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The basis set superposition error-free second-order Mgller—Plesset perturbation theory of
intermolecular interactions, based on the “chemical Hamiltonian approach,” which has been
introduced in Part I, is applied here to open-shell systems by using a new, effective computer
realization. The results of the numerical examples considered (OHO, NO...HF) showed again

the perfect performance of the method. Striking agreement has again been found with the results of
the a posterioricounterpoise correctiofCP) scheme in the case of large, well-balanced basis sets,
which is also in agreement with a most recent formal theoretical analysis. The difficulties of the CP
correction in open-shell systems are also discussed20@ American Institute of Physics.

[DOI: 10.1063/1.1650306

I. INTRODUCTION mer basis sets. In other words, instead of correcting the
BSSEa posterioriby adjusting the monomer energies to the
In Ref. 1 (henceforth Part)l we used the so-called sypermolecule problem, in CHA one calculates the wave
“chemical Hamiltonian approach{CHA) in order to de-  fynctions by identifying and omitting those terms of the
velop a special second-order Mgller—Plesset perturbatiopgmiitonian which are responsible for BS$@r a survey
theory for t_reating intermol_e.cular interactions, yvhich is freegee Ref. R
of the basis set superposition eri@SSB. As is known, The CHA version of the second-order Mgller—Plesset

BSSE appears when one“considers ’t'he interaction betweggja_Mp2) method described in Part | had been tested on a
two or more molecules(‘monomers”) by using finite  ,her of closed-shell van der Waals complexes and hydro-

monomer-centgred basis  sets, if th? !atter are not IargGen bonded systems and exhibited a remarkable agreement
enough to provide é&nearly exact description of thaaternal o wh o (ocliits of the standard CP scheme: as the basis set

electronic structure of the individual monomers. As theimproves, the difference between the CHA-MP2 and CP cor-

monomer basis is incomplete, the function which one obtaing . oo
: . S fected conventional MP2 results diminishes much faster than
by applying the intramonomer Hamiltonian on the mono-

mer’s wave function also contains components which cann ?SSE disappears from the uncorrected resultsis type of

. . ehavior has been observed at other levels of the theory,
be expanded by using the monomer basis set. As Cons|en_cludin ivoting full configuration interaction calculatidns
guence, nonzero overlaps and matrix elements ofirttra- 9p 9 9

monomerHamiltonian appear between the monomer wave?S well) . . . .
Comparing these methods from a practical point of view,

function and some wave functions containing basis functions ; :
of the other monomés) and lying in the orthogonal comple- one may note that CHA is a rather complex theory, while the

ment to the original monomer basis. This leads to some lowCP scheme requires several calculations to be performed in

ering of theintramonomerenergy, i.e., causes BSSE. Such orde_r to get.a single corrected interaction energy value. For
an energy lowering takes place both in the “ghost-orbitals”tWO interacting subsystems the computa'tlonal costs of the
calculations of the individual monomers and in the standard"/C Schemes are roughly comparable, while for clusters con-
calculations performed for the “supermolecule.” The classi-SiSting of more than two subsystems the number of indepen-
cal “counterpoise correction’(CP) method of Boys and der.1t calculations rapidly increases |n'the CP framework,
Bernard? uses the uncorrected total energy of the supermolWhile the CHA scheme can be realized in the manner that the
ecule and utilizes the energy lowerings obtained in the ghos’qomputatlonal work is essentially independent of whether the
orbital calculations to get BSSE-corrected interaction enerSystém is considered as consisting of two interacting sub-
gies. systems or is divided into an arbitrary number of ones.

