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A new practical method to generate a subspace of active coordinates for quantum dynamics
calculations is presented. These reduced coordinates are obtained as the normal modes of an
analytical quadratic representation of the energy difference between excited and ground states
within the complete active space self-consistent field method. At the Franck-Condon point, the
largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce
the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath
modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the
energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes
is illustrated with the photochemistry of benzene, where theoretical simulations are designed to

assist optimal control experiments. © 2008 American Institute of Physics.
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I. INTRODUCTION

The first step in elucidating a photochemical mechanism
computationally is the topographical characterization of the
potential energy surfaces (PESs). This involves locating criti-
cal points on ground and excited PESs as well as any seams
of conical intersections between states.' Mechanisms of ther-
mal reactions are traditionally described with the concept of
a static reaction coordinate along a minimum energy path. In
contrast, nonadiabatic mechanisms involve ultrafast pro-
cesses and depend on changes in the kinetic energy in the
energized system. A time-dependent picture is, thus, essential
and quantum dynamics is preferable for the description of
nonadiabatic effects and coherence preservation during the
time scale of the photochemical event.”

The cost of quantum dynamics simulations grows
quickly with the number of nuclear degrees of freedom
(BN-6 if N is the number of atoms and the molecule is not
linear). Thus, quantum dynamics simulations are often per-
formed within a subspace of active coordinates (see, e.g.,
Refs. 3-7). In this paper, we describe a method which en-
ables the a priori selection of these important coordinates for
a photochemical reaction using an analytic simultaneous rep-
resentation of both ground and excited states correct to sec-
ond order in the energy (i.e., using analytic gradients and
second derivatives of the energy difference®'%). The efficacy
of the method will be illustrated using the channel 3 photo-
chemistry of benzene,'"'* where the energy difference was
analyzed at the Sy minimum.

In any nonadiabatic photochemical reaction, there are
two special coordinates:' x;, along the gradient difference,
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and x,, along the interstate-coupling vector. The S; and §,
surfaces for benzene are schematically plotted in this space
in Fig. 1. If the energy-difference Hessian is evaluated at the
ground state PES minimum and projected onto the space
orthogonal to the plane (x;,x,), one has the information
about the curvature of the energy difference in this subspace.
Diagonalization of this projected Hessian gives a set of vi-
brational modes which, as we shall show, can be classified as
(a) photoactive modes that decrease the energy gap and can
lead to the conical intersection (and which we will use to
yield a reduced set of coordinates in quantum dynamics), (b)
photoinactive modes that increase the energy gap and lead
away from the conical intersection, and (c¢) bath modes
where the two surfaces are parallel (and which can be ne-
glected in a quantum dynamics approach).

For the §; < S, photochemistry of benzene, the so-called
channel 3 process represents the well-known decay route
along which fluorescence is quenched above a vibrational
excess of 3000 cm™! (see, e.g., Refs. 11 and 12, and refer-
ences therein). Our purpose is to understand better the prin-
ciples that control the nonradiative decay by changing the
way the S,/ intersection seam is accessed. For dynamics,
we have used the direct dynamics variational multiconfigu-
ration Gaussian wavepacket (DD-vMCG) method>'® to
simulate radiationless decay. This is a quantum dynamics
algorithm based on the propagation of coupled Gaussian
functions. Each function follows a quantum trajectory along
which the PESs are calculated on the ﬂy17 by a quantum
chemistry program. This method has been used within the
reduced subspace of vibrational modes selected using the
energy-difference Hessian.

The plan of this paper is as follows. The conceptual as-
pects of the theoretical development are discussed in Sec. II.
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benzene
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FIG. 1. (Color online) S, S, photochemical reaction path from benzene to
prefulvene plotted along the gradient-difference coordinate (x;) and the
interstate-coupling-vector coordinate (x,).

The mathematical details are then provided in a subsequent
section (Sec. IIT). The reader should be able to skip such
details and proceed directly to the results (Sec. IV) on a first
reading. Concluding remarks are gathered in Sec. V.

Il. CONCEPTUAL DEVELOPMENT

A photochemical reaction path involves (at least) two
electronic states, as shown in Fig. 2. The molecule is initially
in the ground state around the equilibrium geometry (GSy,
in Fig. 2). After the absorption of light, the system is excited
to the Franck-Condon point (FC in Fig. 2) and starts off
following the steepest descent path (driving force). The en-
ergy gap decreases further until the system reaches a region
of conical intersection’ (Coln in Fig. 2) and decays to form
the products in the ground state (GSp,y in Fig. 2). In this
context, the electronic energy gap is the quantity that dictates
the photoreactivity. For the photoproduct to be formed, the
system must follow a pathway that makes the energy differ-
ence diminish. An efficient pathway will, thus, be character-
ized by a rapid decrease of the energy gap.

In the case of S|« S, benzene photochemistry, the pho-
tochemical event is illustrated in Fig. 1, where the S and S,
surfaces are plotted in the space spanned by the coordinates
along the gradient difference (x;) and interstate-coupling
vector (x,). Such directions are traditionally computed at the
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FIG. 2. (Color online) Schematic picture of a photochemical event. The
energies of the electronic ground state and excited state are plotted against a
photochemical reaction coordinate. The arrows describe the mechanism
leading from the Franck-Condon point (FC) to the ground state product
(GSpyoa) passing through a conical intersection (Coln).
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TABLE I. The 30 normal modes of S, benzene labeled following the Wilson
scheme of frequency numbering.

