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The curvature of the conical intersection seam: An approximate
second-order analysis
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We present a method for analyzing the curvature~second derivatives! of the conical intersection
hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate
states after elimination of the two branching space coordinates, and is equivalent to a frequency
calculation on a single Born–Oppenheimer potential-energy surface. Based on the projected
Hessians, we develop an equation for the energy as a function of a set of curvilinear coordinates
where the degeneracy is preserved to second order~i.e., the conical intersection hyperline!. The
curvature of the potential-energy surface in these coordinates is the curvature of the conical
intersection hyperline itself, and thus determines whether one has a minimum or saddle point on the
hyperline. The equation used to classify optimized conical intersection points depends in a simple
way on the first- and second-order degeneracy splittings calculated at these points. As an example,
for fulvene, we show that the two optimized conical intersection points ofC2v symmetry are saddle
points on the intersection hyperline. Accordingly, there are further intersection points of lower
energy, and one ofC2 symmetry—presented here for the first time—is found to be the global
minimum in the intersection space. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1813436#
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INTRODUCTION

Conical intersections~CIs! have been shown to play a
essential role in the radiationless decay processes involve
photochemistry.1–8 At the simplest level, a conical intersec
tion appears as a funnel in the two coordinates that lift
degeneracy. However, we know that an intersection is in
a hyperline, i.e., a (3N28)-dimensional space where (3N
26) is the number of vibrational degrees of freedom, a
that the ‘‘conical intersections’’ we optimize with gradien
driven algorithms are critical points in thi
(3N28)-dimensional space. In the many examples we h
studied to date, we have usually been able to infer that th
optimized conical intersection points are minima in the int
section space~IS!, but until now we have not been able
prove this by doing a frequency calculation, in the way th
one can for a single Born–Oppenheimer surface. Now
on-the-fly dynamics is possible,9–13 computations are begin
ning to explore the nature of the intersection hyperline aw
from its minimum and show that these higher-energy regi
of a conical intersection hyperline can be chemically sign
cant. Furthermore, algorithms have been developed to
out ~minimum-energy path! segments of the hyperlin
explicitly.14 The purpose of this paper is to show that one c
develop an equation for the energy as a function of a se
curvilinear coordinates where the degeneracy is preserve
second order~i.e., the conical intersection hyperline!. The
curvature of the potential-energy surface in these coordin
is the curvature of the conical intersection hyperline itse

a!Electronic mail: mike.robb@imperial.ac.uk
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and thus determines whether one has a minimum or sa
point on the hyperline. The resulting equation used to cl
sify optimized conical intersection points depends in
simple way on the first- and second-order degeneracy s
tings calculated at these points.

In general terms, we propose a treatment of the (N
28)-dimensional hyperline analogous to the one used
the characterization of Born–Oppenheimer surfaces, wh
stationary points are classified as minima or saddle po
with the help of the nuclear Hessian. One immediate ap
cation is to the characterization of symmetry-restricted, o
mized points of conical intersection. Thus for an optimiz
CI structure of a given symmetry, we are able to pred
whether there are related ‘‘CI points’’~i.e., critical points—
maxima and minima—lying on the same conical intersect
hyperline!, which may have lower symmetry and lower e
ergy. As a demonstration, we will characterize the optimiz
S0 /S1 critical points on the conical intersection hyperline
fulvene.15 We will show that there are several CI critica
points of different symmetry (C2v , Cs , and C2) that are
minima or saddle points on the conical intersection hyp
line. With the methodology that will be described in subs
quent sections, we have characterized theC2 CI of fulvene
as the global minimum of the intersection space for the fi
time, and have rationalized the interconnection of the diff
ent stationary points on the global potential-energy surfa
In the future, these techniques can be combined with m
ods already developed14 to document minimum-energy path
~intrinsic reaction coordinates! in the intersection space.

To introduce the characterization of an optimized coni
intersection point, we start from the so-called ‘‘first-orde
2 © 2004 American Institute of Physics
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approach. Thus according to the von Neumann–Wig
theorem,16 at a conical intersection, there are two degrees
freedom that lift the degeneracy at first order. This leads
the usual characterization of a conical intersection in te
of two degeneracy-lifting coordinates that form the bran
ing space~BS!, and the remaining (3N28)-dimensional in-
tersection space coordinates.

The degeneracy at a crossing point can also be lifte
second order. However, we can choose a coordinate sy
in which to mix the branching and intersection space coo
nates to remove this splitting and preserve the degenera
second order. These new coordinates are curvilinear ra
than rectilinear. We are interested in the curvature of
potential-energy surface in these coordinates, since this g
the curvature of the conical intersection hyperline and de
mines whether one has a minimum or saddle point on
hyperline.

