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We present an implicitly parallel method for integral-block driven restricted active space
self-consistent fielfRASSCH algorithms. Our algorithm entirely avoids testing the index space for
nonzero contributions to the ClI vector, by finding entire blocks of contributions through use of
simple algebraic rulegpropagation rules The blocks themselves are efficiently identified by
introducing a RASmodel spaceOur algorithm is capable of making efficient use of modern
supercomputer hardware, supporting both shared and distributed memory architectures and hybrids.
Applicability of our method is demonstrated with a RASSCEF investigation of the first two excited
states of indole. ©2003 American Institute of Physic§DOI: 10.1063/1.1578620

I. INTRODUCTION minimum number of electrons within RAS1. The second
subset, denoted RAS2, includes MOs believed to be particu-

The restricted active space SGRASSCH variant of the  larly important for the system under investigation. No occu-
MCSCF method has been first proposed by Olseal! and  pancy restrictions are imposed on RAS2. The third subset,
many successful applications have since been repéetgd  RAS3, consists of weakly occupied MOs which contribute
Refs. 2—4. The RASSCF method may be considered a logi-relatively less to the description of the system of interest.
cal extension to the CASSCF method, which allows one teAny allowed configuration can only have a specified maxi-
tackle two limitations of the latter method. mum number of electrons in RAS3.

The practical limit of the system size in a CASSCF com-  The main challenge in large scale CASSCF problems is
putation is around 12-14 active orbitals, at least in casethe efficient computation of coupling coefficients, and this is
where the number of electrons is about the same as the numet different in the RASSCF method. However, the restric-
ber of active orbitals and no symmetry can be exploitedtions introduced for the RAS1 and RAS3 subspaces mean
However, the resulting orbital occupancies of several orbitalshat the indexing of the CSFs is more complicated. This in
in the active space are frequently either close to 2 or 0 oveturn means that highly efficient strategies such as the method
the entire range of electronic states and spatial configurationsf reduced excitation stringsannot be employed.
of interest. Our aim in this paper is to propose an efficient, integral

Dynamic correlation effects are frequently included in anblock driven algorithm of the RASSCF method, and to de-
electronic structure computation in a subsequent step, fagcribe its implementation on a massively parallel computer.
example, by adding a calculation treating dynamic correlaQur approach is based on a model space representation of the
tion perturbatively(e.g., Refs. 5 and)gor by performing a RAS active orbitals, and an efficient expansion of the model
MRCI calculation, where selected configuration state funcsubspaces. This idea is inspired by the classic paper of Saun-
tions (CSF9 from the CASSCF wave function are used asders and van LenthfeThe contributions of a block of inte-
reference configuration'® However, a qualitatively ad- grals (with an identical representation in the model space
equate description of some systems sometimes requires theée computed together. The reconstruction of binary strings
inclusion of dynamical correlation, i.e., an extended activeis avoided and the full list of substring addresses is con-
space. Such systems are, for example, negative ions, elestructed directly, using simple recursive algebraic rules
tronic dipoles and excited states. (propagation rulex Finally, the proof of applicability of our

In the RASSCF formalism, the configuration space iSRAS implementation is given in the form of an application in
specified by dividing the active molecular orbitals into threeSec. V.
subsets and imposing restrictions on the allowed configura-
tions based upon occupations within those subsets. The first
subset, denoted RAS1, typically includes all doubly occupied|;. THEORY
MOs in some accepted reference, e.g., a CASSCF wave

function. Allowed configurations must contain a specified  As in any other MCSCF method, we seek the solution of
the CI eigenvalue problem,
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where M M
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is the representation matrix in a basis of orthonormal many- Q
particle configuration state function€SH, which we de- \@
note as{|K)}. In general, only the lowest eigenvalues and

their eigenvectors are of interest. In practice, use is normally Q
made of iterative eigenvector procedures, such as the meth- \@
ods of Lanczo¥ or Davidsont! The time consuming step in

these methods is a linear transformation of the Cl vector,

o=HC, ©) 0) | (20

18) | (34
; ;

10 30

where C is an approximate eigenvector from the previous
iteration. The central practical problem is the evaluation of N, 4 3 2 1 Ne 4 3 2 1
the{Hg.}. The general result can be expressed as

@ ®

HKL:Z (i |])A5L+%E (i |k|)B:<j||<_| , (4) FIG. 1. (@): a-string graph forN,=4 electrons inM=8 orbitals. Every
ij ijkl possible path from the bottoitfioot) to the top(head of the graph corre-

. . . o ) sponds to anw-string. The orbitals are ordered and at each orbital level an
where the summation is over orbital indices, amkj )(and a-electron may be added. At each vertex in the graph there are up to two
(ij|kl) are the usual one and two electron repulsion inteaths upwards, corresponding to the nexspin orbital being occupied
grals. TheAFL and BiK'I%I are numericavector couplingcoef- (slopgd pathor u‘noccupled_. A lexical addressing of the strings is achieved
fici h ld dJ h d d by using Handy’'s addressing arréiRef. 19 [cf. Egs. (8) and (9)]. The

|C|ent_s t _at epend on t e_nature|Kf> an |L> In Seco_n_ numbers on the slopes are tae weights Z(k,l), and the address of any

quantization, these numerical vector coupling coefficientsitring is obtained simply by taking the sum of the arc weights. This address-

emerge as matrix elements of creation and annihilation op+g scheme corresponds to a strict left-to-right ordering of the strifims.

erators é_*r anda. The bold line represents the walk corresponding to the binary string
hp Ip> 11001001. The corresponding string address is 31.

ATT=(KI2 al;]L), (5)
wherek refers to an electrom,to an orbital M is the number
of orbitals, N, the number of electrons angddenotes spin.
KL _ atat 5 3 " Np
Bijii _<K|% &8k, 21,8/L), ®)  This addressing scheme for strings in full Cl is simple. How-
_ ever, in anticipation of the added complexity that will arise
wherep,y denote spin. when addressing RAS strings we now introduce a graphical

Each Slater determinant of the Cl expansion can be Wfitrepresentation of Eq9). Figure 1a) illustrates thea-string
ten as the tensor product of two strings, one of the occupiegpace forM =8 orbitals andN,=4 electrons? Each string
a-orbitals,K,, and one of the occupigg-orbitals,K s, corresponds to ongath or walk on the grid of the graph. Al

IK)=|K Kpg). @ paths begin at the foot of the graph, and finish in its head,

“ advancing one level upwards for each orbital. If an orbital is

AstringK , is an ordered product of creation operators actingoccupied, the sloped segment step upwards is being used.
on the vacuum, and can be represented by a binary word afhe elements of the addressing array are added to the graph
lengthM, where each bib; represents a spin orbital. The bit in Fig. 1(a). According to Eq.(8) the address of a strink,,
value of b; indicates whether the orbital is occupied or is thus the sum of all circled values visited by the appropriate
empty, i.e., the binary representation Kf, ¢Kp’ contains  walk, plus 1. Theg-string address is obtained in the same
N, 1I's and M—N,) O0's. We denote byZ the list of all  way. The address of the Slater determindt may then be
strings in a definedlexical) order. Each stringk, can be defined as

identified by its addressA{K,}, which is identical to its M
position in £. Knowles and Handy have definedA{K } in A{K}=(A{Ka}—1)><(N )+A{Kﬁ}. (10)
full Cl as A
N Equation(4) is a simple sum of products. While the one
_ J and two electron integrals are generally nonzero quantities,
A{KP}_1+;<§=:1 Z(k,1 (k)), ® the coupling coefficients are mostly zero. Efficient computer
, ) implementations of any CI method take advantage of this
using the addressing array fact. One can distinguish between two main types of strate-
M-k m m— 1 gies to deal with Eq(4), namely theconfiguration driven
Zkh= > N —k) _(N —k—l”’ approach(CDA) and theintegral driven approacHIDA). In
m=M=I+111"%p P the CDA, given a configuration paiK),|L), all index pairs
(M=N,+k=I=k; k<N,), (i,j) _a_nd quadruplesi(j,k,l) that give nonzero coupling
coefficients need to be found. In the IDA, by contrast, all
Z(N,,l)=1=N, (M=I=N,), (90  configuration pair$K),|L) for nonzero coupling coefficients
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need to be found, given a set of orbital indiceg,k,l. In integrals are given, and all string paiks, L, andKgz,Lg
modern implementations both strategies have found their agthat give a nonzero contribution t§o- and?®o need to be
plication. To a degree, the optimum approach will depend oround.

