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Two common methods of accounting for electric-field-induced perturbations to molecular 
vibration are analyzed and compared. The first method is based on a perturbation-theoretic 
treatment and the second on a finite-field treatment. The relationship between the two, which is 
not immediately apparent, is made by developing an algebraic formalism for the latter. Some of 
the higher-order terms in this development are documented here for the first time. As well as 
considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of 
the vibrational Stark effect. 

I. INTRODUCTION 

There is growing interest in the effect of electric fields 
on molecular vibration and this complements the picture 
we already have of the effects of an electric field on elec
tronic motion. The latter effects are conventionally de
scribed in terms of the dipole polarizability (a) and hy
perpolarizabilities (/3, r, etc.). 1 The vibrational 
counterparts of these intrinsic molecular properties are the 
main concern of this article. The level of the discussion will 
hopefully fill the gap between two recent reviews on the 
same subject, one detailed and specialist2 and the other of 
a more introductory and general character. 3 Our principle 
objective is to clarify the relationships, not altogether 
transparent, which exist between two common methods for 
calculating electric-field-induced vibrational perturbations. 
Broadly speaking, we can categorize these methods as 
perturbation-theoretic (method A) and finite-field-based 
(method B). To make the comparison will require that we 
put method B on an algebraic footing. As well as consid
ering vibrational polarizabilities and hyperpolarizabilities, 
we will also look at the vibrational Stark effect.4,s 

For the sake of clarity and because it is sufficient to get 
our principal points across, we will make our analysis for a 
diatomic molecule, even though both methods can be used 
for polyatomic molecules. We will also only consider a 
static uniform electric field since method B is not capable 
of dealing with dynamic (oscillating) fields. This field will 
be applied along the nuclear axis (z) and we will omit all 
subscripts, that is to say fL, a, etc., will imply the dipole 
moment and polarizability components fLz' a zz ' etc. Other 
components are clearly accessible but are not necessary for 
the arguments which we wish to make. That we keep the 
electric field parallel to the nuclear axis implies that we are 
ignoring rotation or, in other words, our results are 
molecular-axis based rather than laboratory-axis based. 
The theory of relating the results found in these two axis 
systems has been discussed in detail in Ref. 2. 

It is pertinent to briefly refer to previous work which 
has been based on the two aforementioned methods. The 

a)Pennanent address: Institute for Computational Chemistry and Depart
ment of Chemistry, Universitat de Girona, 17071 Girona, Spain. 

perturbation-theoretic formulas for the dynamic vibra
tional polarizabilities and hyperpolarizabilities of poly
atomic molecules have been given by Bishop and Kirt
manlHl and applied to FH, CO2, H20, and NH3 •7,9 The 
same philosophy has been applied to changes to infrared 
spectra caused by an electric field (the vibrational Stark 
effect) with CO as an example.4 The finite field approach to 
vibrational polarizabilities and hyperpolarizabilities was 
first introduced by Bishop and Solunac lO for the case ofHt 
and by Adamowicz and Bartlettll for FH. The vibrational 
Schr6dinger equation is solved in the presence of a small 
finite, static, uniform, electric field. The vibrational energy 
levels thereby become field dependent and, for any given 
level, a fit may be made to a Taylor series in the field and 
the coefficients related to the total (electronic and vibra
tional) polarizabilities. Subtraction of the known elec
tronic values gives the vibrational contribution to a partic
ular polarizability or hyperpolarizability. Duran and co
workers12 have used a variation ofthis method; they obtain 
potential curves in the presence of various finite electric 
fields, but rather than solve numerically (as Adamowicz 
and Bartlett did) for the vibrational energy levels, they 
obtain the curvature analytically (at the field-perturbed 
equilibrium geometry) for the various fields (F). From 
this, the field-perturbed harmonic vibrational frequency, 
OJe(F), is found. The energy for the vibrational level with 
vibrational quantum number n is then V(Qe) + (n 
+1)we(F), where Qe is the field-dependent eqUilibrium 
geometry. Numerical differentiation with respect to F gives 
two components to the vibrational polarizability and hy
perpolarizabilities; one is related to the shift in the equilib
rium geometry, i.e., to Qe(F), and which they called "nu
clear relaxation" and the other is related to OJe(F) and was 
called simply "vibrational." As well as applying this meth
odology to vibrational polarizabilities and hyperpolariz
abilities,12 they have also used it for calculating the vibra
tional Stark shifts for several molecules.s,13 

In the next section both methods will be described and 
analyzed in more detail and in the context of a diatomic 
molecule vibrating in its lowest vibrational state. Certain 
higher-order perturbation-theoretic contributions to the vi
brational (hyper)polarizabilities will be given for the first 
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time. An extension to vibrationally excited states is given in 
Sec. III and the trivial relation of the foregoing results to 
the vibrational Stark effect is to be found in Sec. IV. 