As we will show, this second-order analysis can be c
ried out starting from the intersection space Hessians, a
elimination of the branching space coordinates by project
The gradient is zero in the intersection space at an optim
~stationary! point on a conical intersection hyperline, and t
diagonalization of the Hessian yields (3N28) vibrational
frequencies. However, we have two Hessians in the inter
tion space and thus two sets of vibrational frequencies;
for each of the two degenerate components. In the sim
‘‘first-order’’ picture, we assume that the two intersectin
states will have identical Hessians. However, as we w
show, the Hessians of the two states are different becaus
second-order effects. The two surfaces split as one mo
away from the optimized CI point along intersection spa
coordinates~second order! as well as along the branchin
space coordinates~first order!. As we shall discuss, this situ
ation is analogous to the well-known Renner–Teller pict
for a linear molecule. In order to preserve the degenerac
the conical intersection correct to second order, the con
intersection hyperline must bend as the branching and in
section space coordinates mix along a curvilinear coordin
Thus, at second order, the analysis of the Hessian in
intersection space demonstrates how these effects chang
usual first-order picture.

We proceed now to a mathematical development be
illustrating the central concepts and demonstrating that
method can yield new results using fulvene as an exam
The next two parts of the paper have been written so
they can be read in any order.

QUADRATIC REPRESENTATION
OF THE POTENTIAL-ENERGY SURFACE
IN THE REGION OF A CONICAL INTERSECTION

From a practical point of view, we start with the He
sians of the two degenerate states at an optimized con
intersection point. We use an initial set of branching a
intersection space coordinates that are assumed to have
from the diagonalization of these Hessians. Our developm
will be based on a~simplified! Taylor expansion~to second
order! taken over from the spectroscopically oriented tre
ment of conical intersections.17–19 The conical intersection
line itself, correct to second order, becomes a paraboloid
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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hyperboloid. Consequently, the characterization of the co
cal intersection line correct to second order requirescurvilin-
ear coordinates, which are nonlinear combinations of t
branching and intersection space coordinates. The curva
of the conical intersection hyperline is therefore determin
by the second derivatives with respect to these curvilin
coordinates.

The degeneracy is lifted in first-order nuclear displac
ments via the branching space coordinates; the gradient
ference~GD! vector @Eq. ~1a!# and the interstate coupling
vector @Eq. ~1b!#,

x15
]~EB2EA!

]j
, ~1a!

x25^CAu
]Ĥe

]j
uCB& , ~1b!

wherej is a vector of Cartesian displacements,CA andCB

are the adiabatic electronic wave functions, andĤe is the
clamped nucleus electronic Hamiltonian operator.~These
two vectors are used in algorithms for locating optimiz
points on the conical intersection hyperline.20,21! The branch-
ing space is sometimes referred to as the g-h plane.3–5

We now introduce a set of coordinates to represent
potential-energy surface in the region of a critical point on
conical intersection seam,

Q̄5~Q̄x1
,Q̄x2

! % ~Q̄1 ,....,Q̄3N28!. ~2!

The branching space is spanned by the mass-weighted

dient difference vector (Q̄x1
), and by the mass-weighted in

terstate coupling vector (Q̄x2
). The orthogonal complemen

space ~the intersection space1! is spanned by

(Q̄1 ,....,Q̄3N28). The potential-energy surface for groun
and excited states is obtained by diagonalizingV,

V5S EA V12

V21 EB D 5V11V25V11Va
21Vb

21Vc
2, ~3a!

V15S kAQ̄x1
kABQ̄x2

kABQ̄x2
kBQ̄x1

D , ~3b!

Va
25S (

i , j PBS
g i j

AQ̄iQ̄j (
i , j PBS

h i j
ABQ̄iQ̄j

(
i , j PBS

h i j
ABQ̄iQ̄j (

i , j PBS
g i j

BQ̄iQ̄j D , ~3c!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Vb
25S (

i PBS, j PIS
g i j

AQ̄iQ̄j (
i PBS, j PIS

h i j
ABQ̄iQ̄j

(
i PBS, j PIS

h i j
ABQ̄iQ̄j (

i PBS, j PIS
g i j

BQ̄iQ̄j D , ~3d!

Vc
25S (

i , j PIS
g i j

AQ̄iQ̄j (
i , j PIS

h i j
ABQ̄iQ̄j

(
i , j PIS

h i j
ABQ̄iQ̄j (

i , j PIS
g i j

BQ̄iQ̄j D . ~3e!

