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Our new simple method for calculating accurate Franck–Condon factors including nondiagonalsi.e.,

mode-moded anharmonic coupling is used to simulate the C2H4
+X̃ 2B3u←C2H4X̃

1Ag band in the
photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very
efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated
from the other modes and treated exactly. All other modes are treated through the second-order
perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement
with experiment, although the separability assumption for torsion causes the C2D4 results to be not
as good as those for C2H4. A variational formulation to overcome this circumstance, and deal with
large anharmonicities in general, is suggested. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1896362g

I. INTRODUCTION

The role ofab initio calculations in the assignment of
experimental high-resolution vibronic spectra has been draw-
ing increased attention. Within the Born–Oppenheimer ap-
proximation, the leading term of the expansion that governs
the spectral intensity is given by the square of the vibrational
overlap integralsukc vg

g uc ve

e lu2d, also known as the Franck–
Condon factor1,2 sFCFd, between the initialsc vg

g dand final
statessc ve

e d. When the initial vibrational state is totally sym-
metric, only a totally symmetric vibrational final statesrefer-
ring to the largest common point subgroupd will have a non-
zero FCF. There are, of course, smaller contributions to the
intensity due to higher-order terms in the expansion, gov-
erned by Herzberg–Teller factors,3 but we will focus on
FCFs in this paper.

Since the equilibrium geometry and potential-energy sur-
facesPESd of the initial and final electronic states are differ-
ent the 3N-6 sor 3N-5 for linear moleculesd dimensional FCF
overlap integrals cannot be factored into a simple product of
one-dimensional normal-mode integrals. A wide variety of
methods, based on the harmonic approximation for the PES
of both the initial and final states, has been presented to solve
this problem. One such method is the generating function
approach of Sharp and Rosenstock,4 which has been further
developed by Chen,5 and later improved by Ervinet al.6 A
simpler form of the Sharp and Rosenstock’s general formula

was recently derived by Kikuchiet al.7 The most popular
alternative to the generating function approach utilizes the
recursion relations of Doctorovet al.8 Segev and
co-workers9,10 have developed another interesting alternative
from a completely different point of view that relies on the
consideration of the transitions in phase space.

Including vibrational anharmonicity always implies a
strong increase in computational cost and, for most methods,
the formulation becomes much more complex as well. That
explains why the papers mentioned above did not consider
vibrational anharmonicity. On the contrary, there have been
several attempts to take anharmonicity into account, at least
partially. The procedures of Iachello and co-workers11,12 are
based on a novel Lie algebraic scheme that employs Morse
oscillators. Moket al.13 use anharmonic vibrational wave
functions expressed as a linear combination of harmonic-
oscillator functions together with the complete Watson
Hamiltonian. This method, seemingly limited in practice to
small molecules, has recently been employed by Mok and
co-workers to calculate FCFs for absorption spectra of sev-
eral triatomic molecules.14–17 Very recently Hazraet al.18

presented the so-called vertical Franck–Condon approach, in
which the final state PES is expanded around the equilibrium
geometry of the initial state. They assume separability of the
normal modes and, if the curvature in the final state is nega-
tive, they incorporate the full one-dimensionals1Dd poten-
tial. In applying this method to simulate the ultraviolet spec-
trum of ethylene, for example, a full 1D potential was used
for torsion along with a pure harmonic potential for the re-
maining 3N-7 modes. In this paper we also use a full 1D
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potential for the torsion mode of ethylene, but separability is
not assumed for the remaining 3N-7 modes. To our knowl-
edge there are no other calculations for a molecule with more
than three atoms that have included nondiagonal anharmonic
coupling.

Recently we presented a simple new procedure to
evaluate FCFs which, among other things, can account for
nondiagonal anharmonic coupling.19 In the present study we

apply our method to the C2H4
+X̃ 2B3u←C2H4X̃

1Ag band in
the photoelectron spectrum including Duschinsky20 rotations
and anharmonic effects in calculating the Franck–Condon
factors. Both the hydrogenic and the fully deuterated species
are examined. In this application an important consideration
is the geometry of the radical cation. Whereas the experi-
mental ground state of neutral ethylene is planar,21 the
ground state of the radical cation has a twistedD2 equilib-
rium geometry, as deduced from the vacuum ultraviolet spec-
trum observed by Merer and Schoonveld.22 Subsequent pho-
toelectron spectroscopy, which permits direct investigation
of the cation, showed an extended progression in the tor-
sional mode, thereby providing further evidence for the
twisted geometry.23,24 Pollardet al.23 analyzed this progres-
sion to obtain an equilibrium dihedral angle of 27° ±2° and a
torsion barrier of 270±150 cm−1. Recently, Willitschet al.25

recorded pulsed-field-ionization zero-kinetic-energysPFI-
ZEKEd photoelectron spectra of C2H4

+ and C2D4
+ with a

resolution that is two to three orders of magnitude greater
than classical photoelectron spectra. These new accurate data
give a torsional barrier of 357±26s292±24d cm−1 along
with a dihedral angle of 29.2° ±0.5°s27.8° ±0.5°d for
C2H4

+ sC2D4
+d. The ground and first excited torsional states

were found to lie below the barrier at the planar geometry.
They constitute a tunneling pair with a splitting of
83.7 s37.1d cm−1 for C2H4

+ sC2D4
+d. Given the low torsional

barrier the molecular symmetry of the ethylene cation may
be regarded as effectivelyD2h rather thanD2.