As opposed to this, the CHA method omits all the terms ~ The calculations described in Part | were performed by a
in the orthogonal complements to the monomer basis sefdfogram which had been used for testing the new and new
and obtains in this manner BSSE-free supermolecule waviariants of the theory in the more than half decade long quest
functions which keep consistency with the results of thefor the appropriate CHA generalization of the Mgller—Plesset

monomer calculations performed in the original free mono-Jerturbation theory. Accordingly, it is neither simple nor ef-
fective computationally. In addition, this program can be

for cl -shell ms only. For that r n one of
dpermanent address: Department of Chemistry and Institute of Comput. L-jsed or closed-she systems only. For that reason one of us

tional Chemistry, University of Girona, 17071 Girona, Spain. Electronic P.S) wrote a new, versatile CHA program which is appli-
mail: pedro.salvador@udg.es cable for open-shell systems, td€HA-UHF and CHA-
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UMP?2 theorieg and for any number of interacting frag- on the subspace spanned by the basis orbitals of monamer
ments. This program uses only two routines of the originaln Eg. (2) S(’,é is the inverse of the intramonomer overlap
one—those which perform the manipulations necessary tmatrix.
use real arithmetics in the CHA-MP2 calculations even if ~ The CHA integrals are not symmetric with respect to
there are some complex CHA-SCF orbitals. The repeatetheir “bra” and “ket” parts, and if one uses them to set up a
testing of these routines revealed minor inconsistencies witklamiltonian  written down in second quantized
the formulas published in the Appendix of Part . Fortu- framework° then one gets a non-Hermitian CHA Hamil-
nately, it was the program containing the correct version andonian. From a formal mathematical point of view, this non-
the differences were due to some typing errors in the papeHermiticity is the reason why the energy corresponding to
(The corrected formulas are given here in the Appendixthe CHA wave function obtained by its use should be calcu-
along with a further equation also corrected for some misiated as a conventional expectation value of the fotigi-
prints) nal) Hermitian Hamiltoniaf**—this is called the “CHA
In Sec. Il we shall give a very concise sketch of the mostwith conventional energy{CHA/CE) scheme.
important aspects of the CHA-MP2 theory and discuss very  We should note that one does not actually compute the
briefly some peculiarities of the new computer realization.CHA integrals over the atomic orbital®Os), except the
Then we are going to discuss the results of the application adne-electron ones; at the self-consistent fld@H level the
the CHA-UMP2 theory to two open-shell systems, projectors are adsorbed into a somewhat complex Fock-
CH,...HO andNO...HF and shall call attention to the fact matrix formulal? while for correlated calculations one needs
that in the open-shell case one has to proceed with specittie CHA integrals over the molecular orbitals. The latter can
care when doing CP corrections. The ghost-orbital calculabe calculated efficiently by a method based on the scheme
tions for degenerate open-shell fragments should match witdescribed in Ref. 4; the necessary numerical effort exceeds
that electronic state of the complex, which is actually cor-only slightly that of a standard integral transformation.
rected for BSSE. As the the symmetry of monomer’s wave In the CHA-MP2 theory developed in Part I, the zero-
function is lost in the ghost-orbital calculation, this selectionorder Hamiltonian is built up on the BSSE-fré@sut not or-
is sometimes not trivial. This is especially the case when théhogonal and not necessarily reahnonicCHA-SCF orbit-
complex has twgor more electronic states of the same sym- als and their orbital energies. Then, as usual, the zero-order
metry. We have again observed a strikingly good agreemergnergy is the sum of the orbital energies of the occupied
between the results of CHA calculation and those of theCHA orbitals while the sum of the zero- and first-order en-
usual CP ones; this will be discussed in light of a recentergies is the expectation value of the total Hamiltonian over
formal theoretical analysis which permitted one to underthe single determinant CHA-SCF wave functip#y) (the
stand how the CHA method can justify the tacit additivity CHA/CE SCF energy Owing to the non-Hermiticity of the
assumption inherent in the CP scheme. CHA Hamiltonian, biorthogonal perturbation theory is used
to obtain the first-order wave functigi,):
occ virt —{5b||ij}’
Il. METHOD OF CALCULATIONS |‘1’1>=2 . Ao oo
iZj a<b €3t ep—¢&j €j
To carry out the CHA procedure discussed in Sec. |, ongyere the sums are over the occupied and virtspin-
should eventually calculate the wave functions by replacingyrpitals, and the primes indicate that the integrations include
some one- and two-electron integrelS by their “CHA  symmations over the spinp¥3°) denotes the determinant
counterparts:” obtained from the unexcited CHA-SCF determinant wave
function| W) by replacing the occupied spin-orbitats and
<Xﬂ|ﬁ|Xy>:<Xﬂ|ﬁA+ > UB|XV)={XM|F1|XV} veA ¢; by the virtual spin-orbitalsp, and ¢, respectively, and
(BEA> we have introduced a simplified notation for the CHA two-
electron integrals over the spin-orbitals with exchange parts:

|P20). 3)