the properties of the computer hardware, and efficient imple-  In restricted Cl methods in general, and in the RASSCF
mentations that take advantage of vector processors havgethod in particular, the restrictions imposed on the active
been devised. More recently, the development of computesrbital space give rise to certain complications concerning
hardware has been towards parallel configurations, wherge construction and indexing of CSFs and their strings.
distributed and shared memory architectures are often foundowever, an efficient solution to the indexing problem
together, and vector architectures are less relevant. Th%?nould, nevertheless, as in the case of full CI/ICASSCF
should be reflected in the design of any implementation. INyplementations, aim to minimize or eliminate redundant in-
particular, methods for a well functioning load balancing ya space testing. We propose in this paper a solution to this

should be considered. ) ) . problem, based on two steps: the introduction oRAS

The true computatlonal_ cost O.f gvaluatlng the matriX nodel orbital spaceand the efficient reconstruction of string
m_ultlphcatpr_] of Eq.K(i%) C,?PS'StS of finding _aII nonzero cou- pairs K, ,L, from the model strings in that space, using
pling coefficients,Aj;~,Bjj; , and performing the SAXPY propagation rules

operations, The graphical representation of CSFs used in this work
UK::UK+(i|j)Ai'§'-CL, and outlined in Sec. Il A greatly facilitates insight in and

N KL (11)  treatment of the RASSCF indexing problem. In Sec. 1B we
ox=0ox+(ij|kDBij CL, introduce themodel spaceepresentation of the RAS space,

for all nonzero coupling coefficients. As the proportion of @dain aided by a graphical representation. Based on the
nonzero coupling coefficients is tifjor example,<0.01% model space concept in Sec. IIC we develop an efficient
for a CASSCF12,12] an efficient method of finding non- method for reconstructing the string pairs that give nonzero
zero coupling coefficientémplicitly and without trying or ~ contributions to Egs(13) and(14), usingpropagation rules
testing the complete space of orbital and/or configurationtThe method described in this work entirely avoids poten-
indices is thus highly desirable. To find a solution to thistially costly index space testing.

indexing problemwe start by rewriting ther vector of Eq.

(3) as a sum of 2 terms: A. A graphical representation

o=18g+2¢. (12) of the RAS configurations

The one-electron term®oy , may be written with the outer The string space in the RASSCF method is a subset of
sum over orbital indices andj and the inner sums over the corresponding CAS string space, where the total number

a-strings anda-strings, of active orbitals and electrons are identical. Due to the par-
ticle number restriction in the RAS1 and RAS3 orbital sub-
le _ s At A spaces, the construction of CSFs is relatively more compli-
= i K.l&i,ai,L.)C S . . .
TKKg ZJ (i1 % (Kal&iadjalla)Co ik, cated. The complication arises on two levels: the indexing of

strings and the combination efstrings with 8-strings. The
+> <Kp|é?péj5|Lﬁ>CKaLﬁ>, VK, Kg. remedy to both pr_oblems Iieg in the clas§ification of certain
Lg groups of RAS strings. To this end we will make use of the
(13 concept ofstring categories* Within any string category
indexing is then simple, as no restrictions apply. Allowed
combinations ofa-strings with 8-strings are found by iden-
tifying allowed combinations of string categories.
It is convenient to define several graphs. Each graph

Likewise, the two-electron term?®o, may be rewritten
similarly, yielding

_ . At at a4 3
2eUKaKB_% UL LE (Kol &iaka21084|La)CL k., corresponds to a subset of the paths on the FCI graph. The
“ space of strings is then described by the sum of all possible
+ K.latal a a .lL.)C walks on all graphs. In addition, there will usually be restric-
Lzﬁ < B' 187kE%18 'ﬁ| 6) Kabs tions on the allowed combination of graphs. If the state of
o o interest is a singlet, then the set of graphs for both spin
+LE <Ka|aiaaja|La>Lz (KglagguglLp)C 1, spaces will be identical.
“ p Figure 2 shows three examplestring graphgof a total
+2 <Ka|élaéla||-a> of nine graph}s for trle case Wlth N,=6, M=12,
[ M(RAS1)=4, M(RAS3)=4 and a maximum of 2 electrons

excited out of RAS1 and into RAS3, respectively. As in the
X, <Kﬁ|éfﬁém|LB>CLaLB , VK, ,Kg. (14  CASSCF case, the graphical representation ofctetrings
La and B-strings may be used to order the paths. This is best
Thus, in Egs.(13) and (14) the outer summation is over done by assigning consecutive local addresses to strings
orbital indicesi,j andi,j,k,|, respectively. This implies the within one graph. If the graphs themselves are ordered, then
use of an IDA, where the orbital indices and the repulsionthe global string address will be the sum of the local string
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FIG. 2. Three example RAg-string graphs foN,=6, M =12 with RAS m
subspace definitionsM(RAS1)=4; MxHole=2 and M(RAS3)=4; 3
MxElec=2. The total number of graphs-categoriesis here(MxHole+1) A{KRASI} — 2
X (MxElec+1)=9. o m 2
1
0
1 1 1 1 | |

. . . N,
address and an offset accounting for all paths in preceding 605 4 3 2 1

graphs. FIG. 3. An example of the addressing of an RASstring: M(RAS1)
Kozlowski and Pula¥* proposed a two level addressing =M(RAS2)=M(RAS3)=4, K,=124578, ¢ =000011011011, ij

scheme, the first level being a string category determined by b - 0 e om 281 and the resuling substrng adcresses are

the nu,mb(,ar of h0|es’h . in RAS1 and the number of elec- show% ne’xt to the correspondir;g graph segmer?t. The Iogal string address,

trons,ie, in RAS3, while the second level gives the local 4k 1, is then obtained from Eq19).

string address within a given category. A category in this

scheme corresponds exactly to a string graph as described

above, and we will largely adopt the notation used in Ref. 14. RAS M(RAS1)\ [ M(RAS3)
The category Caif,,i,) is defined as AR} = (K% -1) in ie
Cat(iy ie)=(in+ 1)+ (MxHole+ )i, (15) +(A{K5A81}—1>( MRS ks,
e
and the number of categoriégraphs for each spin space is (19
given by where each ternK?#St KRAS2 - KRAS3 denote the corre-
sponding subspace strings. This is the crucial difference to
Cat MxHole, MxEleg) = (MxHole+ 1)(MxElec+1). the addressing scheme used by Olsenl,* who chose to

(16)  not logically separate the addressing of the individual RAS
subspaces. The advantage of defining the local string address
The length of that categorjnumber of paths in the corre- as in Eq.(19) will become clear shortly.
sponding graphis A choice must be made as to how the subspace strings
themselves should be addressed. Since the string subspaces
o M(RAS2) resemble CASSCF string spaces, it is straightforward to
L[Ca('h"e)]:(Na—M(RA51)+ih—ie) again use the indexing formula of Knowles and Haidy

M(RAS1)|( M(RAS3) [Egs.(8) and(9)], i.e.,
x in ( ' ) (17) NRASX

A{KFAS Y =1+ :21 Z(k,1(k)). (20)

le

The address of an-string Kiah Tein category Cat,,is) can

then be calculated as The number of orbitalsM, and electrond, in Eq. (9) are

substituted with the corresponding RAS subspace variables,

Caty ig)- 1 M(RASX) andN~“°X, respectively, for the RA% subspace
A{KIn = ALK }+ L[Cat], 19 (Xeil23). . _
{Ke ™= AlK Caztzl [Caf (18 An example may serve to clarify this. Consider a RAS

problem withM =12 orbitals,N,=6 electrons, 4 orbitals in
whereA{K,} denotes the local string address and the secongach RAS subspace, and maximum numbers of holes in
term is the sum of lengths of all previous categories. ThéRAS1 and particles in RAS3 both equal 2. Qastring that
local address can be assigned in the following way: for gobserves these restrictionsKs,=124578. Its binary repre-
given category, Caif,i,), any string can be considered as asentation is¢x =000011011011. The string category is
combination of appropriate subspace strings, Cai(1,0=2 (i.e.,in=1, i,=0). Figure 3 shows the graphi-
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cal representation df , as a walk on the corresponding RAS RAS3 RAS2 RASI  RAS3™ RAS2 RASI”

graph[cf. Fig. 2b)]. The arc weights are obtained individu-
ally for each subspace grapkq. (9)] and the local string

address is

(a) Complete (b) RAS1 and (c) RAS model
4\ 4 4 RAS string RAS3 substrings string.
A{Ka}:(z_l)(l)(o) +(3_1)(0) +1 consisting of represented by
RASI1, RAS2 and model substrings.
—44+2+1=T7. RAS3 substrings.