25 This effective
symmetry is consistent with the fact that even peaks of the
progression in the torsional mode are far more intense than
the odd peaks.

The purpose of this study is to simulate the

C2H4
+X̃ 2B3u←C2H4X̃

1Ag spectrum and, by the same token,
demonstrate the feasibility of our recently published
procedure19 for evaluating FCFs of a polyatomic molecule
with anharmonicity and Duschinsky rotations fully taken into
account. In Sec. II a summary of our general formulation for
calculating FCFs is presented. Then, in Sec. III we give spe-
cific computational details regarding simulation of the He I
photoelectronsPEd spectrum of C2H4 and C2D4. This is fol-
lowed by a discussion of our results and, finally, some con-
cluding remarks and future plans.

II. THEORY

Recently several of us presented a new analytical proce-
dure for calculating Franck–Condon factors of polyatomic
molecules taking into account both the Duschinsky rotations
and anharmonicity.19 In this section we summarize the most
important relations of our new methodology.

A. General simultaneous equations for
Franck–Condon factors

Our starting point is the Schrödinger equation for
nuclear motion in the ground and excited electronic states.
Assuming a nonrotating molecule, and taking advantage of
the Hermitian property of the vibrational Hamiltonian, one
can readily obtain19

kc vg

g uĤg − Ĥeuc ve

e l = sEvg

g − Eve

e dSvgve
. s1d

In Eq. s1d Ĥg, uc vg

g l, andEvg

g are the vibrational Hamiltonian,

wave function, and energy of the ground electronic state;Ĥe,
uc ve

e l, andEve

e are their counterparts for the electronic excited
state; andSvevg

is a Franck–Condon overlap integral,

Svevg
= Svgve

= kc ve

e uc vg

g l = kc vg

g uc ve

e l. s2d

Since the vibrational eigenfunctions for the excited elec-
tronic state form a complete setsc me

e belowd the left-hand
side slhsd of Eq. s1d can be expressed as

kc vg

g uĤg − Ĥeuc ve

e l = o
me

kc vg

g uc me

e lkc me

e uĤg − Ĥeuc ve

e l

= o
me

Svgme
kc me

e uĤg − Ĥeuc ve

e l. s3d

Then, using the fact that the total nuclear kinetic-energy op-

erator is the same forĤg and Ĥe, one can combine Eqs.s1d
and s3d to obtain a set of homogeneous linear simultaneous
equations for a givenvg,

o
me

Svgme
fkcme

e uV̂g − V̂eucve

e l + sEve

e − Evg

g ddmeve
g = 0, ∀ ve,

s4d

in which dmeve
is the Kronecker delta. In practice this infinite

set of equations must be truncated. A systematic and efficient
iterative algorithm for selecting theM equations that survive
the truncation is given in Sec. II D. After dividing each term
in Eq. s4d by Svgle

sle is arbitrary as long asSvgle
Þ0d we

have

o
me

M

rle

mefkcme

e uV̂g − V̂eucve

e l + sEve

e − Evg

g ddmeve
g = 0

s5d
hvej = hmej, ∀ ve,

where

rle

me = Svgme/Svgle
, s6d

and the indexvg is suppressed in the symbol for this ratio.
Because the simultaneous equations are homogeneous there
is a redundancy and it is convenient to obtain a solution by
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means of singular value decomposition. Once the ratios have
been determined, the Franck–Condon overlap integrals can
be obtained from the normalization condition,

Svgme
=

rle

me

Îo
me

M

srle

med2

. s7d

Finally, the Franck–Condon factors are just the square of the
corresponding Franck–Condon integrals, i.e.,Fvgme

=Svgme

2 .

B. Duschinsky rotations

The normal coordinates of the electronic excited and
ground statessQe andQgd are different. They are related by
the equation,19

Qg = JQe + K , s8d

whereJ is the Duschinsky rotation matrix andK is a vector
associated with the change in equilibrium geometry between
the two electronic states.J andK , in turn, may be written in
terms of the unitary matrices that transform the mass-
weighted Cartesian displacement coordinates to normal
coordinates26 si.e., Qg=L g†

Xg andQe=L e†
Xed,

J = L g†
L e andK = L g†

R. s9d

In Eq. s9d R is the vector obtained by subtracting the ground-
state equilibrium geometry from that of the excited state,
both being expressed in terms of mass-weighted Cartesian
coordinates. By taking advantage of Eq.s8d, one can write

the potential-energy differenceV̂g−V̂e, that appears in Eq.
s5d, solely as a function of the excited electronic state normal
coordinates. In the harmonic approximation,