=(OculPahax) + 0l 2 Ol D @B} = {Fapoleie) — {Baboleyel - @

(B£A) All integrals are written by using the “1212” convention. In

1 Eqg. (4) ¢, andp,, are the biorthogonal counterparts of the
XWX = Ixu(Dxu(2))={p vy pveA spin-orbitals ¢, and ¢,,, respectively.(They represent the
2 left eigenvectors of the non-Hermitian CHA Fockian.
. N 1 To get the second-order energy corresponding to the
=<Xp(1)XT(2)| Pa(1)Pa(2) r—lz)(u(l))(y(z)% first-order wave functiorg3) in the CHA/CE framework, one
R has to expand the expectation value of the energy by keeping
whereh,=—3A+U, is the intramonomer part of the one- the terms up to second order, and taking into account
electron Hamiltonian, corresponding to the monomeand  the non-Hermitian character of the unperturbed Hamil-

P, is the projector tonian; this is accomplished by the generalized
Hylleraas-functiondf which guarantees the second-order
IsA:KEA |XK>(S(_A])-)K)\<X)\| ) gr;:gé.to be real even in the case of complex CHA-SCF
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agonalization of nonsymmetric matrices. However, after the

Jo= LT (W[ V—Eq|[Wo) +(Wo| V' —ET|¥y) convergence has been achieved, one has to perform a single
(WolWo) 9 " o
cycle in which the true non-Hermitian Fock matrix is directly
+Re((W1|HO—Eg| ¥ )] (5  diagonalized, as the success of CHA-MP2 scheme relies on

~0 ) the fact that the BSSE effects appearing at the SCF level
HereH", Eo, andE,, respectively, are the Mgller—Plesset- mapjfest in the non-Hermiticity of the CHA Fockian and on
type zero-order Hamiltonian, zero- and first-order energieghe distinction of its right and left eigenvectors.

mentioned above, whil¥ is the difference between the total The CHA integrals over the molecular orbitals can again
Born—Oppenheimer Hamiltoniad and the zero orde®. be effectively computed by using the distinction between the
The explicit evaluation of the matrix elements enteringAO integrals of the intra- and intermonomer type. While the
the generalized Hylleraas functional was possible by trandhatter contribute to a CHA two-electron integral exactly as in
forming all wave functions, creation and annihilation opera-the conventional integral transformation, the integrals of the
tors to an auxiliary orthonormalized spin-orbital basis relatedntramonomer type contribute to the integral over the mo-
to the canonic molecular orbitals by a nonsingular lineanecular orbitalsSMOs) by replacing the matri of the bior-
transformation of some special type. We refer the reader tthogonal MO coefficients by the projected matbixCA.
Part | for the details; the final expressionXfis reproduced The use of the combined projection matfixpermits the
here in the Appendix with the aim of correcting some mis-cpy requirement of the CHA procedure to be practically
prints. (As the derivation in Part | was given in terms of jhgependent of the number of subunits in which the overall
spin-orbitals, the working equations remain valid in thegystem is divided. At the same time, the CPU time required
open-shell case, too. _ for a CP calculation—even if the simplest Turi-Dannenberg
The new, effective implementation of the CHA-SCF andschem@ is used—increases sharply with the number of sub-
CHA-MP2 methods is based on the observation that one caghits, as one should perform a complete integral transforma-
combine the adjoints of the rectangular matrices correspondion and MP2 calculation for each subsystem, by using the
ing to the projectors) for individual subunits into a single  \hole supermolecule basis. Further details of the new imple-
square matrix mentation and applications to clusters of increasing size will
A=(ALAZ .. AN (6)  be described elsewheté.

permitting one to perform all the projections simultaneously.
It can be shown that this matrix is nothing else than matrix [ll. RESULTS AND DISCUSSION
R first introduced in a somewhat different contéxf. Then
one can form the block-diagonal projectégifective intra-
monomer density matricdsr stands for spirw or 8) BY,

We present UMP2-CHA results for two open-shell com-
plexes, namely, NO...HF and GH.OH. For the former we
discuss both radial and angular PES for two different basis
B 0 0 .. © sets and for two electronic state$A( and ?A”). For the

0 B2 0 .. 0 later, full numerical geometry optimization of two conforma-
(7) tions was carried out and have been compared with the CP-
optimized structures obtained with analytical gradients.