On|y the graph Corresponding to Gat precedes the current FIG. 4. An example of a RAS-string consisting of four orbitals in each

. R indey : RAS subspace, and its representing model space string (Mxtle
RAS graph, i.e., the lexicat-string addressA{K "¢} is MxElec=2). The model string is constructed using the RAS2 substring and

4 parts of the RAS1 and RAS3 substrings, of dimension MxHole and MxElec,
0) ( 2) ( 0) =13. respectively. The RAS model string has no occupancy restricted subspaces.

The a-strings cannot be combined freely with all ) ] o
B-strings, because of the restrictions for the allowed numbef€mbles CAS string spaces, thus simply avoiding the prob-
of holes {,+i[<MxHole; the prime’ signifies 8-spin) in lems assouate_d with the restrictions imposed on the RAS1
RAS1 and the allowed number of electrons,i, @nd RAS3 orbital subspaces.
<MxElec) in RAS3. The resulting expression for valid SDs ~ SUPPose we would like to construct a RAS wave func-
in the RAS expansion can be obtained using once again 4N using the determinantal approach, with a maximum
two level addressing scheme. The local address for a stringimber of holesMxHole) allowed in the RAS1 space and a

pair in a given set of string graphsi{K , ,K s}, is given by maximum number of electrongVixElec) allowed in' the .
RAS3 space. A model RAS space may then be defined with

AlK, Kgh=(A{K = 1)L[Calif,ig) ]+ A{Kgh, (21)  M™ orbitals, given by

AKX =7+ [Ca(0,0]=7+

whereL[Cat(,,i.)] is the total number oB-string walks on M™=M (RAS?2) + MxHole+ MxElec, (24)
the correspondings-string graph. The address of C$k
=|K K,;)ﬁs ther?g 99 ) andN™=Ng+ N} electrons where
o NT=N_,—M(RAS1)+ MxHole (25
A[K}= AN e Kon b= AlK, Kb+ 7S (22) o
at’ ; . .
Y;/Tgezee?%f;dlsa;he offset accounting for all CSFs prior i NT=N;— M(RAS1) + MxHole. 26)
Cati .ig)— 1 Cat(MxHole, MxElec) The remaining(spin orbitals excluded from this model
eat _ L[Cafl X L[Caf space will always be occupied in the RAS1 subspace and
cat C§=1 C;’:l [CafxL ] unoccupied in the RAS3 subspace. Figure 4 shows a RAS

type a-string consisting of RAS1, RAS2 and RAS3 strings,
o and the model space string representing(NtxHole=2,
+ 2 L[Calip.ig]xL[Cat]. (23)  MxElec=2). Note that the number of electrons in the model
Cat=1 space is constantother than in the individual RAS sub-

Equation(21) assigns a unique local address to any combispaces
nation of paths in a given-string graph and @-string graph It is useful to think of the model space &8 a compact
(there are L[Cat(y,ie)]XL[Cat(iy,ig)] such combina- way of representing the total RAS space,(®r a combina-
tions). The offset, Cgﬁ, may be precomputed for every al- tion of the RAS2 space with compacted RAS1 and RAS3
lowed graph combination. It accounts for all previous al-subspaces.
lowed combinations, giving the global address for the SD.  These two interpretations are visualized in Fig. 5 and
Although we are conducting the discussion of the RAS algo+ig. 6, respectively. The most striking feature of representa-
rithm on the basis of SDs as basis CSFs, note that it ision 1 (Fig. 5 of the model string space is the fact that,
straightforward to use spin-adapted CSFs, by appropriatelglthough representing restricted string spaces, they are en-
redefining A{K . ,K g} and]fggf ) tirely unrestricted anq are in fact identical to tho_se used in a

It is apparent from Eq(19), and perhaps even more so CASSCF problem withM (CAS)=M™(RAS) orbitals and
from the graphs in Fig. 2, that the subspace strik§!, ~ N(CAS)=N"(RAS) electrons. This paves the way for an
KRAS2  KRASS may be generated as all possible walks onefﬂc!ent construction of z_all modgl_strmgs, since this is a well
their respective subspace graphs. The task of finding all afstudied problem. In particular, it is clear that the method of
lowed configurations in the RAS expansion is then simply to'éduced excitation lists presented in Ref. 9 may be applied

find all allowed combinations of subspace graphs. and we shall return to the details shortly. o
Crucial to the usefulness of the model space idea is rep-

resentation 2: the subdivision of the model space into the

RAS2 subspace and compacted RAS1 and RAS3 model sub-
We will now introduce amodel spaceepresentation of spaces. Because the dimension of these model subspaces is

the RAS string space. The RAS model space closely reMxHole and MxElec, respectively, the number of model

Cat(, ,ig)—1

B. The RAS model space
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M™ could be used. The reduced list concept may be applied here
without change, and we will now briefly remind ourselves of
the method, while placing it in the current context.

7 In order to avoid confusion between orbital labels of
"""""" 6 different RAS subspaces, the model space and the full RAS
5 space, we will use separate orbital indices for labeling the
4 respective orbitals:{a,b,c,d} e RAS1; {i,j k,I} e RAS2;

3 {p.q,r,s} e RASS; {w,x,y,z} e model space{i,j,k,I} e full

RAS space. Note that we use the same set of indigek, |

for both the full RAS space and the RAS2 subspace. The
reason for this is that it igat different time$ useful to liken

No =57 both sets of orbitals to the active space of a CASSCF. It will
_ _ always be clear from the context which orbital set is meant.
FIG. 5. A graph representing the completemodel string spaceM™ The set of orbitals under consideration is restricted to

=M (RAS2)+MxHole+MxElec; [M(RAS2)=4, MxHole=MxElec=2]
andN}'=4. The model string graph resembles a CAS string graph, due tthOse contained in the RAS model space. Thus, given the

the absence of occupancy restrictions in the RAS model space. p-model space orbital indicew,x, we define the model

space excitation listty containing, in IeX|caI order, all

string pair addresseg{KJ'}, A{L]"} and sgnﬂ for which
space graphs in this representation equals the number of cafe relation
egories as given by Eq@16) for each set of RAS spin graphs.
Furthermore, Eq(15) is not dependent on any absolute num- (kM af 3 ||_m>:SgnK,T (27
ber of particles in any RAS subspace, so that there is a one to PR w
one correspondence of eachmpletegraph with one model holds, with
graph(cf. Fig. 2 and Fig. & This property will be of par-

ticular use once a model space string has been found, and is +1, if > , b, iseven,

central to the method described here. The idea is simple: Km n=x+1

once a model string is found, it may be associated with a S9Ny~ w-1 (28)
certain model string space. It is then by implication also -1, if E . byisodd,

associated with a certain string graph in the complete RAS n=x+1

space. whereb,, is the bit value of thenth bit in the binary repre-

We have already mentioned that the unrestricted characsentation ofk™, ¢xm. The sums represent the number of
ter of the model string space may be exploited, since the
mm _
problem of finding mod(_al string painK,’,Lp} cIo;er re and L™ are constructed by inserting the appropnate bits
sembles the corresponding problem for full Cl. This problem P
b,, ,b, into the binary representation ofeduced stringcon-
is well studied and a number of efficient direct methods have m m_
S|st|ng of M™—2 bits, with N, —1 1s. The list of all such
been proposede.g., Refs. 1 and 15-17Here we will use
the method of reduced excitation strings, which we have infeduced strings in lexical order is denotéﬁm .-
troduced in Ref. 9 to entirely avoid index space testing in  Similarly, for 2e excitations a model space excitation
direct full CI/CASSCF Computat|0ns HOWeVer the modelhst XX/; Z’I; is deﬂned Conta|n|ng all Stnng pa"' addresses
space and reduced string method are not interdependent, a m m
any direct method tackling the indexing problem in full CI A Ko} AfL,} and sgnP for which the relation