V̂g − V̂e = VQg=0
g − VQe=0

e +
1

2 o
i=1

3N−6F ]2Vg

]sQi
gd2G

Qg=0

3FKi
2 + 2Ki o

j=1

3N−6

JijQj
e + o

j ,k=1

3N−6

JijJikQj
eQk

eG
−

1

2 o
i=1

3N−6F ]2Ve

]sQi
ed2G

Qe=0

sQi
ed2. s10d

C. Anharmonicity

The effect of anharmonicity can be accounted for by
perturbation theory. We write the zeroth-order, i.e., harmonic,
equation as

o
me

M

Svgme

s0d fkcme

e uV̂g − V̂eucve

e l + sEve

e − Evg

g ddmevegs0d
= 0,

s11d

where

kcme

e uV̂g − V̂eucve

e ls0d = kcme

es0dusV̂g − V̂eds0ducve

es0dl, s12d

andsV̂g−V̂eds0d is given by the right-hand side of Eq.s10d. If

the cubic and quartic terms inV̂g and V̂e are defined to be

first and second order, respectively,27 then the first-order per-
turbation equation is

o
me

Svgme

s1d fkcme

e uV̂g − V̂eucve

e l + sEve

e − Evg

g ddmeve
gs0d

+ o
me

Svgme

s0d fkcme

e uV̂g − V̂eucve

e l + sEve

e − Evg

g ddmeve
gs1d = 0,

s13d

in which

kcme

e uV̂g − V̂eucve

e ls1d = kcme

es1dusV̂g − V̂eds0ducve

es0dl

+ kcme

es0dusV̂g − V̂eds1ducve

es0dl

+ kcme

es0dusV̂g − V̂eds0ducve

es1dl, s14d

ucve

es1dl = − o
meÞve

M kcve

es0duV̂es1ducve

es0dlucme

es0dl

Eme

es0d − Eve

es0d , s15d

and

sV̂g − V̂eds1d =
1

6 o
i,j ,k=1

3N−6 S ]3Vg

]Qi
g]Qj

g]Qk
gD

Qg=0

3FKiKjKk + 3KiKj o
l=1

3N−6

JklQl
e + 3Ki

3 o
l,m=1

3N−6

JjlJkmQl
eQm

e

+ o
l,m,n=1

3N−6

JilJjmJknQl
eQm

e Qn
eG

−
1

6 o
i,j ,k=1

3N−6 S ]3Ve

]Qi
e]Qj

e]Qk
eD

Qe=0

Qi
eQj

eQk
e, s16d

while the first-order corrections toEve

e andEvg

g vanish.19 The

column vectorSvg
s1d can be divided into a component orthogo-

nal to Svg
s0d si.e., Svg8

s1dd plus a parallel componentsi.e., Svg9
s1dd:

Svg
s1d = Svg8

s1d + Svg9
s1d = Svg8

s1d + fSvg
s0d. s17d

Evidently, the first term on the lhs of Eq.s13d vanishes re-
gardless of the constantf in Eq. s17d fcf. Eq. s11dg. Hence,
we are free to choosef =0 so thatSvg

s1d satisfies the first-order
normalization condition,

Svg
s1d†Svg

s0d = Svg8
s1d†Svg

s0d = 0. s18d

Svg
s1d is most simply obtained by transforming Eq.s13d to a

basis spanned bySvg
s0d and an arbitrary set ofM −1 vectors
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perpendicular toSvg
s0d. This leads to a set ofM −1 inhomoge-

neous linear equations which are easily solved. Finally, the
first-order corrections to the FCFs are

Fvgme

s1d = 2Svgme

s0d Svgme

s1d . s19d

A similar procedure may be followed for the second-order
corrections.19

D. Truncation of the vibrational basis set

Perhaps the most critical step in our new procedure is the
truncation of the vibrational basis set for the excited elec-
tronic state. This basis set must contain all functions neces-
sary to obtain accurate FCFs, but must also be small enough
for the calculations to be efficient. The algorithm we use
involves an iterative buildup of the basis set by increasing
the range of vibrational quantum numbers while, simulta-
neously, removing unnecessary functions. In the current
work we have improved our previous truncation procedure
so that rapid calculations including anharmonicity are pos-
sible for a molecule such as ethylene which contains 11
coupled normal modes.

The first step is to choose an initial reference vibrational
state. One convenient option is to select the state determined
by the Franck–Condon principle. In fact, it is not necessary
to be very particular about this choice. Even the ground vi-
brational state is satisfactory except for spectra where the
most intense peaks correspond to large vibrational quantum
numbers. The selected reference state gives a starting vector
of vibrational quantum numbers for all modes. A set of maxi-
mum quantum numbers for the initial iteration is obtained by
adding unity to the starting values. Likewise a set of mini-
mum quantum numbers is prepared by subtracting unity with
the proviso that negative quantum numbers cannot occur.
The initial trial basis set consists of all vibrational wave
functions with quantum numbers in the range determined by
the maximum and minimum values just described. There is
one additional requirement that is enforced at the beginning
of every iteration. It is based on the difference between the
quantum numbers that characterize the vibrational state in
question and those of the reference state. We compute the
absolute value of the quantum number difference for each
mode and, then, sum over all modes. If that sum is larger
than a threshold value, the state is excluded from the basis
set. The threshold value, in turn, is taken to be the largest
difference between the maximum and minimum quantum
numbers for any one mode which, in the first iteration, is
either 1 or 2.