0 0O o0 .. B°N The NO...HF complex has been previously studied from
both experimentaf and computation&i?° points of view. It
"has been found that the H atom can form a hydrogen bond
with either O or N atoms, presenting a planar geome@y) (
oA o AA that breaks the degeneracy of thd state of the NO mol-
B, _2 PooAon (P AEA). (®  ecule intoA’ andA” states. In thed’ case, we have studied
the conformation depicted in Fig. 1. We have optimized the

When forming the CHA Fock matrix, integrals of inter- strycture at the UMP2no frozen-corg level with the 6-31
monomer typ& should be treated as in the conventional un-4 + G** pasis set. A minimum has been found for a NO...H

restricted Har_tree—FoolUHF) case. The contribqtions aris- angle of 134.7° and practically linear hydrogen bond ar-
ing from the mtegrals of intramonomer type will_have the yangementFHO angle 179.75° in good agreement with the
form of the matrix producAX“, where matrixX” has the  previous studies. For th&” state, the minimum is found for

the elements of which are expressed with those of the co
ventional density matri®” and those of matriA as

elements a collinear arrangementC(,,), where the twoA’ and A"
states “collapse” into thell state.
Xfﬁ? BZ)\[T)\||VP:|+)\2 BAL ™| vp]. 9 Figures 2 and 3 show the angular PESs computed with
P )

the 6-34+G** and 6-31% +G(2df,pd) basis sets, re-

As the process is driven by the intramonomer integrals, napectively, obtained by using the previously optimized struc-
multiplications with the zero off-diagonal B-matrix elements ture and varying only the NO...H angle from 90° to 180°.
will take place. The twoA’ andA” states are computed at the uncorrected,

After the CHA Fockian is obtained, one can use a someCP-corrected and CHA-UMP2 levels of theory. It can be
what formal trick of obtaining the CHA solutions with full seen that, even with the larger basis set, there is a significant
machine accuracy by using an artificially Hermitized effec-BSSE(exceeding the uncorrected interaction engrgshich
tive Fock matrixt® This permits one to avoid the costly di- is roughly independent of the NO...H ang(@hat indepen-
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FIG. 3. Angular dependence of the stabilization energy of the NO...HF
complex at the UMP2/6-31.+ G(2df,pd) level of theory for states &’
and 2A".

varying the O...H distance. The same conclusions can be
drawn as for the angular PES. The BSSE is very important at
bonding distances of 2.0-2.4 A, but the two BSSE-corrected
methods give practically indistinguishable resaltghe re-
sults found with the large basis set show that after BSSE
correction theA” PES essentially becomes repulsive. The
modest 6-3% + G** basis set cannot reproduce this effect
even after removing BSSE.

In order to obtain a state-specific energy for both the
dence prevents an inversion of the relative stability of theuncorrected or the CHA methods, one has simply to choose
two states as a consequence of B§®&Ethe same time, the the proper initial guess for the orbitals in the SCF procedure.
CP and CHA methods give extremely close results, evem the case of the CP method, the situation is different be-
with the modest 6-3% + G** basis set. cause one has choose what state of the open-shell fragment

The radial PESs presented in Figs. 4 and 5 were obtaine@h our case of the NO radicals to be computed by using
starting from the optimized structure of th®' state and the whole supermolecule basis set for calculating the BSSE