P
occupied orbltaI$| e.,b,=1) between orbitalsy andx. Km

<Km|aWp ypaZpéXp| L > Sgnwf(yz (29)
w w M holds, with
8 e 38 8
7 Q 47 7 —sgrf xsgrs . ifwSy>x>z;
6 oMo d¢ 6 m N 9 yz' !
SN b~ m m (30)
5 18 5 e + SgnKP X SgnKP otherwise.
4 -4 -4 WX !
; .............. :z _______________ :; The model string pair&)',L}' are obtained by inserting the
. | . bits by, ,b,,by ,b, into the corresponding reduced string. To
No =t D accommodate for all possibleeland 2 excitations we need
only five reduced lists, which may be precomputéﬁm 19
(a) Cat=2 (b)Cat=35 (c) Cat=38 Mm—2 MM—2 Mm-3 MM—
=1, =0 =1, =1 ih=li, =2 ENZ‘ 10 Lymog s Lym_p s Lym_ 2 Thus all model space

. . . . p
_ excitation lists in the model space may be constructed in this
FIG. 6. Three RASa-model string space graphs favl(RAS2)=4,  fasnion, and the efficiency of this method comes from the
MxHole=2 and MxElee=2. Each graph corresponds to one string graph in . . . .
Fig. 2, with equal string category. The superposition of (@)l restricted faCt_ that no redundanF |ndex_ space testing Is needed in order
model graphs gives the unrestricted RAS model string graph of Fig. 5. to find the needed string pairs.
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model string loop:
{KZagosolLE)

reduced model
string walk
\ M™(red)

g
H
X
3

FIG. 7. The construction of the RAS
model string pairk] ,L" from a re-
duced model string, for the model
space excitatiord],a;,. The string
K™ is represented by the left walk of
the loop.

WA N N0

[ S IR VAR A I~ e B -]
[

Figure 7 shows an example for the reconstruction of onestring, the RAS1 and RAS3 substrings need to be evaluated
string pairkK™,L™, for the model space excitatichy, a3,  Sseparately by expanding the model substrings.
and using an arbitrary reduced model string. The resulting To achieve this, we propose a setbpagation rules
walks forK" andL! form a loop on the model string graph. The aim of the propagation rules is to efficiently compute all
For the assembly of the model excitation iE€* the com-  string pairs{K,,L,}, that give nonzero contributions for a
plete set of walks of reduced model strif@slexical ordej,  given excitation tern{ Kp|afpéjp|Lp>. All RASX substrings
i.e., all entries ofCZ'm:f, that are repr_esented b_y a model substrl_ng can be con_stru_cted
p R ] by propagating the binary representation of the excitation
Once a model string pait,’, L ;" is found, each model string - gperator from the right to the left of a binary representation
may be associated with one category, simply by counting thgf (e remaining orbitals, which we will denote r.s. Impor-
number of holes/electrons in the RAS1 and RAS3 modelypy it can be shown that, by defining the address of sub-
substrings. _In graphical terms th|s means that for (_aach Wa'§pace strings through E(R0) the actual construction of the
corresponding to g-model string, we need to find the g phspace strings is not necessary and the substring addresses
p-model string space graplef. Fig. 6 that has the correct 4 pe obtained directly. This is done by means of simple

dimension to superimpose the walk onto it. If the 100p ecyrsive evaluation of blocks of substring addresses
stretches over more than one RAS subspace, the modglél{KRAsx(z)} A{KRASX(n)}} from the first substring ad-
o AKS

stringsK',L " might then belong to different model space dressiél{KffASX(l)} of each block.

will be used in the same manner.

graphs(categorie}: In Sec. Il C we will show how tq expgznd Propagation Rule .| Table | shows a series of RAS
the mF?SS%I substrings. However, the RAS2 substrig¥, string pairs. They are constructed from the complete list of
andL ;"> are already in the final form. strings generated from tw@'s and twol’s, ordered accord-

. At this point we should mention an ad_djtiona_l benefit of ing to Handy’s index equatiofEq. (9)] and supplemented by
using the model space approach. In traditional implementage short string®1 and10 to the right. The resulting list is,
tions of the RASSCF metho.g., Refs. 1 and 2done has  py construction, consecutive elements of a st of strings gen-
to deal with tPTeApOSS'b'“ty obut of spaceexcitations, i.€.,  erated from thre@’s and threel’s, also ordered according
the excitationd;,a;,|L,) could result in a stringK ;) whose {5 Handy's index equation. If we refer to consecutive strings
number of holes in RAS1 or the number of electrons ingf the short list,{0011,...,110G, as r.s. and r.5, respec-

RAS3 exceed the limits, namely MxHole and MxElec, re-yely, then, according to Eq20) we have the trivial rela-
spectively. Due to the resemblance of the RAS model SPacfonship
to the string space for a full Cl it is, by construction, not

possible to produce amut of spaceexcitation, and the prob- A{KEAX(Lrs!)}= AIKRA(Lrs)} + 1,
lem is entirely avoided. This holds true also for double exci- (32)
tations. AL (Lrs) b= A{LRAS (L rs)h+1,

C. An efficient expansion technique:
Propagation rules TABLE I. The addresses of RAS1/RAS3 substrings for consecutive reduced

. strings are themselves consecutive numbers. This follows directly from the
. Each walk on a model string gr_aph represenFS a set Qi left-to-right ordering of strings on the corresponding unrestricted sub-
strings on the full graph. Correspondingly, each pair of walksstring graph.

on the model string graph, related by a singﬁ%,p(axp) or

. . g RASX RASX
double @/,,a] 2,,3,,) excitation and thus building a loop, __ PLRAs ATK™) ALY
represents a set of string pairs on the full graph. We now o001 101 001110 5 11
need to translate each model string p&lf',L", together 010101 010110 6 12

o . ) KM 100101 100110 7 13
with its associated parity factor, sgn into a set of RAS 011 001 011010 8 14
: . . . ihie 1 ipi 101001 101010 9 15
string pairs and their parity factor{,Kp e,Lp e,sgrﬁf'}. 110 001 110 010 10 16

While the RAS2 substring is fully determined by the model
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TABLE Il. Propagation of the variable bits from left to right through all bit-positions of a fixed reduced string
(01011) results in a change of substring address only if the two interchangedpitndb,_,, differ. The
number by which the address changes corresponds to a precomputable binomial coefficient.

a qSK;eAsx d)l_;eAsx b 1 ( ,’:/I‘%é;a) A{KEASX} AK A{LSASX} AL
1 010111 010 110 n/a 10 2 - 12 -
2 010111 010101 1 6 2 0 6 -6
3 010111 010011 1 3 2 0 3 -3
4 011011 010011 0 2 4 2 3 0
5 011011 001011 1 1 4 0 2 -1
6 101 011 001011 0 1 5 1 2 0

where the first argumentl) simply indicates an unchanged oped in Ref. 9 does for unrestricted Cl. The algorithm is
position of the addedbold) bits. based on the systematic propagation of substring variables

Propagation Rule 1l Table Il shows a series of string a,b,c,d (or p,q,r,s) over the entries of a reduced string list
pairs. They are constructed from a constant binary stringof the RAS1(or RAS3 orbital space.

01011 and a hitb, whose positiona is variable. The bit It can be shown that all possible lists of string addresses
value ofb, is 1 for ¢xrasx andO for ¢ rasx. As b, propa- can be constructed using tipeopagator function
P P
gates from the right to the left of the strings, the total string M(RASX) —u
addresses change if the bit values in fixed bit positions inthe ~ p(u)= 51Au( N (M=) )(bu—bag(f-s-)). (33
Y

strings change. In particular, if after the propagation of the ]
variable bit to positiora (from positiona—1) we haveb, Whereue{a,b,c,d} and the parametef is the number of

=b,_,, the string and its address have not changed. If irvariable indices in the RA% substring. The propagation
contrasth, #b,_,, the string address has changed by a num!ule, P, for the RAX subspace may then be expressed as

ber equal to the number of binary permutations of all bits to ¢
the left of positiona, represented by the binomial coefficient  A{K**%(n,r.s)} = A{K**(n—1,r.s)}+ >, p(u(v)),
M(RASX) —a left : 4 L4 p=1
NIeft ) ),where N ;"(a) simply denotes the number of (34)
p

1's to the left of positiora. This is again due to the nature of
Handy’s index equation. 1b,=1; b,_,=0 the string ad-
dress rises, ib,=0; b,_;=1 the string address lowers, i.e.,
M(RASX)—a
N*"(a)

for a given reduced strin@.s). When proceeding to the next
reduced strindin the case of 0 indices in RASeach entry
may be interpreted as a reduced styjrifpe relationship is
trivial, as shown above,

('32) A{KEA(Lrs!) = A{KE S (1,rs)} + 1. (35)