Given a trial basis, the associated set of FCFs is deter-
mined by solving the resulting linear simultaneous equations
to the desired order of perturbation theoryfe.g., Eqs.s11d
plus s13d for the FCFs through first orderg. All FCFs smaller
than a certain thresholdswe normally use 10−7d are set equal
to zero and the corresponding vibrational states are marked
for exclusion in further basis set augmentations. Neverthe-
less, the vibrational quantum numbers that characterize these
states are retained for augmenting the trial basis. For each
mode the highest quantum number associated with a non-
negligible FCFsi.e., larger than 10−7d will either increase or

remain the same as in the previous iteration. If the highest
quantum number is the same as in the two previous itera-
tions, then convergence has been attained for that particular
mode. In that event this maximum quantum number is re-
duced by two units until a non-negligible FCF is found. The
resulting maximum quantum number is marked and kept fro-
zen in subsequent iterations. On the contrary, the noncon-
verged maximum quantum numbers are increased by one
unit in preparation for the next iteration. Because of their
symmetry some modes only lead to non-negligible FCF
when the value of their associated quantum number is odd or
even. That is why in order to consider a progression con-
verged at least the two highest values of their correspondent
quantum value must be associated with negligible FCF. An
exactly analogous procedure is applied to the minimum
quantum numbers except that, again, the minimum value
cannot be reduced below zero.

Prior to pruning, the basis set for the next iteration con-
tains all vibrational wave functions within the range of the
current maximum and minimum quantum numbers. Then we
delete wave functions that were either previously marked for
exclusion or characterized by quantum numbers that deviate
from those of the reference state by more than the threshold
value described above. When the maximum/minimum quan-
tum numbers have converged for all modes, this threshold
value is increased by one unit if there is a FCF, for any state
at the boundary, that is larger than a preset valuesnormally
10−6d. Finally, the entire calculation is converged when the
new basis set is the same as the one used in the previous
iteration.

Our procedure for excluding wave functions drastically
reduces the growth of the basis set, thereby leading to a
major improvement in efficiency. However, it may still hap-
pen that the new basis at some iteration is larger than the
maximum desirable size. If that occurs, then the new states
are split into subsets that are added one at a time without any
other basis set augmentations. Ordinarily, subsequent microi-
terations will remove a sufficient number of states so that all
necessary ones can be accommodated.

Our algorithm has been tested in three different ways:sid
the FCF threshold for excluding states was varied from 10−5

to 10−9; sii d the FCF threshold for increasing the range of
quantum numbers, when the maximum/minimum values
have converged for all modes, was varied from 10−4 to 10−8;
and siii d the maximum/minimum quantum number in each
cycle was incremented by two and by four rather than by
one. Although some of the calculations were far more time
consuming than our normal procedure, the differences in the
calculated FCFs were always negligibles,0.1%d. These
tests were run using several different anharmonic PESs for
ClO2.

19

III. COMPUTATIONAL DETAILS

As an example of the application of our methodology to
a polyatomic molecule we have computed FCFs for the

C2H4
+X̃ 2B3u←C2H4X̃

1Ag ionization band in the He I PE
spectrum and the ionization band of the fully deuterated spe-
cies as well. Theab initio electronic structure calculations
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were performed at thesUdB3LYP/6-311Gsdd28–30 level. For
neutral molecules we used the restricted formalism, while the
cationic open shell systems were treated by the unrestricted
method which has been shown by Rijkenberg and Buma31 to
give the correct equilibrium torsion angle of 27°. In keeping
with the separability of the torsional motionssee laterd, the
harmonic and anharmonic force constants for all other modes
were evaluated at theD2h-optimized geometry. Cubic and
quartic vibrational force constants were determined by nu-
merical differentiation of quadratic force constants obtained
from the GAUSSIAN98 suite of programs.32 Vibrational dis-
placements of ±0.04 and ±0.08 a.u. were employed for this
purpose and the Romberg method33 was used to reduce nu-
merical error.

Because the torsion potential has a double minimum it is
impossible to estimate intensities for the torsional vibration
progression based on a zeroth-order harmonic-oscillator
model.34 The FCFs for this progression were, therefore,
treated in a special fashion assuming separability of the tor-
sional mode. Thus, the one-dimensional potential-energy
function, for both the neutral and the cation, was obtained by
ab initio calculation at 30 points in the interval from 0° to
60° in the torsion angle. Then, using the programLEVEL 7.4

sRef. 35d vibrational energies and FCFs were obtained by
numerical integration.

The theoretical He I PE spectrum was simulated using
Gaussian functions with a full width at half maximum of
20 meV. Relative peak intensities and positions were deter-
mined from the theoretical FCFs and vibronic energies. The
position of the first peak was shifted, and the intensity
scaled, so as to agree with the experimental peak that occurs
at the adiabatic ionization energysAIEd of 10.5122 eV
s10.5272 eVd for C2H4 sC2D4d, as measured by Holland
et al.24 In our calculations we used the experimental geom-
etry for the neutral molecule and the geometry obtained from
an iterative Franck–Condon analysis5 sIFCAd for the cation.
The IFCA procedure involves optimizing the geometrical pa-
rameters to obtain the best match between the simulated and
experimental spectrum. Chau and co-workers14–17 have
shown that the IFCA geometry of the excited state is the best
to use for comparison purposes and that the agreement

between this geometry and that obtained from the highest-
level ab initio calculations is reasonably good.