Frequency®
Mode Symmetry Dominant motion (cm™)
1 a, t CC stretching (breathing) 1042
2 ap, s CH stretching 3390
3 A, B HCC bending 1500
4 by, 8 CCCC out-of-plane ring torsion (chair) 724
5 by, y HCCC out-of-plane wagging 1035
6 e, a CCC bending (rectangular/rhomboidal) 654
7 €, s CH stretching 3360
8 € t CC stretching 1739
9 ey, B HCC bending 1275
10 an v HCCC out-of-plane wagging 874
11 ar, y HCCC out-of-plane wagging 711
12 by, a CCC bending (triangular) 1099
13 b, s CH stretching 3350
14 by, B HCC bending 1339
15 by, t CC stretching+a CCC bending (Kékulé) 1185
16 ey, 6 CCCC out-of-plane ring torsion 431
(boat/twist)
17 2 v HCCC out-of-plane wagging 991
18 e, t CC stretching+a CCC bending 1114
(trapezoidal)
19 ey, B HCC bending 1630
20 e, s CH stretching 3379

“The frequencies were calculated at the S, equilibrium geometry of benzene
at the CASSCF(6,6)/6-31G* level. No scaling was applied for reasons of
consistency with subsequent direct dynamics calculations at the same ab
initio level. The relative error with respect to experimental data does not
exceed 10%.

conical intersection point, where they define the branching
plane.l’2 Although the energy gap is not zero, the same vec-
tors can be defined at the Franck-Condon point. Here, x; and
X, span a “pseudobranching plane,” which may be different
from the branching plane at the conical intersection point. In
the following, we describe x; and x, at both points by com-
paring them to a reference set of vibrational modes computed
at the S, equilibrium geometry of benzene (see Table I,
where the Wilson scheme of frequency numbering18 is used).

For benzene, the interstate-coupling vector remains sub-
stantially unchanged at both the conical intersection and
Franck-Condon points, i.e., mode 15 (Fig. 3). However, the
gradient difference varies considerably. At the conical inter-
section, this vector is a combination of modes 1, 4, and 16x
(Fig. 3), whereas at the Franck-Condon point, it corresponds
to mode 1 only (Fig. 3). We show here that this variation can
be predicted by analyzing the representation of the energy
difference through first and second orders at the Franck-
Condon geometry.

At the Franck-Condon point, the first-order representa-
tion of the energy difference corresponds to the gradient dif-
ference (mode 1 in Fig. 3). The second-order contributions
are computed by diagonalizing the energy-difference Hessian
projected onto the space orthogonal to the pseudobranching
plane. The resulting eigenvectors can be classified according
to the magnitude and sign of the corresponding eigenvalues.
As shown in Fig. 4, three types of modes must be distin-
guished.
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FIG. 3. (Color online) The nine dominant motions for the photochemistry of
benzene (the labels refer to the most similar normal modes of S, benzene
listed in Table I).

Three one-dimensional cuts of two PESs are plotted in
the space orthogonal to the pseudobranching plane in Fig. 4
for a generic case. It should be emphasized that the vectors
defining the pseudobranching plane, as well as those perpen-
dicular to it, are defined at the Franck-Condon point. Thus,
the gradient difference simply is the S; gradient. In Fig. 4,
the minima on both the ground and excited state PESs are at
the same value of the coordinates, since the S, gradient is
zero and the S; gradient is orthogonal to these directions at
the Franck-Condon point.
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FIG. 5. (Color online) Schematic representation of two trajectories starting
from the benzene S, Frank-Condon point (FC). Trajectory (a) oscillates
within the S| minimum valley, whereas trajectory (b) reaches the ground
state product passing through a conical intersection point (Coln).

In Fig. 4, we show that three different types of motions
can be distinguished according to the eigenvalues obtained
from the energy-difference (excited state minus ground state)
Hessian diagonalization. The first class of modes makes the
energy difference decrease, i.e., negative eigenvalues, and
we call them photoactive modes [Fig. 4(a)]. The modes
along which the energy difference increases, i.e., positive
eigenvalues, are called photoinactive modes [Fig. 4(b)]. Fi-
nally, those eigenvectors where the energy difference does
not significantly change, i.e., almost zero eigenvalues, are
called bath modes [Fig. 4(c)]. For photochemistry to take
place, the system must reduce the energy difference to access
the conical intersection. The most important coordinates to
describe a photochemical event are, thus, the gradient differ-
ence, the interstate-coupling vector, and the additional pho-
toactive modes. Quantitative results of this analysis applied
to benzene will be presented and discussed in Sec. IV.