These two propagation rules indicate an efficient algo-  If the number of holes and electrons in the respective
rithm for the computation of the remaining RAS1/RAS3 subspaces RAS1 and RAS3 is greater than 2, care must be
string addresses, if the first address of a given list is knowntaken to ensure each termp|é;ﬁéj€|Lp) is represented by
It is necessary to know only a number of reduced RAS1 an@nly one model space terfK[&,,,a,,/L,), in order to
RAS3 string lists and some binomial coefficients, both ofavoid multiple contributions. Figure 8 illustrates the prob-
which may be precomputed at certain stages of the compuem. The same string pai{,,L,, is arrived at by expanding
tation. The outlined scheme avoids redundant index spadde model space string pairs in the complete RAS space,

testing in a similar fashion the reduced list approach develusing the appropriate propagation rules. The string pair,

Aa=1: A.A{KSASX}: (ba— bal)(

Kcch

Kgl(l),L’c’,‘(l) ....................... ) Kgl(Z),LZ‘(Z)

FIG. 8. Unwanted double contributions may arise when
M M two model string pairs generated by different terms
(Kg‘|é‘f\,péxﬂ|L;"> result in the same contributing term
(Kp|éifpéjp|Lp), through an application of the propaga-
tion rules. The example shown here illustrates the prob-
lem: the two model space excitatiof}'|a7,8,/L 7
and(K}ag,8,/L}") both give(among othersthe con-
tribution (K ,|a],,310,/L ,)-

_ N W R BN ®
11 1 1 1

=N W R Lo 00

— N W R LA N

No
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KP'LP, has been constructed using the same propagatioFABLE lll. Possible combinations of excitations between RAS subspaces.
rule, but starting from different model string pairs, (1—2 reads: excitation from RAS1 to RAS2

m m m m H H"E
K, (1),L,(1) andK,(2),L,(2). Each model string pair is

W—X

related to a different excitation operator in the model space,

namelyal &q, and af &g,, respectively. This problem is, Y—* -1 1=2 2-2 1-3 2-3 3-3
however, easily avoided by requiring the model space indices—1 X X X X X X
w,X,Y,z to be flush-right in the RA®™ model subspaces. In 1—2 X X X X X
graphical terms this means that loop-opening and loop?—2 x X X X
closing segments will be concentrated on the lowest possiblgj>3 8 i i
orbital level in the RAX™ model subspaceggf. Fig. 8). It is 3..3 ~

then straightforward to see that the only restrictions on the
values of MxHole and MxElec are

0<MxHole<2M(RAS1), The possible combinations are shown in Table Ill. Assuming
0<MXxElec<2M (RAS3). MxH(_JIe>2 and MxElee=2, how marlly.@_(citations—tw are
possible? There are only two possibilities for excitations of

In the special case of both MxHole and MxElec assumingype RAS1-RAS1 (1—1), namelyw—w andx—w. Like-
their maximum values the configuration spaces of CAS andvise there are only two realizations for excitations of type
RAS become identical. 3—3. Excitations -3 are all represented by one model

The 2e Excitation ContributioriThe 2e excitation term  space excitationx—w. We haveM (RAS2) possible model
[Eq. (14)] of the vectoro [Eq. (3)] is by far the computa- space excitations—w of type 1—2 (one for each RAS2
tionally more expensive one. It consists of two parts thaiorbital), and alsoM (RAS2) excitations of type-23, again,
differ conceptually. Thexa/BB parts(first two term$ each  one for each RAS2 orbital. Finally, there af&(f*S?) pos-
represent a double excitation involving electrons of one spisibilities for excitations of type 22. Table IV shows these
type only. All that is needed to accommodate for the doublenumbers analytically and numerically fol(RAS2)=3, 6
excitations in a single string space, using the model spacend 10. Table V summarizes the number of unique index
approach, is an extension of the model subspace by up to twguadruples, due to the restriction on possible combinations
extra model space orbitals for each model subspace. Thsf (wx) with (yz) [cf. Eq.(36)]. The following can be seen.
aB-part and Ba-part [the last two terms in Eq(14)] are (1) The contribution of W—x,y—2z)=(2—2,2—2) is
simply combinations of single excitations in both thethe largest one and its relative importance grows with in-
a-string space and thg-string space. Thus, for the purpose creasing size of the RAS2 subspab®RAS2). This means
of finding all spin-string pairs, the/ part of the 2 excita-  that in most cases the extension of RAS1 and RAS3 sub-
tion may be treated in an identical fashion to theeixcita-  spaces will simply result in a list of consecutive subspace
tion. _ o ~addresses, and that both sign, i%g,nand integral, ij |kl),

As in the case of thed excitation, out-of-space excita- e constant for all contributions derived from a model space
tions within a spin-string are entirely avoided by construc-gyring pair.
tion, through usage of the model space approach. The com- () All other relatively large contributions stem from ex-
bination of two valid model string pairs for thes-part and  citations with at least one of the two excitations being a 2
Ba-part may, though, result in an out-of-space excitation._,» The advantage in this case is that the problem of finding
However, such a combination may simply be rejected at th‘?elevant pair«ihvie, Linejg very similar to the & case.
model space level, before any expansion of external sub- In summar;, mostadouble excitations are computed from

spaces takes place. . . consecutive CSFs, with constant integrgl|kl) and parity
The symmetry properties of the two-electron Integralsfactor s rﬁp This part is getting relatively more important
(ij|kl) mean that it is possible to reduce the loops over W - P 9 9 y P

i,j,k,I to unique integrals and the summation in E4).over as the s_ystem SiZ€ grows. The next most releva_nt_part con-
i=j, k=1l andi(i—1)/2+j=k(k—1)/2+1. By introducing SIStS logically of a ® excitation type problem. Th|s is par-
the model space we replace summation over orbital indicegCUIarIy true for theaa 2e part. In Table VI the dimension
i,j,k,I with model space orbital indices,x,y,z. A single set

.Ofdr.nOdel spaceh IleceshpOtentlally repreiﬁnt a Tet ﬁf lc:jrblfta'}ABLE IV. Number of model space excitatioxs—w between RAS model
indices. Nevertheless, the symmetry condition also holds ngaces, provided MxHofe2 and MxElee=2; analytically and numerically

the RAS model space: for different RAS2 orbital subspace sized—2 reads: excitation from
RAS1 to RAS2.

w=x, y=z (wx)=(yz),

. 1-1 1—2 2—2 1—-3 2—3 3-3

with (36)
1M(RAS2?
w(w—1) y(y—1) M(RAS2) 2 M(RAS2) +M(RAS2) 1 M(RAS2) 2
(WX)=——5—+X, (yg)=—5—+LZ

2 2 3 2 3 6 1 3 2

- . , . 6 2 6 21 1 6 2

Because of these restrictions we will only find a restricted 5 10 55 1 10 2

number of excitation combinations between RAS subspaces
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TABLE V. Number of double excitations—w, z—y between RAS model orbital subspaces; analytically and
numerically for different RAS2 orbital subspac¢€onstructed using Tables Ill and IV and E§6)].

Number of combinations

M(RAS2)=

X—W z—y Analytically 3 6 10
1-1 11 4 4 4 4
12 1-1 2X M (RAS2) 6 12 20
1-2 2 (M(RAS2+M(RAS2)) 6 21 55

2-2 £ (M(RAS2)E— M(RAS2)) 4 35 165

22 1-1 M(RAS2)*+ M (RAS2) 12 42 110
1-2 %(2M(RASZ)3 14 91 385

+3M(RAS2)*+ M (RAS2))

2-2 3 (M*+2M3+3M2+2M) 21 231 1540

1-3 1-1 2 2 2 2
12 M(RAS2) 3 6 10

22 2 (M(RAS2)2+ M(RAS2)) 6 21 55

1-3 1 1 1 1

2.3 1-1 2X M (RAS2) 6 12 20
1-2 M(RAS2)? 9 36 100

22 3 (M(RAS2) + M(RAS2)) 18 126 550

1-3 M(RAS2) 3 6 10

23 2 (M(RAS2+ M (RAS2)) 6 21 55

3—-3 1—1 2 4 4 4
12 2X M (RAS2) 6 12 20

252 M(RAS2)%+ M (RAS2) 12 42 110

1-3 2 2 2 2

23 2X M (RAS2) 6 12 20

3-3 4 4 4 4

5, 155 743 3242

of the discussed cases is summarized analytically and for the-spin andg-spin model string space, the RAS1 and RAS3
same example cases already used above. The two dominatisgbspace strings need to be expanded. This will be done in a
contributions are becoming more important with the growingnested loop over all RAS1 and RAS3 expansions. If all
size of the orbital space, and as a consequence, the efficiengypdel space indices, x (w,x,y,z) lie within the RAS2 sub-
of the propagation rule scheme becomes relatively greater fQyace  then all contributions will be for the same integral
larger problems. (ilj) ((ij|k1)). If, on the other hand, some or all model space
D. The effect of propagation rules on the order iqdicgs fall i.nto one or poth gf the other §ubspaces, the con-
of integrals and the computation of parity factors tributions will be for a list of integrals. It is therefore useful
to assemble the corresponding list of integrals, for every set
of model space indices, in the order they will be accessed.
This order is entirely given by the propagation rules, and
only one list needs to be assembled for any set of model
TABLE VI. General overview of the total nqmbers of distinc?iwax,y,z space indices. The integral lists faw-, aB-, Ba- and BB-
quadruples for MxHoIe_r 2, MxElec=2, analytically and numerically for a contributions will be identical and need to be assembled only
few RAS2 subspace sizes.
once.