IV. RESULTS

Ethylene has a planarD2h equilibrium geometry and the
symmetry of the ground state is1Ag. Ionization from the 1b3u

p orbital, which is the highest occupied molecular orbital

sHOMOd, leads to theX̃ 2B3u state of the cation. The equi-
librium geometry of this cationic state hasD2 symmetry but,
as discussed in the Introduction, the effective symmetry is
D2h. Ab initio Hartree–Fock calculations yield a planarD2h

structure for the cation.36 Thus, it is necessary to include
electron correlation,31,37 as we do here, in order to obtain a
torsional barrier. Table I contains optimizedsUdB3LYP/6-
311Gsdd equilibrium geometry parameters forD2h neutral
ethylene, and for theD2h and D2 cations, as well as the
corresponding experimental values. Overall theab initio and
experimental values are quite similar; both show the ex-
pected increase of the C–C bond length, as well as the loss of
planarity, when thep-bonding electron of ethylene is re-
moved. In Table II we presentab initio harmonic frequencies
for the theoretical equilibrium geometries given in Table I
along with some experimental values. Theab initio harmonic
frequencies are in satisfactory agreement with the available
experimental fundamental frequencies. Except for the tor-
sional mode, the difference between the theoreticalD2h and
D2 harmonic frequencies of the cation is small in keeping
with the separability argument.

The large calculated change in the torsional equilibrium
angle and frequency between theD2h andD2 optimized cat-
ion geometries exemplifies the strong anharmonicity of this
motion which cannot be treated using the harmonic-oscillator
model.34 On the other hand, the torsional mode is approxi-
mately separable from all other normal modes. In fact, the
separability is exact at the harmonic level since torsion is the
only motion that hasau symmetry underD2h. Taking anhar-
monicity into account one expects that the curvilinear angu-
lar coordinate will provide a better description of torsion
than the corresponding linear normal coordinate.38 Thus, we
assume that the torsional motion is separable when expressed
in terms of the torsional angle. In order to obtain vibronic

TABLE I. Equilibrium geometrical parameters for neutral and cationic ethylene. All quantities are in angstroms
and degrees.

C2H4X̃
1Ag C2H4

+X̃ 2B3u

D2h D2h D2

B3LYP/
6-311Gsdd Expt.a

UB3LYP/
6-311Gsdd

UB3LYP/
6-311Gsdd Expt.

rsCvCd 1.3271 1.3391 1.4181 1.3952 1.405b

rsC–Hd 1.0878 1.0868 1.0871 1.0902 1.091b

/sCvC–Hd 121.85 121.28 120.84 121.20 121.8b

tsH–CvC–Hd 0.00 0.00 0.00 26.92 25b/27c/29.2d

aExperimental values from Callomonet al. ssee Ref. 21d.
bDerived from a fit to experimental PE spectrum of ethylene by Köppelet al. ssee Ref. 39d.
cDerived from a fit to experimental PE spectrum of ethylene by Pollardet al. ssee Ref. 23d.
dDerived from a fit to experimental PFI-ZEKE PE spectrum of ethylene by Willitschet al. ssee Ref. 25d.

184104-5 Franck–Condon factors with anharmonicity J. Chem. Phys. 122, 184104 ~2005!

Downloaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



energies and FCFs for this motion, the 1DsUdB3LYP/6-
311Gsdd potential was computed for both the neutral and
cationic molecules as described in Sec. III.

Figure 1 depicts theab initio torsion potential obtained
for the cation showing two minima separated by a barrier of
277 cm−1, which is well within the error range of the experi-
mental value given by Pollardet al. s270±150 cm−1d,23 and

somewhat lower than the values of 357±26 and 292±24
given by Willitschet al.25 for C2H4

+ and C2D4
+, respectively.

Although the difference between the C2H4
+ and C2D4

+ bar-
riers obtained by Willitschet al. is not large, it is indicative
of anharmonic coupling between torsion and other modes.
Our calculated sUdB3LYP/6-311Gsdd equilibrium torsion
angle of C2H4

+ reproduces the experimental values,28°d

TABLE II. Theoretical and experimental vibrational frequenciesscm−1d of neutral and cationic ethylene.

Label

Symmetry

C2H4X̃
1Ag C2H4

+X̃2B3u

D2h D2h D2

D2h D2

B3LYP/
6-311Gsdda Expt.b

UB3LP/
6-311Gsdda

UB3LYP/
6-311Gsdda Expt.

v1 ag a 3137.5 3022 3143.2 3103.0
v2 ag a 1699.9 1625 1563.4 1517.9 1510c/1487.7d

v3 ag a 1384.9 1344 1272.3 1274.3 1264c/1258.7d

v4 au a 1066.9 1026 453.2i 571.7e 83.7d

v5 b1u b1 3122.0 2989 3139.5 3105.8
v6 b1u b1 1481.4 1444 1478.6 1441.5
v7 b2g b2 955.9 940 1116.1 1075.1
v8 b2u b2 3221.3 3105 3264.9 3221.2
v9 b2u b2 840.4 826 851.0 804.5
v10 b3g b3 3192.6 3086 3248.7 3201.8
v11 b3g b3 1248.5 1222 1244.1 1215.2
v12 b3u b3 967.1 949 978.6 900.5 901.3d

aAb initio harmonic frequencies.
bFundamental frequencies from Sension and Hudsonssee Ref. 40d.
cHarmonic frequencies from Pollardet al. ssee Ref. 23d.
dFundamental frequencies from Willitschet al. ssee Ref. 25d.
eBecause of the double minimum potential the theoretical harmonic frequency is not expected to be close to the
experimental fundamental frequency.