To explore the photochemical behavior of benzene, dy-
namics simulations were performed with modes 1 and 15,
i.e., pseudobranching-space modes, and seven photochemical
modes, viz., modes 4, 6 (degenerate pair), 16 (degenerate
pair), and 18 (degenerate pair), depicted in Fig. 3. The time
evolution of the system is represented in Fig. 5 in a sche-
matic way. Two coordinates are used: the gradient difference

FIG. 4. (Color online) Three classes of normal modes:
photoactive mode (a), photoinactive mode (b), and bath
mode (c).
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at the Franck-Condon point (Q;) and a generic photoactive
mode (Q,,). At the Franck-Condon point (D), benzene), the
gradient difference is identical to the S| gradient. The driving
force (opposite of the gradient) leads to the S; minimum
(stretched Dy, benzene). The first motion to be activated is,
thus, a breathing motion (totally symmetric stretching) that
can keep oscillating until symmetry is broken (or until the
system eventually fluoresces). Trajectory (a) illustrates such
a case with no initial momentum. If some initial momentum
is added along the photoactive mode Q,,, as illustrated by
trajectory (b), the system can escape this well and reach a
point on the seam of conical intersection between the two
surfaces. A nonradiative decay will happen if the system
crosses the seam and keeps evolving on S,. As further dis-
cussed in Sec. IV, stimulating the photochemical modes iden-
tified with our approach proved to be a very efficient way for
the molecule to reach geometries where the energy gap is
small enough to induce strong nonadiabatic transitions from
S to Sp.

In summary, efficient photochemical reaction paths can
be predicted by analyzing the local properties of the energy
difference between S| and S, at the Franck-Condon point.
This approach gives the modes that must be stimulated in
order to enhance nonradiative decay. In addition, it provides
an objective criterion to select active coordinates and run
quantum dynamics in reduced dimensionality, as we show
for benzene in Sec. IV.

H(Q,) = (S0:QolH(Q0)|S0: Qo) (S0 QolH(Q0)[S1:Qy)
0) = . .
(S1:QolH(Q0)S0: Qo) (S1:QolH(Q0)|S1:Qq)

_ {vo(Qa 0 ]

J. Chem. Phys. 128, 124307 (2008)

lll. THEORETICAL DEVELOPMENT

The analysis of the photochemical activity of nuclear
coordinates is now presented in more detail. An integral part
of our approachgflo’19 to the general quadratic representation
of conical intersections®**® is an analytic representation of
the energy difference between the states. The approach in
this paper is based on a second-order analytic representation
of the local two-state potential energy matrix to calculate a
quadratic expansion of the energy difference around the
ground state equilibrium geometry (i.e., Franck-Condon
point in the excited state), where the energy difference is not
zero. We now recall the features and concepts of this analy-
sis. They are further applied to the case of benzene where
Dy, symmetry is explicitly taken into account.

The theoretical concepts used in the second-order analy-
sis of the energy difference are illustrated below in the ideal
case of a two-state problem. Our purpose is to clarify the
meaning of the terms that appear in the second-order expan-
sion of the energy difference as a function of the nuclear
coordinates. Practical details about how the corresponding
quantum chemistry calculations are carried out can be found
elsewhere (see Refs. 8—10 and references therein). The pair
of adiabatic states |Sy;Q) and |S;;Q) (parametrized by the
nuclear geometry Q) are taken as known at a reference ge-
ometry Q=Q,, chosen as the S, equilibrium geometry. In the
representation formed by the pair of adiabatic states, the ma-

trix of the clamped-nucleus Hamiltonian operator I:I(Q) is
diagonal at Q=Q,,

0 V(Q) )

However, it is no longer diagonal when using the same states |S;;Q,) and |S;:;Q,) at a displaced geometry Q=Q,+ 5Q, where

H(Q)=H(Qy)+ 5H,

<So§Qo|I:I(Qo) + 51:1|SO;Q0> <So§Qo|ﬁ(Qo) + 5ﬁ|Sl;Q0>
(S ;Q0|I:1(Q0) + 5I:I|SO;Q0> (S ;Q0|H(Q0) + 5H|Sl ;Qo)

H(Qy+ 8Q) =

The mass-weighted geometrical displacement 6Q generates a
finite variation of the off-diagonal elements OHy=06H,
(real-valued electronic wavefunctions) because the adiabatic
states frozen at Q=Q, define trivial diabatic states when Q
varies in the Hamiltonian operator. Such states are often re-
ferred to as “crude adiabatic.”*

In the two-state approximation assumed here, the two
electronic wavefunctions, thus, form a complete basis set.
Any discrepancy can formally be attributed to neglecting
couplings with more energetic states. In this representation,
the positive difference between the adiabatic potential ener-
gies varies with 8Q according to

) [VO(Q()) 0

6Hy 51‘101}
0 vl(Q())}*[ -

AV(Qy + 8Q) = V[AV(Qy) + 8(H |, — Hoo) I + 45H,,2,
(3)

where AV(Q)=V,(Q)-V,(Q). We now introduce two func-
tions of the coordinates Q

fl(Q) = Hll(Q) - HOO(Q)
=(51;QolH(Q)|S13 Qo) — (So; Qol H(Q)[So; Qo).