II. ANALYSIS: THE VIBRATIONAL GROUND STATE OF 
A DIATOMIC MOLECULE 

A. Method A 

For a diatomic molecule vibrating in a static uniform 
electric field (F) acting along its axis, the potential curve 
includes the perturbation 

H ' II.F 1 aF2 ! f3p3 ..• =-r- -"2 -6 - , (1) 

where J.L,a,{3, •.. are the dipole moment, dipole polarizabil
ity, and first hyperpolarizability functions, respectively. 
From perturbation theory the first-order correction to the 
ground state vibrational energy will therefore include 
terms of the type <-"'0151 tPo), with s=J.L,a,{3, ... , where tPo is 
the unperturbed ground state vibrational wave function. 
The difference between (tPo 151 tPo) and SO = s( Qe), the elec
tronic value of the property 5 at the unperturbed equilib
rium geometry (Qe)' is called the zero-point-vibrational-

. . ,.,.zp· averagmg correctIOn ~ ,I.e., 

(2) 

We may express any electric property 5 as a truncated 
Taylor series by 

(3) 

(higher-order derivatives being ignored). In Eq. (3) Q is 
the normal coordinate m1l2(R-Re), where m is the re
duced nuclear mass and R is the internuclear separation. 
The second and third terms in Eq. (3) are referred to as 
the electrical harmonicity and anharmonicity, respectively. 
The wave function tPo can be found as a perturbed har
monic oscillator wave function, the perturbation (mechan
ical anharmonicity) being expressed by the cubic force 
constant k'. That is, we can write the potential curve (with 
no electric field present) in the form 

V= V<>+!w;~+i k'~, (4) 

where v<> is the potential at Qe and We is the circular har
monic vibrational frequency. Combining Eqs. (2)-(4) and 
using standard values for the integrals over harmonic os
cillator functions l4 leads to the well-known formula 

sZP = (n/4we)[ (a2s/a~) _w;2k' (as/aQ)]. (5) 

This vibrational correction is quite independent of any ef
fect the electric field has on the vibrational motion. In the 
double harmonic approximation, where both a2s/a~ and 
k' are ignored, the zero-point-vibrational correction for 
any electric property will be zero. 

Higher-order perturbation-theoretic corrections to the 
ground state vibrational energy due to the electric field will 
lead to further corrections to the polarizability a and first 
hyperpolarizability {3. The vibrational polarizabilities can 
be written in the form2,7,8 

TABLE I. Formulas for the different contributions to a" and {3".' 

Term 

[p.2]O.O 
[jL2f·o 
[jL2]1.1 
[p.2]O.2 

W;2(afLlaQ)2 
(I/8)l1w;3(~fLla~)2 

Formula 

- (3/4)l1w;5(k') (afLlaQ) (~fLla~) 
(318 )1iw; 7 (k' ) 2 (afLlaQ) 2 

(3)w;2(afLlaQ) (aalaQ) 
(3/8)1iw;3 (~fLla~) (~ala~) 

[p.a]o.o 
[jLaf'o 
[jLa]I.1 - (9/8)1iw;5 (k') [(afLlaQ) (~ala~) + (aalaQ) 

X (a 2fLlc3Q2)] 
(9/8)1iw;7 (k,)2(afLlaQ) (aalaQ) 

(3 )W;4(afLlaQ)2(a2fLla~) 
- (I )w;6(k') (afLlaQ) 3 

- (4S/16)l1w;7 (k')(afLlaQ)(~fLla~)2 
(63/16)l1w;9(k')2(afLlaQ)2(~fLlaQ 2) 
_ (21/16)1iw; 11 (k') 3 (afLlaQ) 3 

(3/16)1iw;5(~fLla~)3 

"The last four formulas are deduced from method B. 