FIG. 1. sUdB3LYP/6-311Gsdd torsional potential for C2H4
+X̃ 2B3u.
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sRefs. 23 and 25d quite well. Relative intensities for the even
quantum number peaks in the torsional progression, obtained
from the FCFs determined by numerical integration using
LEVEL 7.4,35 are given in Table III along with the vibronic
energies. The errors compared to experiment are fairly small
considering that we have ignored anharmonic coupling with
the remaining modes and have done no empirical fitting,
which is often the case in other treatments.13–17,19,25Note that
our calculation successfully reproduces the fact that deutera-
tion causes a shift in the most intense peak fromv=0 to v
=2. In the concluding section we will discuss future plans to
incorporate the anharmonic coupling between torsion and
other modes.

The FCFs are very sensitive to the geometry of the neu-
tral and cation. Like Chau and co-workers14–17we have used
the experimental geometry of neutral ethylene21 together
with the IFCA sRef. 5d geometry of the cation in simulating
spectra for the other 3N-7 normal modes. Besides the torsion
mode sv4d, only the ag symmetry CvC stretchsv2d and
CH2 scissors bendsv3d modes are involved in the progres-
sions observed in the experimental PE spectra of Pollard
et al.23 and Hollandet al.24 Thus, in our simulations we
optimized the CvC bond length and CH2 angle of thesef-
fectived D2h cation using the IFCA method, and kept the
sUdB3LYP/6-311Gsdd value of the C–H bond length. Table
IV gives IFCA values of these geometric parameters for
C2H4

+ and C2D4
+ obtained by computing FCFs at the har-

monic, first-order perturbation-theorysPT1d, and second-
order perturbation-theorysPT2d levels. The IFCA results can
be considered valid only if they are not very different from
the ab initio equilibrium parameters.13–16 This is the case

here as can readily be seen from a comparison of Tables I
and IV.

In Figs. 2 and 3 we contrast the harmonicsFig. 2d and
PT1 sFig. 3d simulated first band of the C2H4 He I PE spec-
trum with the PT2 simulation; while in Table V we give
theoretical frequencies and FCFs for the individual peaks
evaluated at the PT2 level. Except for the 1D torsional pro-
gression, all FCFs were calculated with our new procedure.19

The efficiency of our algorithm is such that the PT2 simula-
tion can be run on a personal laptop computer in less than an
hour. Figure 2 shows that the main effect of anharmonicity,
as far as FCFs are concerned, is to reduce the relative inten-
sity of the low-frequency peaks while incrementing the rela-
tive intensity of the high-frequency peaks. Anharmonicity
also decreases the frequency of all the peaks, with the reduc-
tion being larger on the high-frequency side of the spectrum.
The reader may view the peaksv1v2v3v4d=s0120d as a good
example showing the effect of anharmonicity on the FCFs
and frequencies. Although the PT1 frequencies are unaltered
from the harmonic ones, as mentioned previously, one can
see from the comparison with PT2 in Fig. 3 that the effect of
anharmonicity on the FCFs is mostly incorporated at the PT1
level. This result may be useful because the PT2 calculation
for ethylene takes four times as much CPU time as the PT1
calculation. We note here that our previous results for ClO2

sRef. 19d also showed a good performance of PT1 for the
FCFs.

In constructing the vibrational basis set all modes other
than torsion were considered. However, only theag CvC
stretch and CH2 scissors bend modes are associated with
non-negligible FCFs. For comparison purposes, then, we re-

TABLE III. Comparison of calculatedsUdB3LYP/6-311Gsdd vibrational excitation energies and relative inten-

sities with experiment for even quantum number peaks in the torsion progression for the+X̃ 2B3u← X̃ 1Ag band
of the C2H4 and C2D4 PE spectra.

v4

C2H4 C2D4

v0 scm−1d Relative intensities v0 scm−1d Relative intensities

B3LYP/
6-311Gsdd Expt.a

B3LYP/
6-311Gsdd Expt.b

B3LYP/
6-311Gsdd Expt.a

B3LYP/
6-311Gsdd Expt.b

0 0.0 0.0 100.0 100.0 0.0 0.0 66.8 65.9
2 470.6 438.2 74.9 89.1 285.5 275.4 100.0 100.0
4 1251.2 1162.1 13.4 c 767.0 720.7 22.1 20.3

aExcitation energies relative to the vibronic ground state observed in the PFI-ZEKE spectra by Willitschet al.
sRef. 25d.
bPeak heights without correction for overlapping structures measured by Hollandet al. ssee Ref. 24d.
cNot observed because it is overlapped by another peak.

TABLE IV. CvC bond lengths and CvC–H angles obtained forD2h C2H4
+, and C2D4

+ using the IFCA
procedure with FCFs computed at the harmonic, PT1, and PT2 levels. All quantities are in angstroms and
degrees.

C2H4
+ C2D4

+

Harmonic PT1 PT2 Harmonic PT1 PT2

rsCvCd 1.4093 1.4122 1.4135 1.4055 1.4080 1.4072
/sCvC–Hd 119.90 119.83 119.70 120.74 120.68 120.75
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FIG. 2. sUdB3LYP/6-311Gsdd simulation of the first band in the C2H4 He I PE spectrum. The solid and dashed lines represent the harmonic and PT2
anharmonic spectra, respectively.

FIG. 3. sUdB3LYP/6-311Gsdd simulation of the first band in the C2H4 He I PE spectrum. The solid and dashed lines represent the PT1 and PT2 anharmonic
spectra, respectively.
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peated the simulation including only these two normal
modes in the basis set. The difference between the two simu-
lations is negligible. However, the difference in CPU time is
dramatic; the PT2 calculation using two modes requires less
than a second of personal laptop computer CPU time. In
addition, the PES part of the calculation is faster by a factor
of 5.