£2(Q) = Hy(Q) = (S0: Qol H(Q)[S1:Qp)- (4)

Note that a conical intersection would correspond to f;(Qg)
=0 and f,(Q,)=0. Here, f,(Qy) >0 and f,(Q,)=0. As a con-
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sequence, the second-order variation of the adiabatic energy
difference satisfies

(5f,)*

AV =AV(Qy+ &Q) - AV(Q,) = df1 +2 .
AV,

(5)

where AVy=AV(Q,). The Hamiltonian operator H(Q) varies
with Q in Eq. (4) but the states [Sy; Q) and |S;;Q,) do not.
Functions f,(Q) and f,(Q) are, thus, diabatic quantities play-
ing the role of parameters for the adiabatic energy difference.
They depend implicitly on the reference geometry Q,, where
the diabatic and adiabatic representations coincide. They can
be used to define local curvilinear coordinates adapted to AV.
In a quadratic approximation in terms of rectilinear coordi-
nates, second-order contributions from Jf; and squared first-
order contributions from Jf, will define parabolic coordi-
nates.

Since the energy gap is finite, the second term in Eq. (5)
characterizes a second-order Jahn-Teller effect, also called
pseudo-Jahn-Teller effect (see, e.g., Refs. 30 and 31). Note
that a /4 rotation of the two diabatic states would swap the
roles of f; and f,, changing a second-order Jahn-Teller effect
into an avoided crossing between two new diabatic states of
the same energy (f,(Qg)=0) and with a nonzero interstate
coupling (f1(Qg) >0). Such rotated states coincide with the
adiabatic states at infinity rather than at the origin (Nikitin
transformation, as discussed in Ref. 32). In benzene, they are
related to the pair of resonant valence-bond Kékulé struc-
tures.

First-order terms are now discussed. Since |Sy;Q,) and
IS;:Qy) are assumed to form a complete and “exact” basis
set, the Hellman-Feynman theorem is valid at Q=Q,. As a
consequence, the local gradient of AV (adiabatic representa-
tion) is equal to that of f; (two-state crude-adiabatic, i.e.,
diabatic, representation),

[0,AV]y=(S; §Q0|[5jﬁ1]o|51 ;Qo) - <50§Q0|[¢9jﬁ]0|50§Q0>
= [C?;fl]o’ (6)

where [d;], stands for the local partial derivative d/ &Qj|Q=Q0.
Note that in the actual implementation, the corrected state-
averaged gradients are used. In addition, the derivative-
coupling vector in the adiabatic representation is parallel to
the interstate-coupling vector in the diabatic representation
(gradient of the interstate coupling f5),

[(S0: QId1S1: Q)]0 = <S0;Q0£§£ZL& @ [i”:fo]o. (7)

We now introduce a pair of mass-weighted rectilinear coor-
dinates Qxl and sz that correspond to the generalization of
the concept of a first-order branching space, i.e., branching
plane,33736 to a nondegenerate case. The pseudobranching-
plane directions coincide in both adiabatic and diabatic pic-

tures, as shown in Egs. (6) and (7). We call Qxl the rectilinear

J. Chem. Phys. 128, 124307 (2008)

coordinate along the gradient difference and sz the rectilin-
ear coordinate along the interstate-coupling vector, so that

&1 =0, (Hyy = Hy) 1080, + *++,
- (8)
0f,=[0,,H1100Q,,+ -+

These coordinates, as well as second-order terms, are dis-
cussed below for benzene where Dy, symmetry is explicitly
taken into account.

In the following, we compare the coordinates to the 30
normal modes of benzene calculated at the S, equilibrium
geometry (Dg;,) Q=Q,. They are listed in Table I. There are
20 distinct frequencies corresponding to the nondegenerate
modes plus ten pairs of twofold degenerate modes. A dis-
placement parallel to the totally symmetric S;—S, gradient
difference at Q=Q, (coordinate Qxl) involves only the a;,
modes (mainly) 1 and 2 (see gradient difference similar to
mode 1 in Fig. 3). Sy is A;, and S, is By, so a displacement
along the interstate-coupling vector (coordinate Qx2) com-
bines b,, modes 14 and (mainly) 15 (see interstate-coupling
vector of approximately mode 15 in Fig. 3).

The geometrical basis set is now completed by introduc-
ing a set of 28 rectilinear coordinates Qj (j=1,28) orthogo-
nal to QX1 and sz' These generalize the concept of first-order
intersection space.33’36 Q, is specifically chosen as the a, <
mode such that Q; and Qxl span the same plane as modes 1
and 2. Similarly, Q, is chosen as the b,, mode such that 0,
and sz span the same plane as modes 14 and 15. For j
=3-28, the coordinates Q]- are not specified yet but trans-
form as the specific irreducible representations of the remain-
ing normal modes.

The quadratic approximation, in other words the local
harmonic approximation, of AV reads, thus,

_ 1 _
AV(Q) = AV + 3, f110Qy, + E[fxlfl]oQ)zc,

28

- - 1 _ —
+[d,,01/1100,, Q1 + > 2 [9,01100,01
1

Jik=
P 1 _
+[0,,02f1100.,02 + E[‘ﬁzfl]oQiz

+ 2 [3x2f2](2) —

AVO Xy? (9)

where [d;], stands now for the local partial derivative

al 3Qj|6=60~ This can be summarized as follows, together
with Eq. (5):
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_ 1 _
Fi(Q) = AVo+AkQ,, +5 %0y, OF
28

_ 1 _ _
+P58y,10,,01+5 2 PA70,0
k=1

_ 1 _
+ BS/ISA7x22Qx2Q2 + EBSA 7x2x2Q)2c27

fZ(Q) =~ KSOSlez’ (10)
where (see also Refs. 8—10)
AK: [axlfl]o,

15051 = [&xlfz]o’

BSA7x1x1 = [&ilﬁ]o’

BA =12 il "
BS/ISA%Cll = [axlalfl]o’

BS/IS A Vo2 = [0y, 02110,

ISijkz [d;0:f1]0  (j.k €1S).