Total dimension ... It is by now clear that the value associated with a bra-ket

Number of M (RAS2)= term of the form(Kp|éfpéj€|Lp> may differ from its model

In an actual implementation of the propagation rule al-
gorithm, once a model string pair is found for both the

indicesw,x,y,z L mA
in RAS2 . analyically 3 5 1o Space analog sgif=(K7a, a,|L]) at most by a factor of

— 1. If, for example, the indek lies within the RAS3 orbital

1

4 5 (M*+2M3+3M2%+ 2|;/|) 21231 1540 subspace, then the propagation of the appropriate bit towards

3 M(RAS2)*+ M (RAS2) 3 252 1100 the left will Iti . h time the bit val f

% 1 (M(RAS2)+ M(RAS2)) 42 147 385 e leftwill resultin a sign change every time the bit value o

ob M(RAS2) 9 36 100 b; ;1 equals 1. Because of this behavior and the direct asso-

1 10M(RAS2) 30 60 100  ciation of the sign change with the propagation of variable

0 7 v 17 17 its, it is convenient to pre-compute the sign-changing fac-

5 155 743 3242  tors for each spin subspace together with the RAS1 and
. . K

awithout excitations of type 23 and 2. RAS3 subspace string address pairs. The term;;’sgn
PExcitations of type 2-3 and 1-2 only. =(K,|&4;,IL,) is then computed as
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S rf“zs oxs K§A51XS KRAS3 37 Thus the memory requirements are dominated by the
9n; 9 9n; an; ' vectors o and C. However, if the working memory is not
large enough to accommodate the entire Cl vectors, it is
straightforward to adapt the algorithm to use only certain
blocks of these vectors, by taking advantage of the blocking

The same applies without change to the Bquivalent,
Sgd?p:(KAélTpé‘lpé*péjple)'

. « KRASL KRAS3 of string addresses of all strings that belong to a certain
Sg'ﬁm =sgrf"“xsgnig  Xsgn (38 graph. This means that the vectarsand C with elements
OK K and Ci k, are also blocked with respect to graph
Ill. THE DIRECT RAS ALGORITHM combinations(categories Since the graph combination is

. . fixed for all contributions of a found model string pair, it is
_ The algorithm that follows from the use of an integral ,,qqjhje to adapt the described scheme by either reading in
driven ClI is inherently parallel, and the parallel loop may ihe required block of the CI vectors from distributed

include any combination of orbital indicesj,k,I. We will - emory or by restricting contributions to a given CI vector
now provide the algorithms for one- and two-electron eXCi-plock at a time.

tation term contributions of Eq12). All reduced.lists of _Particularly in the first iterations of a typical MCSCF
model space and RAS subspaces and the associated Hanq&ﬁnputation, there are only very few nonzero elements
index matrices are precomput'ed.only once. The outer loop |§K « . This means that in principle, only those contribu-
over the model space orbital indicesx,y,z. The computa- tior?sﬂ
tion of model space string pairs is analogous to string pair '
computation as described in Ref. 9 for full Cl string pairs. oL =0 | ])HASSCK «

. - . a-p a-p ! ap
Once the model string pak, ,L, is known, its category and N ‘L (40)
propagation rules for both the RAS1 and RAS3 subspaces ov 1 =0 1+ (ij[kDBjjiCk k-
are identified. This information is used to assemble the list of

integrals into a vector, where they will be accessed in a sewr[h CKaKﬁO need to be considered to compuateThis is

quential manner during updating of thevector. Then all &7 inhere_nt weakn_ess of the integral_driven ap_p_roach, since
excitation lists are assembled, by application of the propagd'® resulting algorithm does not provide for efficient exclu-

tion rules to the RAS subspace model strings, RA%hd sion of blocks of the CI vector. However, to increase effi-
RAS3™. We denote these subspace excitation, |'$f§SX ciency in the model space approach proposed here, one could

Finally, nested loops over subspace excitation list entrie@SSemble a short list of flags that indicate whetrgyof the

lead to the local address, and by combiningand B-strings, a-strings obtained by expandingaamodel string belongs to

to the CSF address. The appropriate algorithms fer2 a block ofC with at least one nonzero element An analogous

and % a3 parts, respectively, of the-vector are summa- list would be needed fop-string blocks. The most simple

rized in the Appendix. realization of this idea would be to define the blocks as hav-
The dimension of the integral list is a function of the INY contributions of a unique-graph3-graph combination.

number of orbital indices in RAS1 and RAS81 andn3, More_ glaborate meth_ods could _include, fpr example, lists for
specific RAS2 substrings, possibly combined with the appro-

respectively, s > X )
priate propagation rules. Finally, it should be noted that use
M(RAS1)\( M(RAS3)\| 0=snl<4, of the propagation rules means that it is not straightforward
D(n1n3)= ni n3 0<n3<4-nl’ to take advantage of point group symmetry.
(39

If all orbital indices lie within RAS2, then the integral list

contains only one element. The maximum length of the inte!V- PARALLELIZATION
gral vector depends on the relative size of the RAS1 and  \yg will now describe the parallel implementation of the
RAS3 orbital subspaces. In the special caseMqRAS1)  girect RASSCF algorithm. A thorough discussion of the
=M(RAS3)>2 the maximum dimension is for two indices method of parallelization used and its performance can be

each in the RAS1 and RAS3 subspaces, found in Ref. 9. We assume a scalable parallel distributed

M(RAS1)2 memory computer architecture consisting of nodes, each

D(2,2):( > ) IM(RAS1) with local memory. The nodes themselves may be symmetric
multiprocessor(SMP) machines with shared memory. As

M(RAS1)2—M(RAS1)\? mentioned in the previous section, the integral driven algo-

:M(RAS3)>2:( 2 : rithm is already inherently parallel. The main issue to ad-

dress is thus how to ensure good load balancing. A flexible
For example, withM(RAS1)=M (RAS3)=10, the maxi- load balancing mechanism helps to achieve optimum scaling
mum length of the integral vector is 2025. At any stage theand is essential in heterogenous environments, where a clus-
length of the integral vector will be small when compared toter may consist of nodes of different architecture. It is also
the CI vector. The memory requirements for the reduced listémportant in the realistic situation of uneven preloading of
of RAS subspace strings and model space strings are equalijlocated nodes, i.e., in situations where some workers must
small compared to the Cl vector, as are the partial excitatioshare resources with concurrently running programs on the
strings,£5°. same node.
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TABLE VII. The number of independent parallel tasks, defined as uniqueprocess is called the master procéssastey. The process
model space index quadruples,x,y,z, for various RAS2 orbital subspaces spawned on the first processing node retrieves the index
(MxHole=MxElec=2). (wxy? (initially (Wxy2= (WX) mad (WX) mact /2 With
Number of parallel tasks (WX) max=M™(M™+1)/2). A list of NTask indices is as-
sembled on the worker, by testing the validity afxXy2),