+6n- 1 L'w;;I(OIJ.Llk)(klaIO) 
k 

= [J.L3] + [J.La], 

(6) 

(7) 

where the primes on the summations indicate exclusion of 
the ground state, wk is the circular transition frequency for 
the kth fundamental level, and 1 k) is the corresponding 
wave function, and,u in Eq. (7) is,u- (0 1,1.£ 1 0). Using Eqs. 
(3) and(4), 1jL2], 1jL3], and ljLa] may be evaluated to var
ious orders7,8 in electrical and mechanical anharmonicity. 
A particular order is denoted by [ ... ]n,m, where n indicates 
that a second derivative of an electric property with respect 
to Q occurs n times and m indicates that k' occurs m times. 
In Table I we give expressions for [ ... ]n,m such that a V and 
{3v can be evaluated to the following overall order: 

a V= [,1.£2]0,0+ [,1.£2]2,0+ [,1.£2] 1,1+ [,1.£2]0,2, (8) 

(3v= [,1.£3] 1,0+ [,1.£3]0,1+ [,1.£3]0,3+ [,1.£3] 1,2+ [,1.£3]2.1 

+ [,1.£3] 3,0 + [,ua ]0,0 + [,ua ]2,0 + [,ua] 1,1 + [,ua ]0,2. 

(9) 

Certain combinations of anharmonicities, e.g., 1jL2]1,0, are 
excluded on the grounds of symmetry. Details for the con
struction of the formulas in Table I can be found in Refs. 
7 and 8. It should be noted that when m>2, account must 
be taken of the mechanical-anharmonic effects in the ener
gies in the denominators in Eqs. (6) and (7) and that the 
vibrational wave functions must be developed to second 
order or higher in k'. 

The final, total, vibrational contribution to a and {3 
may then be defined by 

(lOa) 
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(lOb) 

and the energy of the lowest vibrational state in the pres
ence of the electric field (F) is 

E=JtJ-(/ko+/kzP)F-~ [ao+a(vib)]F2 

-i [tf>+!3(vib) ]F3 _ •••• (11) 

B. Method B 

To make the desired connection between method A 
and the finite-field method it is necessary to put the latter 
on an algebraic basis. This can be done by expressing the 
potential curve of the diatomic molecule in the presence of 
the field (F) as a power series expansion 

(12) 
n m 

There are obvious identities between the coefficients anm in 
Eq. (12) and the derivatives used in method A, e.g., all 
=-(a/klaQ), a12=-~ (aalaQ), a22=-! (a2ala~). 
From our point of view, the field-perturbed curve differs in 
two respects from the unperturbed one (a) the equilibrium 
geometry (position of minimum energy) is displaced, and 
(b) the curvature at the field-perturbed minimum is al
tered. Both these changes will affect the vibrational ener
gies and thereby introduce two types of vibrational polar
izability (hyperpolarizability) which we will label a (disp), 
!3(disp), and a(curv), !3(curv). We will first consider 
a(disp) and a(curV). 

To discover the displacement term a(disp), called 
"nuclear relaxation" by Marti et aI., 12 it is necessary to 
differentiate V( Q,F) with respect to Q and set the result 
equal to zero. Solution of the resulting equation leads to a 
field-dependent equilibrium geometry given by 

Qe(F) = - (2a20) -I [allF + (a12+3a3oaiI/4a~0 
-alla21Ia20)F2+ ... ]. (13) 

Inserting this formula into V(Q,F), we arrive at 

V(Qe,F) =aoo+aOlF+ (a02-ail/4a20)F2+... (14) 

and we identify a ( disp) by 

a(disp) =ail/ 2a20= [/k2] 0,0. (15) 

The change in curvature affects the zero-point vibra
tional energy which, since we ignore third derivatives of 
electric properties, we can take as ~ we(F). Where (i)e(F) 
is the field perturbed harmonic frequency and is related to 
the curvature by the equations 

(i)e(F) = [k(F)] 112, 

keF) = [a2V(Q,F)/a~]Qe(F)' 

Combining Eqs. (12), (17), and (13) we obtain 

keF) = 2a20 + (2a21-3a3oallla20)F 

+ [2a22 - 3a30(a12 +3a30ail/4a~o 

-al1a21Ia20)la20]F2+ ... 