Superscripts BS and IS refer to branching plane (x; and x,)
and intersection space, respectively. The symbol A was pre-
ferred here for quantities related to the energy difference AV,
while & refers to variations induced by a small geometrical
displacement 8Q. Note that the quadratic expansions of f
and AV differ only by a supplementary term due to f,, which
alters the curvature along QX2 in the Hessian of AV. As men-
tioned above, this term is responsible for the second-order
Jahn-Teller effect in benzene along Qx2, which involves
mostly the Kékulé mode 15. It is always positive and leads to
the exaltation of the S; Kékulé frequency.”’3 !

In Egs. (9)—(11), the cross terms are nonzero only be-
tween modes of the same irreducible representation (I’
®I'DAj,). The (3N-8) X (3N-8) matrix (®Ay;) is the
mass-weighted Hessian of f| projected out of the branching
plane in the spirit of the reaction-path Hamiltonian method.”’
We now define explicitly the intersection-space coordinates

Qj (j=1 to 28) as mass-weighted displacements along the
eigenvectors of the projected Hessian> (ISijk) with eigen-
values IS)\j. The eigenvectors are the normal modes and the
eigenvalues are the normal curvatures (force constants) of
the energy difference AV within the intersection space (3N
—8 dimensions). Note that coordinates Q; and Q,, which had
already been defined above, correspond to eigenvectors of
(ISijk) for symmetry reasons. However, they involve cou-
plings with the branching-space coordinates in the full (non-
projected) Hessian of f|. Neglecting these couplings leads to
a separate form for the adiabatic energy difference describing

a paraboloid with a slope along Qxl,

J. Chem. Phys. 128, 124307 (2008)
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FIG. 6. (Color online) Eigenvalues of the energy-difference Hessian com-
puted at the Franck-Condon point of benzene in the 28-dimensional space
orthogonal to the pseudobranching plane. The labels refer to the most simi-
lar normal modes of S, benzene (see Table I). The dominant local motions
are indicated in boxes.

28
— 1 _ 1 _
AV(Q) ~ AVo+ AkQ, + ™Ay, , OF + 521 \,07
1| Bs 4(505)2 |
+—| A +— . 12
> Yoot T Ay, = (12)

The magnitude and sign of the eigenvalues, '\ j» are used to
classify the 28 eigenvectors of (ISijk) in terms of photo-
chemical activity (see discussion in Sec. 2). Large negative
eigenvalues correspond to photoactive modes. Evolution of
the system along these modes from the Franck-Condon point
is expected to lead more easily to the seam of conical inter-
section [see Fig. 4(a)]. In a quantum dynamics picture, the
wavepacket starting around the Franck-Condon region will
tend to spread along such directions. In contrast, large posi-
tive eigenvalues correspond to photoinactive modes. The
wavepacket will be energized along such directions and will
tend to contract. [see Fig. 4(b)]. Bath modes, with a near-
zero eigenvalue [see Fig. 4(c)], will not play any significant
role in the dynamics. The wavepacket will stay similar to the
ground vibrational state along such directions, which can be
neglected in a first approach.

IV. RESULTS AND DISCUSSION

The numerical result of this analysis is illustrated in Fig.
6. Calculations were performed with a complete active space
self-consistent field (CASSCF) of six electrons spread over
six 7 molecular orbitals at the 6-31G* level. The new coor-
dinates Q ;» obtained from the diagonalization of the energy-
difference Hessian (excited state minus ground state), were
projected onto the original coordinates Qj, i.e., the normal
modes of S, benzene. Both sets are actually quite similar.
This confirms that Duschinsky rotations are not large for
them.**! On Fig. 6, the Qj coordinates are labeled with the
corresponding main components in terms of Q; coordinates
(listed in Table I). Note that Qxl’ 0, Qx2, and Q, correspond
mostly to Q;, O, O;5, and Q4 respectively. A common
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TABLE II. Columns 2-5: S, frequencies of the 28 nontotally symmetric modes of benzene (specified in column
1 with the Wilson scheme of frequency numbering), for four Dy, geometries defined by CH=1.075 A and
values of CC given in the second line. Columns 6-9: difference between S, and S, frequencies under the same