The potential constants above,kA, kB, kAB, g i j
A , g i j

B , and
h i j

AB , are defined by the following equations:

k I5^C I uS ]Ĥe

]Q̄x1

D
0

uC I&, ~4!

kAB5^CAuS ]Ĥe

]Q̄x2

D
0

uCB&, ~5!

g i j
I 5^C I uS ]2Ĥe

]Q̄i]Q̄j

D
0

uC I&, ~6!

h i j
AB5^CAuS ]2Ĥe

]Q̄i]Q̄j

D
0

uCB&, ~7!

whereCA and CB are the degenerate adiabatic wave fun
tions computed at the conical intersection point. Since
use state-averaged wave functions, these two states are
orously orthogonal~see the discussion in Ref. 23 about t
choice of degenerate wave functions and the choice of
two vectors for the branching space!. Diagonalization of the
potential matrix at any finite displacement along the coor
natesQ̄ gives the energies of stateA or B. The reference
energy isEA

0 , or its equivalentEB
0 , the adiabatic energy a

Q̄50 ~an optimized CI point!. The termskA, kB, andkAB

are just the gradients and the interstate coupling, which
computed during a conical intersection optimization. T
second-order interstate coupling termsh i j

AB could be com-
puted. However, in this paper we base our analysis on
diagonal termsg i i

A and g i i
B , which can be obtained from

frequency calculation in the reduced (3N28)-dimensional
intersection space.

We now discuss the interpretation of the first- a
second-order termsk and g i j

I , h i j
AB , respectively, with the

help of the partition ofV @Eq. ~3!#. The first-order part ofV,
V1, contains the first-order termsk. It is clear that for any
displacement in the branching space (Q̄x1

,Q̄x2
), the degen-

eracy is lifted~to first order! via V1. Notice that we assume
that we are expanding about an optimized point on the c
cal intersection, so the gradient terms occur only in
branching space~gradient difference alongQ̄x1

and interstate

coupling alongQ̄x2
). For a displacement in the intersectio

space (Q̄1 ,...,Q̄3N28), the degeneracy remains to first ord
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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but is, in general, lifted at second order through the terms
V2 if all the g i j

A are not equal to theg i j
B and/or theh i j

AB are
not zero. The second-order terms are partitioned in th
groups:Va

2 includes effects along the branching space mod
Vb

2 includes effects between the branching and intersec
space modes, andVc

2 includes effects along the intersectio
space modes. For simplicity, we shall useal i j

A for termsl i j
A

PVa
2 , etc.
To keep the development simple, we shall now introdu

some approximations. We discuss the validity of some
these approximations subsequently. First, we assume tha
so-called cross-quadratic termsg i j ( iÞ j ) and all second-
order interstate couplingsh i j

AB are zero. Thus,Vb
2 can be

neglected, and the remaining second-order parts are sim
fied. Of course, in general,g i j

AÞg i j
B so that one has differen

sets of eigenvectors for the two states. In practice, the eig
vectors for two states are almost identical, and it is the
genvalues or diagonal elements that are different. The

FIG. 1. Classification of Renner–Teller-type profiles along the intersec
space rectilinear coordinates.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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sumption that allh i i
AB terms are zero is rigorous for th

fulvene example discussed below, because the so-ca
second-order interstate couplings are zero by symme
Thus, we are left with a simplified quadratic form that co
tains only diagonal second-order terms,

V5E1S kAQ̄x1
kABQ̄x2

kABQ̄x2
kBQ̄x1

D
1S (

i PBS

ag i i
AQ̄i

2 0

0 (
i PBS

ag i i
BQ̄i

2D
1S (

i PIS

cg i i
AQ̄i

2 0

0 (
i PIS

cg i i
BQ̄i

2D , ~8!

whereE is a diagonal matrix with diagonal elements equal
EA

0 andEB
0 ~energies at the conical intersection point!. This

form is useful because the gradient terms are zero in
intersection space. One can obtain new insights by carry
out a standard frequency analysis and by calculating
force constantscg i i

A and cg i i
B in this space.

Let us digress at this stage and discuss the interpreta
that one might make of a frequency analysis for each s
within the intersection space. From a conceptual point
view, it is possible to distinguish three different cases for
frequencies that might be obtained. In the intersection sp
the conical intersection behaves like a Renner–Teller in
section of a linear molecule in an orbitally degenerate st
the gradient of each state is zero, and the degeneracy is l
quadratically. The various possibilities are shown in Fig. 122

However, interpretation of the frequency analysis with
an intersection space on the basis of Fig. 1 is by no me
straightforward. If the curvature of both surfaces is the sa
then one is tempted to imagine that the optimized point
the conical intersection hyperline is a maximum or mi
mum. However, when the curvature of both surfaces in
intersection space is different, there is no obvious way
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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guess the curvature of the conical intersection hyperline
self. The conceptual problem is resolved only when o
moves from rectilinear coordinates to curvilinear coor
nates.

Before these curvilinear coordinates are expressed m
ematically, we develop this idea intuitively as a combinati
of first- and second-order degeneracy-lifting effects. As
have just discussed in Fig. 1, an infinitesimal displacem
dQ̄IS along one of the intersection space coordinates p
duces a splitting of the surfaces equivalent to the differe
between the two eigenvalues~see also the left-hand side o
Fig. 2, where the effect is shown using finite displacemen!.
However, a subsequent infinitesimal displacementdQ̄BS

along a branching space coordinate, namely, the gradient
ference, can eventually recover the degeneracy by bring
the energies of the two states together again. Thus, the
degeneracy-retaining coordinate is realized as a combina
of the two displacements, and a new set of degenera
retaining coordinates can be defined as combinations of
intersection space and one branching space coordinate~the
gradient difference!.