(16) 

(17) 

(18) 

and using Eq. (16) and abstracting the F2 term in 
~weCF), we deduce that 

a(curv) = -w(2a22a20- 3a3oa12)/4a~0+w(a~la~0 

- 36a30alla21a20+ 27a~oail )/32aio' 

Or, in the language of method A, 

a (curv) =azp + [/k2f'o+ [/k2] 1,1 + [/k2]O,2. 

(19) 

(20) 

The same procedure, but with the terms in F3 consis
tently retained, gives 

and 

+ [/k3]2,1+ [/k3] 1,2+ [/k3]O,3. 

Equations (15), (20)-(22), and 

a(vib) =a(disp) +a(curv), 

!3(vib) =!3(disp) +!3(curv) 

(21) 

(22) 

(23) 

(24) 

constitute the algebraic foundation of the finite field 
method. 

C. Comparison of the two methods 

With the results of the two previous subsections, we 
are now in a position to identify the connections between 
the two methods of calculation. The total vibrational con
tribution to the dipole polarizability can be written, Eqs. 
(10a) and (23), as 

a(vib) =azp +au=a(disp) +a(curv). (25) 

However, the two contributions in each case are quite dif
ferent; only if we know the value of [,u2]O,O can we compare 
the contributing parts, that is, 

a(disp) = [/k2]O,O (26) 

and 

a(curv) =azp +au-a(disp). (27) 

For the vibrational contribution to the first hyperpo
larizability, the situation is the same. We can easily com
pare the total contributions through Eqs. (10b) and (24), 

!3(vib) =!3zp +!3u=!3(disp) +!3(curv), (28) 

but only if we know the sum of [,ua]o,o, [,u3]1,0, and [,u3]0,1 
can we go further, and use 

(29) 

and 

!3(curv) =!3zp +W-!3(disp). (30) 

So far in our comparison we have been concentrating 
on the two-step finite-field procedure of Marti et al. 12 
Turning now to Adamowicz and Bartlett'sl1 one-step pro-
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cedure, it is clear that it is only their total a (vib) and 
.B(vib) that can be compared with the (azP +aV

) and (f3zp 
+f3V

) of method A. 
An obvious conclusion to be drawn from the foregoing 

is that, when method A is used, documentation of the 
[ ... ]n.m terms will be useful for a detailed comparison with 
any results from method B. 

A frequently used approximation, known as the "dou
ble harmonic approximation," is to ignore all anharmonic
ities, mechanical and electrical, Le., second derivatives 
(and higher) of the electric properties and k'; this means 
a(vib) ~Lu2]0.0=a(disp) and f3(vib) ~Lua]o,o and the lat
ter cannot be equated to f3(disp). The same approximation 
implies, see Eq. (5), that there is no zero-point-vibrational 
averaging term. 

III. VIBRATIONAL EXCITED STATES 

We can now look at the vibrational polarizabilities and 
hyperpolarizabilities for a vibrationally excited state with 
vibrational quantum v=n(n*O). Within the context of 
method A, the zero-point-vibrational averaging is easily 
found from the well-known expression 

SZP = (n+~) (nJ2cue) [c a2s/a(f) _cu;2k' (as/aQ)] 
(31) 

but the formulas for a V and f3v for n*O are another matter 
altogether. They have not yet been determined via method 
A and to do so would require much tedious algebra. How
ever, for a diatomic molecule and a static field, method B 
can be extended to vibrationally excited states in an abso
lutely straightforward way, since the polarizabilities are 
based on the vibrational energies being (n +~)llli)e(F). 
Very simply we have 

a(vib) =a(disp) + (2n+ 1 )a(curv) (32) 

and 

f3(vib) =f3(disp) + (2n+ 1 )f3(curv). (33) 

The displacement term is, of course, common to all levels. 
With respect to method A, it is both clear and logical that 
all terms in Table I containing the Dirac constant (Il) will 
be mUltiplied by (2n + 1) for a vibrationally excited state. 