conditions.
¥(S,) (em™)* w(S1)=1(Sp) (cm™)*

cc (A) 1.350 1.396 1.434 1.500 1.350 1.396 1.434 1.500
vs lay, 1529 1500 1474 1425 6 6 5 5
vy 1by, 690 724 737 738 -400 -296 -249 -195
vs 2by, 1078 1035 995 913 -308 -289 =276 -259
ve 1-2e;, 659 654 643 612 -88 =72 -60 —41
v, 1-8ey, 3351 3360 3367 3376 -4 -5 -5 -5
v3 5-6¢,, 1922 1739 1616 1468 61 60 56 42
vy 3—de,, 1331 1275 1218 1086 16 22 32 55
vig 1-2ey, 901 874 849 799 -263 -249 =241 -233
vy, lay, 726 711 698 671 -147 -149 -151 -156
vy, 1by, 1109 1099 1086 1054 -17 -18 -18 -18
Vi3 2by, 3339 3350 3358 3369 -3 -3 -4 -5
Viy 2bs, 1564 1339 1284 1239 658 675 577 391
Vs 1by, 1298 1185 962 447 28 110 309 785
Vg 1 =26, 339 431 475 516 -595 -255 -178 -126
V7 3—4e,, 1028 991 957 886 =306 -288 =276 -260
vig 1-2ey, 1195 1114 1043 917 -47 -64 =77 -96
Vg 3—4ey, 1716 1630 1573 1493 -38 =27 =20 =11
vy S—6ey, 3373 3379 3383 3389 -6 -6 -6 -6

“The frequencies were calculated at the CASSCF(6,6)/6-31G* level and no scaling was applied. “Negative
frequencies” are actually imaginary and correspond to negative curvatures (force constants).

feature of the Q ; coordinates is that they tend to decouple the
H motions (s CH stretching, 8 HCC bending, and y CCCH
wagging) from the Cg-ring motions.

As a result, twelve modes are obviously of no interest
(bath modes): the six s CH stretching modes and the six 8
HCC bending modes. As a first approximation, they involve
independent motion of the six H nuclei with respect to the Cqg
ring. In contrast, the photoactive modes (large negative value
of IS)\j) describe deformations of the Cg ring: three out-of-
plane 6 CCCC ring-puckering modes (torsions), six out-of-
plane y CCCH wagging modes, and nine in-plane modes
mixing ¢ CC stretching and @ CCC bending. There is only
one degenerate pair of photoinactive modes, similar to the
pair 8 (e, t CC stretching).

The predictions from the quadratic analysis of the energy
difference were confirmed by two different tests. First, the
evolution of the nontotally symmetric-mode frequencies on
both states was analyzed along a totally symmetric deforma-
tion (same level of calculation as in the energy-difference
analysis). Second, quantum dynamics simulations using the
DD-vMCG approachmf16 were run within a reduced sub-
space of active coordinates. This method uses an expansion
of the wavepacket on a time-dependent basis set of Gaussian
functions. A local harmonic approximation of the PESs is
calculated on the fly along the trajectory followed by the
center of each Gaussian function. A diabatic picture is used
to represent the pair of coupled electronic states. The dynam-
ics code is implemented in a development version of the
Heidelberg MCTDH package42 and is currently interfaced with
a development version of the GAUSSIAN program.43 The same
theoretical level as in the static analysis was used.

We compare here the normal frequencies on S, and S;.

At a given geometry, a negative/positive frequency differ-
ence indicates that motion along the mode decreases/
increases the energy gap (“negative frequencies” are to be
understood as imaginary frequencies corresponding to nega-
tive curvatures). This should, thus, correspond to a negative/
positive value of '\, i.e., a photoactive/photoinactive mode
when the Duschinsky rotation is small. To analyze the cou-

pling between the gradient-difference mode (coordinate Qxl)
and the nontotally symmetric modes, the S, and S; frequen-
cies were calculated at four D¢, geometries around the S
and S, equilibrium geometries: CC=1.350, 1.396 (S, mini-
mum), 1.434 (S, minimum) or 1.500, and CH=1.075 A (S,
minimum). The results are listed in Table II. A single value
was chosen for CH in order to compare frequency calcula-
tions in both states along the same cut line, namely, at the S,
minimum, which differs only slightly from that of the S,
minimum (1.073 A). Such frequency calculations away from
the stationary point are meaningful only for the 28 nontotally
symmetric modes. Modes presenting a strong dependence of
their frequencies along the a;, deformation are expected to
play a more significant role as they couple with the gradient
difference to reduce the energy difference. This is a semi-
quantitative way of getting third-order effects.

Three out-of-plane modes dominate: the b,, mode 4 and
the e,, pair 16 (6§ CCCC motions). The six other modes of
this type also show a frequency lowering but it is less depen-
dent on the value of CC. Some of the remaining in-plane
skeletal deformations of the Cgy ring also show a frequency
weakening. The four most significant are the e,, pair 6 and
the e, pair 18. In addition, this confirmed that the e,, pair 8
is a photoinactive mode, giving here the largest positive fre-

Downloaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124307-8 Lasorne et al. J. Chem. Phys. 128, 124307 (2008)

TABLE III. Frequencies of the two b,, modes of benzene in the S, and S, electronic states and the differences
w(S,)—1(S,) for six Dy, geometries defined by CH=1.075 A and values of CC given in the first column.

o (So) (em™)* ¥(Sy) (em™)* ¥(S1)-1(Sy) (em™)
CC (A)