g

FIG. 1. Geometry of the planar NO...HF complex.
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FIG. 2. Angular dependence of the stabilization energy of the NO...HFFIG. 4. Radial dependence of the stabilization energy of the NO...HF com-
complex at the UMP2/6-3% +G** level of theory for states®’ and 2A". plex at the UMP2/6-3% +G** level of theory for statesR’ and 2A”.
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FIG. 5. Radial dependence of the stabilization energy of the NO...HF com-
plex at the UMP2/6-31% + G(2df,pd) level of theory for states® and ~ (  }“——"
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correction to the energy of a given supermolecule electronic
state.(For instance, the orientation of the unpaired electron
in the space is irrelevant for a free monomer, but not in the
ghost orbitals calculationsin principle, following the CP
recipe, one should try to perform a ghost-orbital calculation
with the respective orbitals resembling those of the actual FIG. 6. Geometries of the two CH4...OH complexes considered.
electronic state of the complex. Since the symmetry of the
individual fragments is usually lost in the ghost-orbital cal-
culation, this selection is sometimes not trivial. In closed-of the geometry optimizations for several basis sets and
shell systems the loss of the symmetry usually does ndBSSE correction methods are gathered in Tables land Il. Itis
cause problems because the ground and excited electrorfleund that the complex\ is more stable tha and upon
states are well separated in the energetic sense. Howev&$SSE correction the difference is smaller. As pointed out in
when one is dealing with degenerate open-shell fragmentsef. 23, very large basis set is necessary to properly describe
that can form several supermolecule electronic states of thé&e dispersion forces responsible for the formation of the
same symmetry, then there can be several ghost-orbitals seomplex. This seems to be particularly dramatic for the
lutions which should be considered. rather unconventional complex A.

We had not experienced any problem with the selection
of the ghost orbitals solutions for the NO...HF complex,
since we were dealing witlC; geometries and\’ and A” TABLE . Totgl energies(a.u), interaction energjeékcal/mob and some
states, so we could easily select the proper ghost-orbital rer}ternuclear distance@) of the complex A(see Fig. & with several basis

) ) sets, with and without BSSE correction.
erence calculation by using the symmetry. However, many

COMPLEX B

different UHF solutions for the NO fragment exist in the UMP2 CHA-UMP2 CP-UMP2
ghost orbitals calculations, especially in the vicinity of the 6-31+ + G

collinear configuration, as the in-plane and out-of-plane AOs g | _115.9165119 -115.9159348 —115.9159380
can also mix. Hence, if th€g symmetry of the complex r(c...0) 3.649 3.821 3.805
were broken, then getting a proper reference ghost-orbitalr(C...H) 2.676 2.848 2.831
NO energy would be a difficult task. No such problem would ~ 2Esab ~0.829 ~0.467 —0.469
arise in the CHA case, however. 6-311+ + G**

Another application has been carried out for the Ey —116.0058334 —116.0054337 —116.0054196
CH,...OH complex. It has recently been studié® as a  r(C...0) 3.644 3.757 3.762
possible entrance channel complex for the hydrogen abstrac!(C:--H) 2793 2.187 2793
tion reaction CH+ OH— CH;+ H,0. Esta oz 0520 ~0512

Two configurations ofC5, symmetry have been consid- 6-311+ +G(3df,pd)
ered, namely methane acting as a proton donor to form a Ew —116.0984490 -116.0978350 —116.0978755
C—H...O type hydrogen bon@Fig. 6, complex B and the H :Egg)) 3'151(7)421 g'ggg 2'282
atom of the OH interacting with the center of a tetrahedral Alé.s;ab 1185 0.800 _0.825

face of the methane moiet¥ig. 6, complex A. The results
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TABLE Il. Total energies(a.u), interaction energiegkcal/mo) and some
internuclear distance@) of the complex B(see Fig. 6 with several basis
set, with and without BSSE correction.

Perturbation theory without BSSE 5887

Eqb=Eag(AB)+[EA(A)—EA(AB)]+[Eg(B)—Eg(AB)]