In Figs. 4 and 5 we separately compare our harmonic
sFig. 4d and PT2sFig. 5d simulations with the experimental
C2H4 spectrum obtained by Hollandet al.24 Since the experi-
mental intensities are in arbitrary units, we forced the inten-
sity of the experimentals0000d peak to equal the theoretical
value. At this point we remind the reader that the simulation
of the torsional progression is purelyab initio. It has not
been adjusted using the IFCA procedure and anharmonic
coupling between torsion and other modes has been ne-
glected. That is why the agreement between the theoretical
and experimental intensities is poorer for thes0v2v32d peaks
than for the others. There are five progressions labeled in the
experimental spectra. They are all associated either with the
CvC stretch, CH2 scissors bend, or torsion mode. These
same progressions can be clearly seen in our theoretical
simulations. Other progressions are present but they cannot
be observed separately because they are overlapped by the
most intense ones. For example, the progressions0004d,
s0014d, s0024d, ands0034d is overlapped bys0010d, s0020d,
s0030d, and s0040d. Nonetheless, the latter contributes from
22% to 46% of the total intensity for each peak. Similarly,
s0104d, s0114d, ands0124d are overlapped bys0110d, s0120d,
and s0130d. Again the less important progression provides
more than a fifth of each peak intensity.

By comparing Figs. 4 and 5 we see that anharmonicity is
essential to reproduce experiment for nonfundamental exci-
tations such ass0020d, s0110d, s0030d, or s0120d. The need
for the IFCA procedure, and the remaining lack of agreement
between the PT2 and experimental spectra, is due to some
combination ofsid anharmonicity contributions higher than
second order,sii d intrinsic limitations of perturbation theory,

TABLE V. sUdB3LYP/6-311Gsdd frequencies and FCFs for the+X̃ 2B3u

← X̃ 1Ag band of the C2H4 PE spectrum computed at the PT2 level. The
FCFs are in arbitrary units.

v1v2v3v4 Freq.seVd FCF v1v2v3v4 Freq.seVd FCF

0000 10.51 4.53310−1 0032 11.04 1.07310−2

0002 10.57 3.39310−1 0204 11.04 2.41310−3

0010 10.67 2.09310−1 0210 11.04 1.09310−2

0004 10.67 6.08310−2 0122 11.07 1.56310−2

0100 10.70 1.27310−1 0300 11.08 2.05310−3

0012 10.72 1.56310−1 0212 11.10 8.17310−3

0102 10.76 9.49310−2 0040 11.13 2.25310−3

0014 10.82 2.80310−2 0034 11.13 1.91310−3

0020 10.82 6.05310−2 0302 11.14 1.54310−3

0104 10.85 1.70310−2 0130 11.16 4.75310−3

0110 10.86 6.19310−2 0124 11.17 2.79310−3

0022 10.88 4.53310−2 0042 11.19 1.68310−3

0200 10.89 1.79310−2 0220 11.20 3.93310−3

0112 10.91 4.64310−2 0214 11.20 1.46310−3

0202 10.95 1.34310−2 0132 11.22 3.55310−3

0030 10.98 1.42310−2 0310 11.23 1.50310−3

0024 10.98 8.11310−3 0222 11.26 2.94310−3

0114 11.01 8.30310−3 0312 11.29 1.12310−3

0120 11.01 2.08310−2

FIG. 4. Experimental results obtained by Hollandet al. ssee Ref. 24d ssolid lined andsUdB3LYP/6-311Gsdd harmonic level simulationsdashed lined for the first
band in the C2H4 He I PE spectrum.
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FIG. 5. Experimental results by Hollandet al. ssee Ref. 24d ssolid lined andsUdB3LYP/6-311Gsdd PT2 level simulationsdashed lined for the first band in the
C2H4 He I PE spectrum.

FIG. 6. sUdB3LYP/6-311Gsdd simulation of the first band in the C2D4 He I PE spectrum. The solid and dashed lines represent the harmonic level and PT2
anharmonic level treatments, respectively.
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andsiii d nonseparability of the torsional mode. In the Sec. V
we will discuss future plans to remove these deficiencies.

In Fig. 6 we present the harmonic and PT2 simulations
of the first band in the C2D4 He I PE spectrum. The PT2
frequencies and FCFs are given in Table VI. Deuteration of
ethylene leads to a major change in the shape of the spec-
trum. In the case of C2D4 the absolute intensity of the tor-
sional progressions increases and, in addition, thev2 pro-

gressions become more intense than those ofv3. There are,
again, significant differences between the harmonic and PT2
spectra with regard to intensity and frequency. Once more,
introduction of anharmonicity reduces the FCFs for low-
energy peaks and increases the intensity of the high-energy
peaks.