Diabatic lebel Vig Vis Vi Vis Vi Vis
1.350 1298(7/]5 1564(v], 1326(v(5) 2222(vy,) 28 658
1.396 1339(7/}, 1185(v/5 1295(v(5) 2014(vy,) —44 829
1.434 1284(v},) 962(v/5) 1271(v}s) 1861(vy,) -13 900
1.500 1239(v/}, 447 (v} 1232(v(5) 1631(vy,) -8 1184
1.550 1212(v}, —-460(v/s 1203(v(5) 1479(vy,) -10 1939
1.600 1188(v), =722(1/5 1171(v(s) 1348(vy,) -17 2069

“The frequencies were calculated at the CASSCF(6,6)/6-31G* level and no scaling was applied. “Negative

frequencies” are actually imaginary and correspond to negative curvatures (force constants).

quency difference. This frequency analysis is consistent with
the quadratic analysis of the energy difference. Among the
14 photoactive modes previously identified, seven modes
(see Fig. 3) are shown here to be of greatest importance: 4, 6
(pair), 16 (pair), and 18 (pair). They were, thus, included in
quantum dynamics calculations.

The only modes for which a large Duschinsky rotation
has been shown are the b,, modes 14 and 15 As a
consequence, they are not easy to treat separately. They com-
pose the interstate-coupling vector at the Franck-Condon
point. Note that they still dominate at the minimum of the
conical intersection seam. It makes things clearer to correlate
frequencies and geometries in a vibrational diabatic-like way.
This is illustrated in Table III, where the frequencies are
correlated with respect to the nature of the vibrational modes
rather than the order of their values. Data for CC=1.550 and
1.600 A have been added here. In this picture, the frequency
that varies most with CC (third, fifth, and seventh columns in
Table III) is associated with frequency v}s in Sy but v, in S,
when CC=1.396 A, and with v/, in S, and v{, in S, when
CC=<1.350 A. This exalted frequency corresponds to the
Kékulé mode (¢ CC stretching+a CCC bending), while the
other (second, fourth, and sixth columns) describes a 8 HCC
bending. The Kékulé mode correlates with {5 (lower fre-
quency of the two b,, modes in the S, state) at the reference
geometry and, thus, the nomenclature mode 15 (v;s) is re-
tained for this mode even though it is labeled as v|, in the S,
state. This emphasizes the corresponding second-order Jahn-
Teller effect™™’ by showing how the subsequent exaltation
effect of the S; Kékulé frequency is enhanced when the cycle
expands. For rather stretched geometries, the twin Kékulé
structures appear even more stable (v;5<0) leading, thus, to
a valley-ridge inflection point. However, the second-order
Jahn-Teller effect is known to be artificially overestimated at
the CASSCF level.**

Finally, the relevance of the subset of active coordinates
was tested with quantum dynamics simulations. To this end,
DD-vMCG quantum dynamics simulations were used with a
nine-dimensional (9D) model including the nine most impor-
tant modes displayed on Fig. 3, namely, 1, 4, 6 (pair), 15, 16
(pair), and 18 (pair).

Simulations were started with a Franck-Condon Gauss-
ian wavepacket placed on S, at =0 and approximated by a
harmonic product of one-dimensional Gaussian functions
with parameters based on a normal frequency analysis at Q.

We focused on enhancing nonadiabatic transitions by stimu-
lating photoactive modes. In order to control specifically the
amount of excess energy deposited in the system, an addi-
tional mean momentum p=#k was given to the initial wave-
packet, where the k vector has components with higher or
lower magnitude along the normal coordinates Q. This cor-
responds to a shifted momentum distribution and is achieved
by multiplying the real-valued multidimensional Gaussian
function by the spatial phase factor exp(ik- Q).

Here, the effect of our choice of photoactive coordinates
is illustrated in Fig. 7 by one case made up of two Gaussian
functions in the wavepacket, one on each electronic state.
The initial momentum is shown by an arrow at the Franck-
Condon point. Components along modes 4, 6x, 16x, and 18x
were chosen to target the S;/S, conical intersection mini-
mum projected onto the 9D subspace (initial momentum:
k,=6.7, kg, =—4.4, kjs,=15.1, and k3,=2.2; components of k
not explicitly mentioned are initially set to zero). Note that y
components do not need to be considered for symmetry rea-
sons. The evolution of the wavepacket is represented by the
trajectories followed by the center of the two Gaussian func-
tions over 27 fs. These are shown in three different planes of
projection. Panel (a) of Fig. 7 corresponds to the geometrical
plane spanned by coordinates Q, and Q. Panel (b) corre-
sponds to the (Q;,0¢,) plane and panel (c) to the (Q,,04)
plane. The three panels together give a three-dimensional
picture (Q;,Q4,Q¢,) of the trajectories. The projections of
the main stationary points are also plotted to exhibit where
the trajectories go. The wavepacket starts off from the
Franck-Condon point on §; and splits into two components
when it crosses the seam of intersection (dashed line in Fig.
7). The first component (red line in Fig. 7, see online ver-
sion) represents the diabatic crossing from S, to S, (nonra-
diative decay). The second component (blue line in Fig. 7,
see online version) represents the part of the wavepacket that
ends up trapped in S;. The trajectory of the latter is repre-
sented after 6.5 fs, once the corresponding Gaussian function
is on Sy with a population larger than 1%.