CHARACTERIZATION OF THE SEAM: DEFINITION
OF A CURVILINEAR COORDINATE SYSTEM
AND CALCULATION OF THE SEAM CURVATURE

Our purpose in this section is to develop the worki
equations for the characterization of the conical intersec
using the simplified quadratic form developed previou
@Eq. ~8!#. After diagonalization ofV, the energies of the two
states can be expressed as

FIG. 2. Effect of consecutive displacements from the conical intersec
along one IS mode and the GD mode of the BS.
EA,B5lQ̄x1
1 (

i PBS

av i Q̄i
21 (

i PIS

cv i Q̄i
26

1

2AS dkQ̄11 (
i PBS

adg i Q̄i
21 (

i PIS

cdg i Q̄i
2D 2

1~2kABQ̄x2
!2, ~9a!

l5~kB1kA!/2, ~9b!

dk5kB2kA, ~9c!

v i5~g i i
B1g i i

A!/2, ~9d!

dg i5g i i
B2g i i

A . ~9e!

Thus the energy difference between the two states is
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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DE5AS dkQ̄x1
1 (

i PBS

adg i Q̄xi

2 1 (
i PIS

cdg i Q̄i
2D 2

1~2kABQ̄x2
!2. ~10!
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In this expression, it is clear that the energy splitting betwe
the intersecting states comes from first-order effects al
the branching space coordinatesx1 and x2 and from qua-
dratic second-order effects along all coordinates. Moreo
by assuming that all cross-quadratic termsg i j ( iÞ j ) be-
tween branching and intersection space coordinates are
and that second-order interstate couplingsh i j are zero, we
have the tacit assumption that all energy splittings that
pear as differences in the eigenvalues of the two intersec
space Hessians come from differences in the force cons
of the two states within the intersection space itself.

We now proceed to derive the equation for the coni
intersection hyperline correct to second order. We begin
setting the energy difference in Eq.~10! to zero. This gives
the condition for the curvilinear coordinates that retain
energy degeneracy. These coordinates are used to obta
expression for the energy of the seam as a function of
curvilinear coordinates$t i%. This expression is finally used t
characterize the seam by its second derivativ
(]2E/]t i

2) t i50 .
For our remaining analysis, we introduce one more s

plification, namely, we neglect the quadratic splittings alo
the branching space modes,adg i . In fact, the inclusion of
these terms would complicate the following development
does not change the conclusions. As we will show, theadg i

terms affect the magnitude of (]2E/]t i
2) t i50 but not its sign,

which is our main point of interest~see Appendix for the
details of includingadg i). Neglecting theadg i splitting and
setting the energy difference@Eq. ~10!# to zero, one obtains
Eq. ~11!,

S dkQ̄x1
1(

IS

cdg i Q̄i
2D 2

1~2kABQ̄x2
!250. ~11!

From Eq.~11!, the curvilinear coordinates$t i% will be com-
binations of the intersection space coordinates with the
dient difference vector.~If the second-order interstate cou
pling is included, then the interstate coupling coordinate
the branching space mixes as well.! Thus Eq.~11! is simpli-
fied to

dkQ̄x1
1(

IS

cdg i Q̄i
250. ~12!

Thus, the equation of the seam is a paraboloid. There
(3N28) solutions to this equation, which are linear com
nations of the (3N28) linearly independent intersectio
space modes with theQ̄x1

coordinate~gradient difference!.
Each curvilinear coordinatet i is obtained as a solution to Eq
~13!,

dkQ̄x1
1cdg i Q̄i

250. ~13!

We proceed by writing Eq.~13! as a function of the param
eter t.
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Q̄x1
52

1

dk
t i
252at i

2, a5
1

dk
, ~14!

Q̄i5
1

Acdg i

t i5b i t i , b i5
1

Acdg i

. ~15!

The expression for the energy of one of the states along
Q̄x1

andQ̄i coordinates is obtained from Eq.~9! and is

EA5lQ̄x1
1ag1Q̄x1

2 1cg i Q̄i
21dkQ̄x1

1cdg i Q̄i
2

5kAQ̄x1
1ag11

A Q̄x1

2 1cg i i
AQ̄i

2. ~16!

Substituting from Eqs.~15! and ~16! we have

EA52akAt i
21ag11

A a2t i
41cg i i

Ab i
2t i

2

5ag11
A a2t i

41~cg i i
Ab i

22akA!t i
2. ~17!

Equation ~17! gives the energy of the states along
degeneracy-retaining coordinatet i . We refer to it as the en-
ergy of the intersection seam~hyperline! along the curved
coordinatet i . The expression required to characterize t
hyperline is then

S ]2E

]t i
2 D

t i50

52~g i
Ab i

22kAa!52H S g i
A

dg i
D 2S kA

dk D J . ~18!

