29 proposed, for the
B...H2 system, the transformation of both the ghost-orb
~of the B atom! and the complex energies to diabatic on
He defined a diabatic→adiabatic rotation angle for the mix
ing of the two diabatic electronic states of the complex a
transformed the ghost-orbital energies in the same way
order to obtain the CP-corrected diabatic interaction pot
tial. Contrary to this, Kloset al.30 have recently performed
approximate counterpoise correction to adiabatic states
the two A8 states of the Cl...HCl van der Waals comple
They rotated the ghost-orbital orbitals of the Cl atom as
get the same orientation of the singly occupied orbital wh
it has in the complex, and obtained adiabatic CP-correc
interaction energies.

Equations~11! and~12! indicate that the true meaning o
the CP correction is to estimate the BSSE content in
supermolecule total energy. BSSE is determined by the
tual electronic state of the monomerswithin the supermol-
ecule, that is by the diabatic state of the system. The der
tion sketched above also indicates that the CP correc
performed for the diabatic state is that which is expected
agree well with the CHA solution, not that for the adiaba
one. The authors of Ref. 30 are right by referring to the f
that only the adiabatic states diagonalize the total Ham
tonian, but do not properly take into account that the BSS
due to the use of approximate wave functions. The error
the description of the monomers within the supermolecul
governed by their actual state and are independent on
question to what states the given adiabatic PES dissoc
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after ~several! avoided crossings.~The above point stresse
again that the argumentation justifying the CP method
referring to the use of the same basis set everywhere is
sufficient.31!

The complications connected with the use of diaba
states could make it rather difficult to perform a geome
optimization on the CP corrected PES of some systems
that case not just the ghost-orbital calculations themse
but also the free monomer~‘‘monomer centered basis set’’!
calculations35—and possibly gradients of both36,37—should
be properly transformed to~approximately! match the corre-
sponding description of the complex.

Finally, let us mention that one can also imagine oth
situations where the application of the CP method is
straightforward, like an even-electron dimer made up of t
open-shell interacting fragments. We believe that the C
method can be used more safely in all problematic ca
Furthermore, itsa priori nature allows one to obtain not onl
energy corrections but also BSSE-corrected MO orbitals
hence the charge and spin densities and other quantitie
calculation of which requires explicit use of the wave fun
tion.

IV. SUMMARY

The BSSE-free second-order Møller–Plesset pertur
tion theory of intermolecular interactions, based on t
‘‘chemical Hamiltonian approach,’’ which has been intr
duced in Part I is applied here to open-shell systems by u
a new, effective computer realization. The results of the
merical examples considered (CH4...HO, NO...HF) showed
again the perfect performance of the method. Striking agr
ment has again been found with the results of thea posteriori
counterpoise correction scheme in the case of large, w
balanced basis sets. This is also in agreement with a m
recent formal theoretical analysis which is also briefly su
marized, and used to discuss that the CP correction for
diabatic surfaces should be preferred to the adiabatic on
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APPENDIX: ERRATA TO PART I

~1! In Eq. ~62! the summation indices in the first term
should be corrected. The correct equation reads:
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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J25ReH(
k, l

occ

t~klikl !8(
i , j

occ

y~ i j i i j !8

1(
r

virt

(
k

occ

(
l

occ

t~ lr i lk !8F(
j

occ

y~ j r i jk !8

22^q r uF̂uqk&8G2(
k, l

occ

(
p,q

virt

t~pqikl !8@2@pqikl#8

2y~pqikl !8#J .

~2! In Eq. ~A10! factorsA multiply only the immediately
following term, not the whole sum.

~3! In Eq. ~A11! notationsB andC are interchanged.
~4! In the expression ofB ~formerC! the factorh2 in the

numerator should be replaced byh.
~5! In Eq. ~A12!, the term1hb

2 should be replaced by
2hb

2.
~Only the first and last corrections are relevant for t

open-shell case.!
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