=Eag(AB) — 6Egssk. (11

UmMP2 CHA-UMP2 CP-UMP2 Thus the CP scheme is equivalent to the use of a total energy
6-31+ + G** which is corrected by the amount SEggsg, Where
Eiot —-115.9160075 —115.9155349 —115.9155252
r(C...0) 3.881 4.046 4.047 0Egsse= EA(AB) —EA(A) +Eg(AB)—Eg(B) (12
r(0...H) 2.796 2.961 2.962 ) , ) ) ,
AE. . —0513 —0.216 ~0.210 is the energy lowering obtained in the “ghost orbitals” cal-
culations with respect to the free monomer energies calcu-
6-311t +CG™ lated in the respective monomer basis sets. The equivalence
Eqot -116.0052068 —116.0049385 —116.0049427 . : .
r(C...0) 3031 4.061 2.049 of Egs.(11) and(10) means that there is no need to assign
r(O...H) 2.842 2.972 2.960 any physical significance to the monomer wave functions
AEqap —-0.378 -0.210 —-0.213 calculated in the supermolecule basis, but one has simply to
6-311+ +G(3df,pd) consider Fhe energy Iowernjg obtained in such ? c_alculauon
Eur —116.0972653 —116.0970434 —116.0970493  as anesurn_ateof the onvgrlng of the monomer’s mtgrnal
r(C...0) 3.798 3.919 3.906 energy taking place within the supermolecule. Obviously,
r(0...H) 2714 2.836 2.822 one may use such an estimate only by making (tiaeit)
ABsap —0.442 —0.303 —0.307 assumption that BSSE is independent of the actual physical

interactions of the systems. i.e., BSSE and true interactions
represent additive effects. This additivity assumption needs
to be justified; it does not follow directly from the fact that in

breaks theC;, symmetry of the complexes, but for the larger gme basis set.”

basis set it is so small that frequency analysis indicates both

In fact, there is ndull additivity. The major BSSE ef-

the uncorrected and CP-correctég, geometries as minima. fects, however, can be proven additive, by using the

Therefore we present only the broken symmetry solutionscHa/CE principle.” To see this, we shall consider the fol-
obtained at the conformation of high symmetry.

The PES is so flat that the effect of the BSSE correctionyrpation theory.

on the geometry of the stationary points is considerable.
Even with the 6-31% + G(3df,pd) basis set, the C...O dis-
tance increases in both complexes by 0.1 A upon BSSE cor-

rection.

mizations (very tight convergence critefiagive practically
coinciding results in all cases. Thus we have again observegat ;s also assume that the unperturbed HamiltoRi4ris
this striking similarity between these methods of completelyy s Hermitian, and that it has a ground state eigenfunction
different philosophy, which is particularly notable bearing in |‘I’8>:|‘I’o> with the unperturbed energyg. We shall fur-

mind the relative large BSSE contents, especially for com
plex A: the largest difference between the CP-corrected an

CHA total energies is 0.025 kcal/mol for the 6-311

+G(3df,pd) basis set, while BSSE is 0.385 kcal/mol.
This similarity can be qualitatively understood if one whereW is responsible for the true physical interactions in

reconsiders carefully the tacit assumptions behind the Ckhe system an@ is that part of the Hamiltonian which gives

correction scheme and clarifies the precise meaning of th

BSSE-correctedBSSE-fre¢ interaction energ¥* In the CP
scheme one usually deals with the BSSE-correatiéstac-

tion energywhich for the case of two interacting subsystems

lowing simplified analytical modét using second-order per-

Let us assume that we consider a system described with
the Hermitian Hamiltoniat that can be written as the sum
of the unperturbed HamiltoniaR®, containing no interac-

However, the main point of the results is that both thetion and no BSSE, and of the perturbatign
analytical CP-corrected and the numerical CHA-UMP2 opti-

H=H%+V. (13

Hwer decompose the perturbatighas

V=W-+B, (14)

fise to BSSE(NeitherW nor B are assumed Hermitian, but
their sum,V, is Hermitian)
The first-order energy is given by o|V|¥,) in any

variants of the theory. The second-order uncorrected energy
will be a sum of terms containingy/y;|?> wherei denotes an
excited unperturbed state. Owing to E@4), this sum will

where the notation ¢(AB)” indicates that every energy value contain terms which are quadratic in matrix elements of ei-

is computed in the same supermoleciA®) basis set. How- therW or V as well as “cross terms” containing products of
ever, at the infinitéAB distance there is no interaction and no matrix elements of;’/ and V. The presence of these cross

A andB is given as
AESE=Eas(AB)— EA(AB)—Eg(AB), (10)