The superscriptc from the g terms has been omitted fo
clarity, but it should be clear that the terms refer to t
branching space coordinate~the gradient difference in the
fulvene example! and theg terms refer to the intersectio
space coordinates. This gives us a working equation for
analysis of the curvature of the intersection hyperline t
arises from second-order effects in the intersection space
from first-order effects along the branching space coo
nates.

At this stage, we need to consider the effect of a tra
formation of the two degenerate wave functions at the co
cal intersection~see Ref. 23 for a very general discussion
this problem!. If two degenerate wave functions transform
different irreducible representations of some group, then
can always make a unique choice for the two vectors of
branching space. However, when a molecule has no sym
try, the degenerate wave functions at the conical intersec
are only unique to within a unitary transformation among
themselves. Clearly the transformation of the degene
wave functions changes or rotates the basis vectors~gradient
difference and interstate coupling vectors! of the branching
space. At the same time, the gradient difference and in
state coupling vectors are interconverted. Our analysis
mains valid, although thedg i term of Eq. ~18! would be,
strictly speaking, 2h i

AB , andkA would be the projection of
the gradient of stateA along the new interstate couplin
coordinate.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Thus, when there is no symmetry, and the gradient
ference coordinate that occurs in Eqs.~11! and ~12! is not
uniquely defined, does the analysis that we have just
sented remain valid? Clearly in Eqs.~11! and ~12! all the
quantities are differences between the values for differ
states. One might expectdg i5g i i

B2g i i
A to be invariant to a

transformation between statesA andB; we have carried ou
numerical tests and this seems to be the case, but as ye
have no rigorous proof.

COMPUTATIONAL DETAILS

Calculations were done at the complete active space
consistent field@CASSCF~6,6!/cc-pVDZ# level of theory
with a development version ofGAUSSIAN99.24 The state-
averaged Hessian was computed for both roots of the de
erate state-averaged CASSCF wave function. The branc
space was mass weighted and projected from each Hessi
yield two (3N28)-dimensional Hessians.

For every critical point, the normal coordinates of t
two degenerate states were matched with each other by
jecting one set upon the other. For the two criticalC2v inter-
section points of fulvene the normal coordinates of each
face were parallel to each other to within 1° or 2°. This
equivalent to an accuracy of around two decimal places
the Cartesian displacement vectors. We are therefore c
dent that the set of coordinates used was sufficiently accu
to map out the seam of intersection qualitatively.

The valence-bond resonance structures for each com
nent of the degenerate electronic state at all of the optim
intersections were obtained from the spin-exchange den
using localized orbitals.25 See Ref. 26 for details.

APPLICATION: ANALYZING THE S0 ÕS1 SEAM
IN FULVENE

The photophysics of fulvene is characterized by a lack
fluorescence, which indicates fast internal conversion of
excited state to the ground state via a conical intersectio27

In a previous CASSCF study, two distinct critical points
the S0 /S1 conical intersection seam were located:15 in
CIplan, the methylene group lies in the plane of the ring, a
in the other structure,CIperp, the methylene group is perpen
dicular to the plane. Both structures haveC2v symmetry, but
CIperp lies approximately 8 kcal mol21 below CIplan ~Table
I!. The original CASSCF study of the potential-energy s

TABLE I. FulveneS0 /S1 energetics: CASSCF~6,6!/cc-pvDZ.

Geometry~Table III! Adiabatic state Energy/a.u.

Relative
energy

~to
S0 minimum/
kcal mol21)

S0 minimum S0 2230.7464 0.0
S1 planar minimum S1 2230.6489 61.2

CIplan S0 /S1 2230.6359 69.4
CIperp S0 /S1 2230.6478 61.8
CI63 S0 /S1 2230.6514 59.6
CIpyr S0 /S1 2230.6381 67.9
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
f-

e-

nt

we

elf

n-
ng

to

ro-

r-

in
fi-
te

o-
d

ity

f
e

.

d

-

faces was complemented by a molecular mechanics vale
bond ~MMVB ! dynamics study where the point of decay
the ground state was analyzed for many trajectories.
trajectories were found to decay at all methylene tors
angles, suggesting that the two conical intersection crit
points ofC2v symmetry are interconnected by a continuo
seam of intersection along the methylene tors
coordinate.15 ~This was the first such example we studied!
We are now finally in a position to determine the curviline
hyperline coordinate that connects the planar and twisted
tersection points. Our results show that this curvilinear co
dinate is composed of the torsion and bond-inversion stre
ing ~gradient difference! coordinates, shown in Fig. 3 in
bold. Torsion alone does not preserve the degeneracy, an
variation in mixing with the gradient difference along th
seam leads to the curvature of the seam shown in Fig. 3

We have characterized the two CI critical points ofC2v
symmetry located previously as saddle points in the inters
tion space using Eq.~18!. Table II shows~as we explain fully
below! that the curvature of the CI hyperline atCIplan is
negative either when the torsion mode and the gradient
ference are combined to produce the curvilinear coordin
or when the pyramidalization mode and the gradient diff
ence mode are combined. Thus, there should exist low
energy CI critical points on the hyperline along these curv
coordinates, and indeed, we find that the ‘‘global minimum
of the intersection space is a structure ofC2 symmetry
(CI63) with a torsion angle of 63° that we had nev
located—or thought to look for—in our previous work.