In Fig. 7 we compare our theoretical PT2 spectra for
C2D4 with the experimental results obtained by Holland
et al.24 Again, all progressions labeled in the experimental
spectra are clearly observed in the simulations. However,
there are important aspects revealed by theory that are not
evident from experiment. For example, in the progression
labeleds0v212d the dominant contribution to the intensity of
s0012d actually arises from the overlappings0100d peak. Fur-
thermore, progressions such ass0v214d, s0v220d, and
s0v222d do not explicitly appear in the experimental spec-
trum because they are overlapped rather than weak in inten-
sity. As in the case of C2H4, there is essentially no difference
between the spectra predicted using only theag CvC
stretch and CH2 scissors bend modes in the basis set rather
than allsexcept for torsiond 3N-7 modes. From Figs. 6 and 7
it is also evident, as for C2H4, that the PT2 spectrum repre-
sents a definite improvement over the harmonic level treat-
ment. The peaks0200d well illustrates this point with regard
to both the intensity and frequency.

In comparing C2H4 with C2D4, it is important to note
that our best results are noticeably poorer for the deuterated
species because of the more prominent role of the torsional
progressions in the latter case. One clear example is given by
the comparison of intensity ratios betweens0002d / s0000d

TABLE VI. sUdB3LYP/6-311Gsdd frequencies and FCFs for the+X̃ 2B3u

← X̃ 1Ag band of the C2D4 PE spectrum computed at the PT2 level. The
FCFs are in arbitrary units.

v1v2v3v4 Freq.seVd FCF v1v2v3v4 Freq.seVd FCF

0000 10.53 5.13310−1 0032 10.93 1.48310−3

0002 10.56 7.69310−1 0120 10.93 6.09310−3

0004 10.62 1.70310−1 0204 10.95 1.99310−2

0010 10.65 8.95310−2 0122 10.97 9.12310−3

0012 10.68 1.34310−1 0210 10.98 1.40310−2

0100 10.69 2.39310−1 0212 11.01 2.10310−2

0102 10.73 3.57310−1 0300 11.02 1.23310−2

0014 10.74 2.96310−2 0124 11.03 2.01310−3

0020 10.77 1.04310−2 0302 11.06 1.83310−2

0100 10.79 7.89310−2 0214 11.07 4.64310−3

0022 10.80 1.55310−2 0220 11.10 1.68310−3

0110 10.81 4.74310−2 0304 11.12 4.05310−3

0112 10.85 7.10310−2 0222 11.14 2.51310−3

0200 10.86 6.02310−2 0310 11.14 2.65310−3

0024 10.86 3.43310−3 0312 11.18 3.96310−3

0202 10.89 9.01310−2 0400 11.19 1.75310−3

0114 10.91 1.57310−2 0402 11.22 2.62310−3

FIG. 7. Experimental results obtained by Hollandet al. ssee Ref. 24d ssolid lined andsUdB3LYP/6-311Gsdd simulation at the PT2 levelsdashed lined for the
first band in the C2D4 He I PE spectrum.
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and s0102d / s0100d. Whereas the theoretical simulation for
C2D4 reproduces the first ratio very well, the result for the
second ratio is not nearly as good. This makes it appear that
the nonseparability of the torsional mode may be the main
source of disagreement between the theoretical and experi-
mental spectra.

V. CONCLUSIONS

The simple procedure we have recently presented for
calculating Franck–Condon factorssFCFsd has been used to

characterize the C2H4
+X̃ 2B3u←C2H4X̃

1Ag band in the pho-
toelectron spectrum. Unlike other treatments, this procedure
includes nondiagonal anharmonic couplingsi.e., mode-mode
couplingd as well as diagonal anharmonicity terms and
Duschinsky rotations. Anharmonic effects are incorporated
by means of perturbation theory. A new and improved algo-
rithm is given for generating a minimal basis set of vibra-
tional states that must be taken into account in solving the
coupled simultaneous equations for the FCFs. As a result the
calculation of a spectrum at the PT2 level takes less than 1 h
on a personal laptop computer. The computer time is reduced
to less than 1 s, without loss of accuracy, by eliminating all
states from the vibrational basis other than those correspond-
ing to excitations of the CvC stretch, the CH2 scissors
bend, and the torsion. The torsional motion, which leads to a
twisted D2 geometry in the cationic state, is treated in a
unique manner because it is so highly anharmonic. We as-
sume that motion involving the torsion angle is separable
from other modes so that the diagonal anharmonicity can be
treated exactly. Good agreement with experiment is then ob-
tained for both C2H4 and C2D4 using second-order perturba-
tion theory for the remaining modes. These perturbation cor-
rections are significant. A first-order treatment suffices for
the FCFs but not for the frequencies. Our results for C2D4,
while satisfactory, are not as good as those for C2H4 because
the torsional progressions are more prominent in the former
case and separability has been assumed.

Although the present method does give satisfactory re-
sults, there is room for improvement. In the future we plan to
replace the perturbation treatment with a variational ap-
proach, just as we have very recently done for vibrational
shyperdpolarizabilities.41 Large anharmonicity terms are dif-
ficult to treat using perturbation theory, but they can be suc-
cessfully dealt with by applying the variational methods of
electron structure theory to the vibrational Schrödinger equa-
tion. The basic equation of this paper, namely, Eq.s5d, may
be reformulated so that the variational approach can be em-
ployed to calculate FCFs. That will allow us to include an-
harmonic contributions higher than second order and to re-
move the intrinsic limitations of the perturbation expansion
in terms of normal coordinates. Even at the lowest level of
variation treatment, i.e., the vibrational self-consistent field
sVSCFd method, the most important off-diagonal anhar-
monic coupling with torsion is incorporated along with the
full 1D torsional potential.
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