BSSE, so the total energy of the systenkigs() =EA(A)
+Eg(B) and this permits one to convert the CP correctedoresented as a sum of pure “physical” and “BSSE-type”
interaction energy(10) into the CP correctedotal energy
ESE=Eng(®) + AESS+EA(A) +Eg(B). By using Eq.(10)

one gets

terms causes that the total second-order energy cannot be

contributions; this was considered as an indication of a
non-additivit® before the CHA/CE concept emergd.
However, in the CHA/CE frame the second-order energy
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should be calculated by using the Hylleraas functignale  after (several avoided crossings.The above point stresses
supra. Owing to the stationary properties of the Hylleraasagain that the argumentation justifying the CP method by
functional?® the difference between the uncorrected and theeferring to the use of the same basis set everywhere is not
CHAJ/CE second-order energies should digadraticin the  sufficient®?)

difference| w2y — | w ) ) of the respective first-order wave ~ The complications connected with the use of diabatic
functions, i_e_’ in the matrix elements of the opera‘fbr states could make it rather difficult to perform a geometry

—W: actually this energy difference redisn terms of the optimization on the CP corrected PES of some systems. In
reduced resolveri R that case not just the ghost-orbital calculations themselves

but also the free monoméfmonomer centered basis set”
PP o . ; 7
EQEQ) = — (W, |BTROB|W,), (15) calculationd®—and possibly gradients of bofit——should
be properly transformed t@pproximately match the corre-
which is nothing other than the second-order energy corre-sponding description of the complex.

sponding to the BSSE operatordone?’ This is the quan- Finally, let us mention that one can also imagine other
tity the CP method tries to estimate by performing the “ghostsituations where the application of the CP method is not
orbitals” calculations. straightforward, like an even-electron dimer made up of two

This result indicates that the additivity assumption inher-open-shell interacting fragments. We believe that the CHA
ent in the CP scheme can be justified(@d only iff one method can be used more safely in all problematic cases.
accepts that the correct BSSE-free energy is to be calculatdtHrthermore, it priori nature allows one to obtain not only
as the expectation value of the BSSE-free wave functiorenergy corrections but also BSSE-corrected MO orbitals and
over the total Hamiltonian, i.e., that it is the CHA/CE energy. hence the charge and spin densities and other quantities the
In this case all the cross terms between operaférand B, calculation of which requires explicit use of the wave func-

contained in the uncorrected eneffg{f.. are absorbed in the tion.
BSSE-free conventional ener@Z),,cc. We may conclude,
therefore, that the CHA and CP schemes corroborate each
other not only numerically but also conceptudfy.

Owing to the presence dhearly degenerate monomer V. SUMMARY
states, the potential surfaces of open-shell systems are ex-
pected to exhibit numerous “avoided crossings.” In this re- ~ 1he BSSE-free second-order Mgller—Plesset perturba-
spect the question arises whether one has to perform tHPn theory of intermolecular interactions, based on the
BSSE correction according to the adiabatic or for the diaba-chemical Hamiltonian approach,” which has been intro-
tic state of the complex. Thus, Alexan&eproposed, for the duced in Partlis applied here to open-shell systems by using
B...H, system, the transformation of both the ghost-orbital® N€W. effective computer realization. The results of the nu-
(of the B atom and the complex energies to diabatic ones.Merical examples considered (¢H.HO, NO...HF) showed
He defined a diabatie adiabatic rotation angle for the mix- @gain the perfect performance of the method. Striking agree-
ing of the two diabatic electronic states of the complex andent has again been found with the results ofetfposteriori
transformed the ghost-orbital energies in the same way, ifOUNterpoise correction scheme in the case of large, well-
order to obtain the CP-corrected diabatic interaction potenP@lanced basis sets. This is also in agreement with a most
tial. Contrary to this, Kloset al® have recently performed recent formal theoretical analysis which is also briefly sum-

approximate counterpoise correction to adiabatic states fdParized, and used to discuss that the CP correction for the
the two A’ states of the Cl...HCI van der Waals complex. diabatic surfaces should be preferred to the adiabatic ones.
They rotated the ghost-orbital orbitals of the Cl atom as to
get the same orientation of the singly occupied orbital which
it has in the complex, and obtained adiabatic CP-corrected
interaction energies. ACKNOWLEDGMENTS
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