M(RAS2) index pairs ¢.x) index quadriples:x.¥:2) storing it if valid, testing wxy2—1, and so forth. Invalid
4 23 410 indices are simply dropped when found. The worker then
g 23 lgj; puts a new index Wxy2'=(wxy2 —NTask— Nj,yaiq into
10 80 3638 tuple space(the virtual shared memory area in the Linda

mode), which is then retrieved by the next worker, etc. If
NProcS>1, thenNProcS—1 shared memory processes are
created, each of which will be assigned a subset of
Load balancing can be achieved when the total numbelN T@SkINProcS tasks. Thus the original loop over model or-
of independent, parallel tasks is large compared to the nun2itél space indicesy,x,y,z, is parallelized. Each processor
ber of processing elementBESs, also: CPUs The overhead then carries ou_t Fhe. assembly afusmg the_orlgmal se_nal
of subdividing the total work into parallel sub-tasks should@/gorithm. On finishing, the next available indewXy3 is
ideally be kept small compared to total execution time. Com/J€trieved from tuple space and this procedure is continued
munication between workers should be avoided and shoulntil all model space generator combinations are processed,
be handled by a separate process, in order to avoid synchrb€- the index fxy2 =0 is found. Finally the intermediate

nization delay<® results are passed through tuple space to be combined to give
The sub-tasks that are executed on parallel nodes corrd€ final result of the computation. o
spond to model space index paissx (1e contribution, or SMP architectures are supported in three walysusing

model space index quadruples,x,y,z (2e contribution. Linda, (ii) using shared memory, diii) a combination of
The relatively small size of the model spa@s opposed to both. In the first case(i), one Linda worker is created on
the orbital space comprising all active orbitalseans the each PE. The communication overhead in this scheme is ex-
total number of independent tasks is much reduced. Tablgemely small. Furthermore, using Linda even on SMPs takes
VII shows for different sizes of the RAS2 subspace andfull advantage of the load balancing mechanism described
MxHole= MxElec=2 the number of parallel tasks for both above. However, the static date.g., the CI vectoC, inte-

the le and 2 contributions. The number of tasks is inde- grals, etc. must be replicated for each Linda worker.

pendent of the size of the RAS1 and RAS3 subspaces, and The alternative(ii) is the usage of shared memory
lies within a useful range, i.e., there are sufficiently many(NProcS>1). In this case all static data get replicated only
sub-tasks to enable load balancing for a large number of PE§Nce per SMP and are shared by all PEs. All result vectors
even for the smallest RAS2 orbital subspace. For largefone per PEEare summed before the result of this worker is
RAS?2 subspaces, in order to reduce overhead due to corfassed back to tuple space, where it is subsequently retrieved
munication, several subtasks may be grouped together in oby the master process. This method has the advantage that all
der to adapt granularity of the parallelism. This may be donestatic data exist only once in working memory on an SMP
dynamically, in order to adapt to the number of requested onode. For example, on an SMP wiProcS=2 the memory

allocated CPUSs. requirements are for three CI vectors; i.e., one result vector
The IDA approach followed by us here involves the for each PE plus one shared Cl vect@). This is particu-
outer loops over the model space orbital indivex,y,z. larly useful if available working memory is limited and/or if

Inside these nested loops, the assembly of certain blocks dfie size of the Cl vector is very large. A further advantage of
the vectoro takes place. However, with the exception of thethis option is a reduction of communication by a factor of
Cl vector o itself, all data inside the loops are static. There-NProcS, since all static data and also the combined results
fore, we can minimize communication overhead by passindiave to be passed only once péProcS workers. The price
these static data to all worker nodes only once at the begirto be paid in this case is that there is no load balancing
ning of each eigenvector iteration. This is of advantage esbetween PEs on an SMP. The tasks defined byNReocS
pecially for distributed memory architectures, and, in par-indices are of very similar length, but will be slightly differ-
ticular, for low-cost configurations with standard network ent. In practice, this means that efficiency will decrease if
interprocessor communication. On shared memory architedNProcS becomes very large.
tures(e.g., an SMP nodehese static data need to exist only The third option is any combination of the previous two.
once. In this case the number of PEs using shared memory,
We now discuss the implementation of the general stratNProcS, may be chosen to comprise any available number of
egy just discussed for distributed memory architectures usingEs on each node, i.e., on a 4way SMP nbdl&rocS can
Linda® We begin with a few definitions. We assume thatassume the values 1, 2, 3 or 4. C4#ie would then corre-
each node may be an SMP. The number of processors @pond to two Linda workers running on that node, each of
each SMP is indicated a$ProcS (on single processor nodes them comprisingNProcS=2 shared memory processes. Tak-
NProcS=1). The valueNTask is computed, witiNTask ing advantage of this option the mode of parallelism may be
=NProcSXH and H is chosen to both optimize load- tailored to the available architecture.
balancing and minimize communication overhead. The main  The approach described above ensures great flexibility in
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TABLE VIIl. CASSCF and CAS-PTZRef. 19 results for indole. For the source of experimental results see the
references inRef. 19.

CASSCF(10,9)/6-316 CAS-PT2/ANO Experiment

Geom. State E [hartred E.o [eV] E. [eV] E. [eV]
FC s2 L) —361.3371  6.20(vert) 4.73(vert) 4.77
FC S1 L) —361.3810 5.00(vert) 4.43(vert) 4.37

FC S0 —361.5648  0.00 0.00 0.00
1L, min. S1 —361.3940  4.650-0 4.35(0-0 4.37
1L, min. S1 - - 4.66(0—0) 4.54

S2 —361.3506  5.830-0 -

choosing the number of processors and leads, due to thef the excited states that includes a good approximation to
relatively high number of tasks, to an effective load balancthe energy gap of 0.4 eV between the S1 and S2 excited
ing, provided the number of PEs is small compared to thestates.
number of tasks. The intermediate assembly of a sublist of In Table VIII and Fig. 9 we illustrate the results of the
NTask tasks ensures the optimum granularity, through dyCASSCF computation. A comparison with experimental re-
namical adaptation oNTask. The load balancing scheme sults in Table VIII clearly shows that the results of the
implemented also allows for the fact that, in many environ-CASSCF computation are not only quantitatively, but also
ments, the CPU-time on different nodes of a parallel machingualitatively, incorrect. According to the experimental data,
may be shared among a number of running programs anthe two states of indole(, and *L,) have similar 0—-0
thus automatically uses the resources as they become avditansitions(emissions from the minimum for the state to the
able. ground-state minimuyn Therefore, the potential energy sur-
face probably has two different minima on the surface of
S1: one for each state. Presumably there is a conical inter-
section(surface crossingbetween S1 and S2, because the
The RASSCF program developed and implemented a8, state is S2 at the Franck—Condon geometry. At the
part of this work, has so far been applied in a small numbeCASSCF(10,9)/6-318 level, the surface is wrong: thie,
of projects, including the calculation of the first two excited minimum lies on S2.
states of indole. We will in this section denote by A common technique used in order to enhance qualita-
RAS(N,M,+M,,+M,;;)[MxHole,MxElec| a RASSCF cal- tively the description of electronic states is to “double” the
culation with N electrons in an active space bf; RAS1 active space ofr-orbitals in a CASSCF computation. The
orbitals,M,, RAS2 orbitals andV;;, RAS3 orbitals. MxHole corresponding CASSQEO,18 in the case of indole is, how-
and MxElec signify the maximum number of particles ex-ever, outside the scope of practical computation. The
cited out of the RAS1 space, and into the RAS3 orbitalRASSCF treatment of this enlarged active space on the other
space, respectively. hand is absolutely practical. A second possibility for qualita-
Indole has two low singlet excited staték,, (covalenj tively improving the wavefunction is to include-orbitals
andL, (ionic), which are separated by a small energy gap ofinto the set of active orbitals.
approximately 0.4 eV. A CASSCF(10,9)/6-31@alculation Preliminary computations using the 3-21G basis set were
overestimates this gad.20 eV}, mainly because the energy performed in order to identify the most suitable RAS active
of the ioniclL, state is overestimated. CAS-PT2/ANO cal- space definition. In a first test the active space was doubled
culations by Serrano and Rd8seproduce the experimental by including the 9 2p orbitals of Asymmetry(a m-system
value. The goal of this study is to give a balanced descriptiomsed in the CASSCF computatjoand the 9 3p orbitals of
A” symmetry. Ten of these orbitals were placed in the RAS3
subspace, and the 3 nearly doubly occupied orbitals from the
FC CASSCF computation in the RAS1 subspace. This corre-
sponds to a CA&,5) reference space in RAS2. Two compu-
tations were performed, one with MxHetdvixElec=2 and
one with MxHole=MxElec=1. In a second test the active

V. EXAMPLE APPLICATION

6.20

CI-S1/82
6.16

TABLE IX. Results of preliminary RAS computations of the first two sin-
glet excited states of indole. The 3-21G basis set was used for these com-

putations.
5.00 N M, My, M MxHole MxElec AEg; s
10 3 5 10 1 1 0.90 eV
10 3 5 10 2 2 1.09 eV
FIG. 9. Potential energy surfac€§1,S2 of indole, calculated at the 30 13 5 20 1 1 0.78 eV

CASSCEF leve[ CAS(10,9)/6-31G].
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TABLE X. Orbital occupancies for RAS(30,%#3 +20)[ 1,1] and RAS(20,8- 5+ 11)[ 1,1] computations at the
Franck—Condon geometry (6-31(asis set Orbitals that have been excluded in the latter RAS computation
are shown in italics.