The relative energies of the critical points~minima of the
S0 and S1 states and optimized conical intersection poin!
are summarized in Table I, and the relevant geometric
rameters are given in Table III. The relevant frequencies
tained from the intersection space Hessian calculation for
conical intersections ofC2v symmetry are listed in Table IV
~The full list of frequencies appears in EPAPS support
information.28!

The vibrational frequencies of the intersection spa
modes~i.e., the rectilinear coordinates tangent to the cur
linear seam at the optimized CI! can be understood in term
of valence-bond representations of the components of

FIG. 3. Plot of theS0 and S1 surfaces of fulvene along the torsion an
bond-inversion coordinates. The seam of intersection is marked as a
line.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Computed first-order parameters~projection of gradients onto gradient difference! and second-order parameters used to characterize the hype
curvature at the four optimized fulvene CI critical points~in arbitrary units!.

CI
Intersection
space mode kA kB dk5kB2kA

g i i
A

(3105)
g i i

B

(3105)
dg i5g i i

B2g i i
A

(3105)
S]2E

]ti
2 D

ti50

52HS gi
A

dgi
D2SkA

dkDJ
CIPlan Torsion 20.03329 20.10164 20.06835 1.85761 20.32761 22.18522 22.674

Pyramidalization 1.64025 21.02400 22.66425 22.205
CIPerp Torsion 0.02904 20.02348 20.05251 210.12036 1.41376 11.53412 20.649

Pyramidalization 20.00400 0.30976 0.31376 1.080
CI63 Torsion 0.05361 20.00652 20.06013 0.50625 2.53009 2.02384 2.283

Pyramidalization 2.46016 20.30276 22.76292 0.002
CIPyr Torsion 0.09727 0.02809 20.06918 20.22500 1.98025 2.20525 2.608

Pyramidalization 0.96100 1.67281 0.71181 5.512
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degenerate electronic state. These modes have Renner–
topologies~Fig. 1! and it is these second-order splittings th
result in the seam curvature. We now discuss these sec
order splittings in detail for the twoC2v optimized CI critical
points.

We start our analysis with the planar structures ofC2v
symmetry ~Fig. 4!. At the Franck–Condon geometry, th
ground state hasA1 symmetry, while the lowest singlet ex
cited state (S1) hasB2 symmetry. The valence-bond stru
tures for the two states are shown in Fig. 4. The ground s
has a closed-shell structure with three localized dou
bonds, whereas the excited state has a diradical struc
The planar conical intersection ofC2v symmetry has a
sloped1 topology along the gradient difference, which corr
sponds to symmetric bond-length inversion~recoupling or
exchange of the single and double bonds!. The interstate cou-
pling is an antisymmetric stretch of the C–C bonds.

From our intersection space Hessian calculation, we
tain the ‘‘frequencies’’ along the rectilinear intersection spa
coordinates. The second-order splittings are less t
300 cm21 ~RT-I profiles, see Fig. 1! for all modes except
two. These modes are documented in Table IV and co
spond to the methylene pyramidalization ofb1 symmetry and
the methylene torsion ofa2 symmetry. These two mode
have real frequencies for theA1 state~i.e., positive curvature
of the surface along those modes!, but have imaginary value

TABLE III. Fulvene S0 /S1 optimized conical intersection geometries. A
bond lengths are in angstroms.

CIplan

C2v

CIperp

C2v

CI63

C2

CIpyr

Cs

1–2 1.372 1.424 1.409 1.377
2–3 1.531 1.424 1.461 1.521
3–4 1.320 1.413 1.371 1.326
4–5 1.531 1.424 1.461 1.521
1–5 1.372 1.424 1.409 1.377
1–6 1.578 1.478 1.481 1.567

H7– 6 – 1 – 2
dihedral

0.0° 90.0° 63.1° 18.1
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for theB2 state~negative curvature!, corresponding to RT-II-
type profiles~see Fig. 1!.

One can rationalize the different signs of the curvatu
for the two states using the valence-bond structures show
Fig. 4. In theA1 state, there is ap bond between C1 and C6

and the pyramidalization and torsion modes have real
quencies. In contrast to this, in theB2 state, the methylene
group carries an uncoupled electron~i.e., a radical! and the
energy is lowered by the same modes~i.e., imaginary fre-
quencies!.