IV. VIBRATIONAL STARK EFFECT 

An important application of the theory which we have 
been discussing is with regard to the vibrational Stark ef
fect, that is the effect of an electric field on a molecule's 
infrared spectrum (fundamental vibrational frequencies 
and intensities). For it is here that there is experimental 
evidence with which to compare the theory, see, e.g., Ref. 
15. What we require, theoretically, is the shift (Llli)) in the 
frequency associated with the transition between the vibra
tional ground state and the fundamental state. For a di
atomic molecule, ignoring any anharmonicity in the per-

turbed potential curve (Le., third and higher derivatives 
with respect to Q of the electric properties), this shift will 
be 

acu= _1l- 1 [2,UZP F +a(curv)F2+i f3(curv)F3 +"']. 
(34) 

This equation comes from using the perturbation H' in Eq. 
(1), and Eqs. (32) and (33), and realizing that (a) the 
displacement terms are the same for both the ground and 
fundamental states, and (b) for the dipole moment func
tion ,u(curv) =,uzP, see Eq. (5). In a previous publication4 

one of us used this formula, but ignored all but the "ZP" 
terms in a(curv). Equation (34) may, in principle, be 
compared with the work of Duran and co-workers5 who 
used method B. However, since they gave only values of 
acu for separate values of field strength, this requires fitting 
their data to a polynomial in F. 

The change in intensity of the ground to fundamental 
transition for a diatomic molecule in the presence of an 
electric field is much less straightforward. The reason for 
this is that the intensity is proportional to the square of the 
integral < 1{{ I,uF I tPf) multiplied by cuF, where 1{{ and tPf 
are the field-perturbed ground and fundamental vibrational 
wave functions and ,uF is the dipole moment function in the 
presence of the field. The only way one can follow the spirit 
of method B is to approximate this integral as < 1/10 I,uF 11P1) 
which, in the harmonic oscillator approximation, is (Il/ 
2li)e) 112 (a,uF laQ), and to approximate cuF by cue' The de
rivative (a,uF I aQ) can then be evaluated in terms of F 
with the methodology of Sec. II B. Alternatively, applying 
the strategy of method A, the result reported in Ref. 4 is 
obtained, namely, 

< 1/Io'1,uFI tPf) = (1l12li)e) 1I2{ (a,ulaQ) + [(aa/aQ) 

+ (5!4) li);2 (a,ulaQ) (a2,ula(f)]F 

+ [(af3/aQ) + ... ]F2}. (35) 

Comparison of the two methods shows agreement with the 
terms involving (a,u/aQ) , (aa/aQ), etc., but the factor 
(5/4) in the second part of the term which is linear in F is 
unity in method B; this is the result of ignoring the field
dependence of 1/10 and 1/11 in the initial transition integral. 
However, I (1{{I,uF I tPf) 12li)F of method A and (Ill 
2)(a,uFlaQ)2 of method B do agree, and thus the intensi
ties, up to the term linear in F (when mechanical anhar
monicity in cuF is ignored), also agree and the (5/4) 
difference disappears. That is, in method A we find 

I (1{{ I,uF I tPf) 12li)F = (1l12cueH (a,ulaQ)2li)e 

+ [2 (a,ulaQ) (aa/aQ)cue 

+2 (a,ulaQ) 2 (a2,ula(f)li); ! 

+! k' (a,ulaQ)3cu;3]F + ... } 
(36) 
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and, in method B, the expression for (fz/2)(JjLFIJQ)2 is 
the same except for the absence of the last term. The co
efficient of F2 in Eq. (35), except for (J/3IJQ) , is quite 
different in the two approaches. 

V. CONCLUSIONS 

We have shown how two quite different approaches to 
the calculation of the effects of an electric field on molec
ular vibration can be interpreted and interconnected. The 
interpretation is reievant to both vibrational polarizabilities 
and hyperpolarizabilities and the vibrational Stark effect. 
In doing so we have developed new formulas for certain 
vibrational (hyper)polarizability components (1]£2]0,2 
andl]£3y,m for n + m = 3) which were not given in Refs. 7 
and 8. The relations between the two methods have been 
found to be more complex than originally anticipated, but 
the results found should make comparison between calcu
lations using the two methods more facile. It has also been 
seen that the development of method B is simpler than that 
of method A, but a caveat must be added that method B 
cannot be easily extended to processes involving a dynamic 
electric field nor has its application to polyatomic mole
cules yet been clearly delineated. 
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