In this example, mode 1 (gradient difference) is not ini-
tially activated (no initial momentum component). However,
it gets stimulated because the system tends to follow the
driving force (opposite of the gradient difference) from the
Franck-Condon point toward the §; minimum. This is shown
by the trajectory going initially to the left (Q,<<0, i.e., out-
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2 2 g9, 6 10

FIG. 7. (Color online) Quantum trajectory of photoexcited benzene decay-
ing from S, to S, through a seam of conical intersection (dashed line) rep-
resented in three planes of projection: (Q4,0Q;6,) subspace (a), (Q;,0 e\
subspace (b), and (Q,,Q,) subspace (c). The projections of the S; minimum
(min*), the S, minimum or Franck-Condon starting point (FC), the S; tran-
sition state (TS*), and the S, prefulvene are represented with open circles.

ward breathing) on panels (b) and (c) of Fig. 7. However, it
is not trapped in an oscillatory motion in the well of the S
minimum [see trajectory (a) in Fig. 5] because the photoac-
tive modes (for example, 4 and 16x, see Fig. 7) were initially
stimulated [see trajectory (b) in Fig. 5]. The trajectory starts
tangent to the initial momentum (thick arrow in Fig. 7) and
evolves toward positive values of Q, and Q4. This con-
certed chair and boat deformation leads to half-chair geom-
etries, similar to the prefulvenoid geometry of the conical
intersection minimum. This can be seen on panel (a) of Fig.
7. A nonadiabatic transition is observed early on (~6-7 fs).
The splitting of the wavepacket into two components char-
acterizes the crossing of the conical intersection seam. This
nonradiative decay occurs at a similar geometry to the coni-
cal intersection minimum but “dilated”: about the same val-
ues of Q4 and Q. [see panel (a) of Fig. 7] and a negative
value of Q, [see panels (b) and (c) of Fig. 7]. The component
of the wavepacket transferred to S, tends to go toward the
prefulvene intermediate. The other is trapped in S;. The total
population transferred to S, is 12% and stays constant after

J. Chem. Phys. 128, 124307 (2008)

10 fs. The same case was also tried with nine Gaussian func-
tions on each state. The mean trajectory is similar but the
population transfer is amplified. This example shows that
stimulating photoactive modes is necessary and sufficient to
reach efficiently the seam of conical intersection and, thus,
induce nonradiative decay.

V. CONCLUSIONS

The optimal control of photochemical reactions is based
on shaped laser pulses designed to generate photoproducts
selectively. They are based on closed-loop techniques to
achieve maximum efficiency through a “black-box”
mechanism.**~° Optimal control experiments are not easy to
implement. One often needs to construct special experimen-
tal apparatus, and it is often not clear how to achieve the
target in practice because there is no direct mapping between
the control parameters and the molecular properties. We
have, thus, reached a situation where it is desirable to per-
form theoretical computations before experiments. Simula-
tions based on optimal control theorySI’52 monitor the wave-
packet evolution induced by a time-dependent Hamiltonian.
However, the effect of the resultant, often complicated pulse
shapes is not easy to decipher. In contrast, we are interested
here in an “open-loop” approach, where theoretical rational-
ization can precondition the laser pulse. This strategy is best
illustrated by the first optimal control experiments ever per-
formed on a cis-trans isomerization on cyanine dyes.53 Re-
cently, we published results on a model cyanine dye54 that
suggested that the behavior of an extended conical intersec-
tion seam could be used to control the product ratio by
stimulating the skeletal deformations orthogonal to the seam.
The experimentalists analyzed the frequency composition of
the laser pulse ultimately used and showed conclusively that
it was exactly such high-frequency modes that were active.

In the context of theory-assisted optimal control, it is
thus essential to establish systematic methods to select such
active coordinates. In this work, we proposed a new ap-
proach based on the local properties of the energy difference
rather than the sole energy of the excited state. A second-
order expansion of the energy difference as a function of
nuclear coordinates around the Franck-Condon geometry is
used to distinguish vibrational modes in terms of their im-
portance for the photoreactivity. This analysis was applied to
investigate the channel 3 process of benzene.

The nine most significant modes were automatically
identified at the S; Franck-Condon point of benzene. Two of
them are the gradient of the energy difference, i.e., gradient
difference, which is a totally symmetric breathing mode, and
the gradient of the S-S, coupling, i.e., interstate-coupling
vector, which is a Kékulé mode. These two directions define
the pseudobranching plane. The remaining modes, called
photoactive modes, lower the energy difference at the second
order. They consist mainly in out-of-plane Cg-ring torsions
and in-plane skeletal deformations that lead to prefulvenoid
geometries.

Quantum dynamics simulations were performed within
the subspace defined by this set of active coordinates. If no
mode is excited in the initial Franck-Condon wavepacket,

Downloaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124307-10 Lasorne et al.

benzene is trapped in an ineffective breathing oscillation
around the S; minimum. In contrast, stimulating photoactive
modes proved to be an efficient way of driving the system to
the seam of conical intersection, thus inducing nonradiative
decay from S; to §,. Our analysis can be, therefore, used in
the context of optimal control of photochemical reactivity for
predicting which vibrations have to be stimulated by a laser
pulse optimized to enhance radiationless decay.
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