Due to the different signs of the curvatures, there is
substantial second-order splitting along these modes.
degeneracy-retaining, curvilinear coordinates$t i% are combi-
nations of these modes with the gradient difference coo
nate. Substituting the computed gradients and curvature
the intersection in Eq.~18!, we calculate the value o
(]2Es(t i)/]t i

2) t i50 ~see Table II!. In both cases, forCIplan we
obtain negative second derivatives~for the remaining modes
we obtain only positive second derivatives! for the curvature
along the curvilinear coordinatet i . Thus,CIplan is the analog
of a second-order saddle point in the intersection space~i.e.,
on a hyperline!. Displacement along a combination of th
bond inversion~gradient difference! and methylene torsion
coordinate lowers the energies of the two states but prese
the degeneracy. The same applies for the combination
pyramidalization and gradient difference coordinates.

Along the curved methylene torsion plus gradient diffe
ence coordinate, we have optimized a lower-lying inters

TABLE IV. Relevant intersection space frequencies~RT-II profiles, Fig. 1!
at CIplan and CIperp.

CIplan
1A1 state 1B2 state

Symmetry v (cm21) v (cm21)

b1
a 405 320i

a2
b 431 181i

CIperp
1A2 state 1B1 state

Symmetry v (cm21) v (cm21)

a2
b 1006i 376

b1
a 20 i 176

aMethylene pyramidalization.
bMethylene torsion.
ci 5A21.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



t
tio

s-
s

ve

te

r t
e
li

y-

r
y
he
ce
rs

d
p

he

o

ion
th
il
o
n

the
m-
bal

ne-
ear
er-
ion
he

te,
.

oor-

e

a
th-

ly,
by

-
ond
e
ll

ix

du-
in-
te at

co-
tes
ter-
the
m.

a-

f
s

co-

11569J. Chem. Phys., Vol. 121, No. 23, 15 December 2004 The conical intersection seam

Down
tion of C2 symmetry (A and B states! with a methylene
torsion angle of 63°, CI63, which lies approximately
10 kcal mol21 below theCIplan. This confirms the prediction
of our intersection space Hessian analysis. Further, along
curved pyramidalization mode, there is a conical intersec
of Cs symmetry, CIpyr , which lies approximately
1.5 kcal mol21 below the planar one. Analysis of the He
sians atCI63 and CIpyr gives positive second derivative
along all curved coordinatest i , see Table II.

To complete our analysis of the CI hyperline, we ha
calculated the Hessians at the twisted intersection ofC2v
symmetry, CIperp. In this case, the two degenerate sta
haveA2 and B1 symmetries, and correlate with theA1 and
B2 states at the planar intersection, respectively. Simila
the results for the planar intersection, at the twisted inters
tion of C2v symmetry, there is substantial second-order sp
ting ~RT-II-type profile! along the methylene torsion and p
ramidalization modes~of a2 andb1 symmetries respectively!
~see Table IV!. However, the curvature of theA andB states
along the rectilinear intersection space coordinates is
versed compared toCIplan. The large imaginary frequenc
for the A2 state along the torsion mode comes from t
C1– C6 p bond for that state, and the gradient differen
coordinate corresponds, as in the case of the planar inte
tion, to the symmetric bond inversion. Using Eq.~18!, we
find a negative sign for (]2Es(t i)/]t i

2) t i50 along the curved
coordinate of combined bond inversion and torsion, an
positive sign along the one that contains the methylene
ramidalization~Table II!. Thus,CIperp is a first-order saddle
point on the CI hyperline. This critical point connects t
twisted intersectionCI63 with its analogCI638 ~torsion angle
117°) and lies approximately 2 kcal mol21 above them~see
the energetics of Table I!.

To summarize, our CI hyperline analysis for the tw
conical intersections ofC2v symmetry gives RT-II-type pro-
files along the methylene torsion and pyramidalizat
modes for both structures. These are the only two modes
give a large second-order splitting at these points. Wh
there is no intuitive way of guessing whether a lowering
symmetry along these modes will lead to lower-energy co

FIG. 4. Surface topology for theS0 andS1 states in the restricted space o
C2v symmetry~planar geometries!, including branching-space coordinate
at CIplan.
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cal intersection structures, with the help of Eq.~18! it is
possible to predict this behavior.

We now discuss how the computed curvature of
hyperline—together with the first- and second-order para
eters collected in Table II—can be used to produce a glo
‘‘cartoon’’ of the two potential surfaces~Figs. 3 and 5! show-
ing the seam of intersection. Figure 5 shows a o
dimensional representation of the seam along the curvilin
coordinate composed of the methylene torsion/bond inv
sion. The curvilinear coordinate is projected onto the tors
anglef and the profile corresponds to half a rotation of t
methylene group (180°). TheC2v structures (f50°, 90°,
and 180°) are maxima along this curvilinear coordina
whereas theC2 structures (f563° and 117°) are minima
Figure 3 is a two-dimensional cartoon of theS0 andS1 sur-
faces in the space of one rectilinear intersection space c
dinate, the torsion, and the bond-inversion coordinate~gradi-
ent difference!. This cartoon illustrates the curvatures of th
two states at the two critical points ofC2v symmetry. From
Fig. 3, it is clear that the seam of intersection lies along
curved line, a combination of the bond stretching and me
ylene torsion coordinates. Along the path fromCIplan to
CIperp ~throughCI63), the bond lengths change progressive
following the bond-inversion coordinate. This is shown
the bond lengths in Table III~stretching of the C1– C2,
C1– C5, and C3– C4 bonds and contraction of C1– C6,
C2– C3, and C4– C5). At the same time, the gradient differ
ence coordinate changes along the seam. It is purely b
inversion at theC2v structures~where the gradient along th
methylene torsion is zero!, but it has a torsion component a
along the seam~cf. the gradient difference at theC2 mini-
mum, Fig. 6!. Thus, the two rectilinear coordinates m
along the CI hyperline.

In a similar manner, the path connecting theCIplan and
CIpyr also contains the bond-inversion coordinate, but gra
ally gains a pyramidalization component along the curvil
ear seam. See Fig. 7 for the gradient difference coordina
the optimized intersectionCIpyr .

To summarize, the branching and intersection space
ordinates provide a rectilinear set of orthogonal coordina
that can be used to characterize the curvilinear conical in
section seam. The rectilinear coordinates are tangent to
curved seam at any optimized critical point on the CI sea
Using Eq.~18! above allows the determination of the curv

FIG. 5. One-dimensional profile~projection! of the seam of theS1 /S0 in-
tersection in fulvene along the curved methylene torsion/bond-inversion
ordinate.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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ture of the seam at these points and predicts whether or
there are any lower-lying CI critical points. In fulvene, w
have shown that the two previously found points ofC2v
symmetry are in fact first- and second-order saddle points
the CI hyperline and accordingly there exist two minima
the hyperline that had not been found previously.

CONCLUSIONS

Our CI hyperline analysis of fulvene has shown that
the optimized conical intersections ofC2v symmetry, there
are substantial second-order splittings associated
Renner–Teller type-II profiles along some vibrational co
dinates. These second-order splittings along the rectilin
intersection space coordinates can be readily rationalize
terms of a valence-bond representation of the degene
states. The rectilinear branching and intersection space c
dinates are tangent to the seam of intersection at any o
mized CI critical point; however, they can be used to de
mine the local curvature of the seam. In fulvene, this analy
was used to show that theC2v CI critical points found in a
previous study are in fact first- and second-order sad
points on the hyperline. Our new methodology predicts
curvilinear seam coordinate that retains the degeneracy
leads to the minima on the hyperline, which we have op
mized for the first time.

Our analysis presented above remains valid as long
the cross-quadratic termscdg i j andh i j

AB ( iÞ j ) are zero. In

FIG. 6. Gradient difference vector atCI63 .

FIG. 7. Gradient difference vector atCIpyr .
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that case, the coordinates that compose
(3N28)-dimensional degenerate space only have to be
defined as the curvilinear coordinatest i . This is not valid
anymore when there are large cross-quadratic terms, i.e.,
placements along two curved coordinatest i and t j will not
retain degeneracy. In our analysis, we cannot identify
cross-quadratic terms directly, but their effect can be seen
the eigenvectors of the intersection space Hessian~the recti-
linear ‘‘normal modes’’ of the intersection space!, that will
be significantly different for the Hessians of the two stat
In these cases, one should consider that the degenerate
at the conical intersection has a lower dimension than (N
28). Future work will consider the application of the abo
methodology to cases with no symmetry when this eff
may occur.
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APPENDIX: MODIFIED HYPERLINE CURVATURE

In this Appendix we give a calculation of the secon
derivative of the hyperline with the inclusion ofadg1 terms
~second-order splitting along the gradient difference!. Equa-
tion ~13!, which is used to determine the curved coordinatet i

becomes

dkQ̄x1
1adg1Q̄x1

2 1cdg i Q̄i
250. ~A1!

Two cases have to be considered here. For the first c
(dg1dg i.0, elliptical seam!, the second derivative is

S ]2E~ t i !

]t i
2 D

t i50

5
dk

2adg1
cdg i

~g i i
AkB2g i i

BkA!. ~A2!

For the alternative case (dg1dg i,0, hyperbolic seam!, the
second derivative is

S ]2E~ t i !

]t i
2 D

t i50

5
dk

2adg1
cdg i

~g i i
BkA2g i i

AkB!. ~A3!

In both cases, the sign of the second derivative is given

signS ]2E~ t i !

]t i
2 D

t i50

[sign@dk~g i i
AkB2g i i

BkA!#. ~A4!
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