Sym. RAS(30,13 5+ 20)[1,1] Sym. RAS(20,8 5+ 11)[1,1]

RAS1  10A 1.9986, 1.9984, 1.9983, 1.9979, 1.9978 5A’ 1.9979, 1.9960, 1.9958, 1.9955, 1.9951
1.9960, 1.9957, 1.9952, 1.9949, 1.9932

3A" 1.9866, 1.9842, 1.9731 3A 1.9847, 1.9808, 1.9716
RAS2 5A" 1.8567, 1.0755, 0.9368, 0.1057, 0.0509  "5A1.8377, 1.0966, 0.9312, 0.1136, 0.0535
RAS3 1A 0.0210 1A 0.0233

10A’ 0.0062, 0.0039, 0.0038, 0.0037, 0.0036  '5A0.0059, 0.0038, 0.0038, 0.0031, 0.0031
0.0036, 0.0033, 0.0024, 0.0019, 0.0016

9A” 0.0025, 0.0013, 0.0011, 0.0011, 0.0010  "5A0.0028, 0.0013, 0.0013, 0.0013, 0.0011
0.0010, 0.0009, 0.0009, 0.0001

orbital space from the first test was augmented by 10 Figure 10 shows the potential energy surface as com-
o-orbitals ando™-orbitals corresponding to the 10 CC and puted at the RAS(20;#6+11)[1,1]/6-31G" level. The re-
CN o-bonds. The RAS1 subspace now contained 13 orbitalssults in the figure are qualitatively correct, although the 0-0
RAS?2 5 orbitals and RAS3 20 orbitals, and excitations out ofenergy for the'L, state is off by more than 1 eV. In contrast
RAS1 and into RAS3 were limited to 1 particle each. Againto the vertical excitations, the potential energy surface cor-
the RAS2 subspace translates into a ©AS reference rected with the 6-311 G* basis is worse than the ones with
space. In Table IX we summarize the computations and thei8-31G". The reason for this is probably that the points were
results. It is clear from these preliminary results that inclu-optimized with the latter basis.
sion of g-orbitals and single excitations relative to the refer- The result of this first application of our RASSCF pro-
ence space are particularly important. gram is encouraging. The improvements of the obtained ex-
The strategy from now on wds) to increase the basis to citation energies compared to the CASSCF(10,9)/6+31G
6-31G", (b) to reduce the RAS space by eliminating the considerable, but the crucial result is the qualitatively correct
MOs with occupancies closest to 2.00 and 0.00, and vary thpotential energy surface. The computational cost increases
RAS2 subspace, an@) to improve the energies with the only moderately, with the number of CSFs increasing from
6-311+ G* basis set. Table X shows the orbital occupancie8001 for the CASSCHE0,9 computation, to 53735 for the
resulting from stegga). A number of orbitals that are virtually RASSCF(20,#6+11)[1,1]. On the other hand, explor-
doubly occupied or unoccupied are excluded from the activatory calculations have shown that in order to complete the
space and the orbital occupancies from the resultingtudy of the potential energy surface and optimize the tran-
RAS(20,8+5+11)[1,1] are also shown in Table X. The ex- sition structure between the two minima on the S1 surface,
citation energies obtained from these calculations are showextension of the RAS2 subspace is necessary.
in Table XI. In general, all calculated energies for S1 are
0.7-1.4 eV higher than the experimental value. However, the

1.4064 1.4390

energy gap between S1 and S2 is much more accurate the 1413~ | | o
the CASSCF value of 1.20 el¢f. Table VIII). The reduction 1 3557 '

of the active space has only a small effect, while the use of Fe 1_452-32“
the larger (6-313 G*) basis set improves the results sub- 13825 1.4350
stantially. 5.86(598) 52 CI-S1/52

exp.: 4.73 5.71(5.59)

TABLE XI. Results of RASSCF computations of indole, at the FC point. 14013 1428{ 1'¢45°°
The experimental values are 4.77 e\&1), 4.37 eV (S2, 0.40 eV >.444e
1.3689
1.3201
1.4304 b

(AEsz-s1)- 5.26 (5.15)

exp.: 4.33
Erel AEs, & 1.3975 1.4274
Basis set KM +M+My,) RAS2 (eV) (eV)
6-31G° (30,13+5+20) (4,5 S2:6.41 0.67 1.4202 1.4135
S1:5.74 1.4402 1 3660
6-31G° (20,8+5+11) 4,5 S2:6.01 0.74 1 4308
S1: 5.27 .3865
6-31G* (20,7+5+12) (6,5  S2:6.74 0.68 e
S1: 6.06 S
6-31G° (20,7+6+11) (6,6 S2:5.98 0.83 FIG. 10. Potential energy surfaces calculated at the RASSCF(evetgies
S1:5.15 in eV, bond distances in)AThe geometry optimizations were carried out at
6-311+G* (20,7+6+11) (6,6) S2:5.73 0.65 the RAS(20,7%6+11)[1,1]/6-31G" level (the number in bracketend the
S1:5.08 energetics recalculated with a larger basis set, at the RAS{Z0{711)

X[1,1]/6-311+ G* level.
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VI. SUMMARY integral block drivenapproach. Clusters of index quadruples
Iyvith variable cluster size ensure adjustable granularity of the

In this paper we have developed an efficient method fo lleli h idi i bl C L
updating the CI vector in a RASSCF computation within theParalelism, thus avoiding scaling problems. Communication
overheadif run in paralle) is minimal through implicit task

iterative Davidson/Lanczos methods. The string based algos” [~ ) . .
rithm arises due to two new concepté) the RAS model definition by only one integer. This technique also leads to a
space concept ensures a very efficient identification of blockgatural load b'alanc'lng. .

of contributions to theo-vector, and we have made use of The al_gorlthm IS |mplemented in the current%ﬂdievl elop-
the reduced list algorithm previously introduced in Ref. 9 for_ment version of the Gaussian package of prog 1€

efficient CASSCF computations. The RAS model space al!mple_men_tation comprises the 0pti0r_1 of par_allel execution.
lows the representation of a restricted space problem in aﬁgnmng in parallel may be done using dls_tnbuted memary
inda) or shared memory, or a combination of these. As

unrestricted manner, thus avoiding the complications inher:

ent in the RASSCF methodii) Propagation rules are used to well as the most general case of Slater determinants, we also
efficiently construct the string address@s opposed to the implemented the straightforward simplifications for singlets

stringg in a predefined order. Propagation rules are a sim Ie"fmd triplets using Hartrge Waller functions. .
99 b bag b A test example application has been performed with the

but very efficient algebraic tool avoiding table-lookups and )
v g J P current version of the program. The results show that the

the construction of contributing strings themselves. . .
The resulting method is memory efficient, since it uti- RASSCF method is a useful tool allowing us to approach

lizes compressed storage of precomputed model excitatioWOblemS that are currently not tractable with the CASSCF
lists in the main memory. The construction of the full exci- method.

tation strings is fully avoided. The algorithm developed fol-

lows an integral driven approach. The resulting outer nesteécKNOWLEDGMENTS
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APPENDIX: ALGORITHM

1. The 2 e excitation (e« part) contribution to the o-vector

-At program initialization, precompute all reduced model string lists

-Do (parallel) loop over model space index quadruples w,X,y,z, [cf. Eq. (36)]

-Do loop over reduced model a-string list [:":‘Am:;

-Insert bits by ,by,by,b, into reduced model string and form model excitation string
(= Kg.LD)

-If KD L™ are invalid, jump to loop end [this is to avoid double contributions; cf. Sec. [JC
—sgifl, Catin,ie), A{KFY, Caty,iz), A{LYS3, P(RASL), P(RAS3)

-Assemble integral list {(ij|kl) }, using the propagation rules P(RAS1) and P(RAS3)
-Apply P(RAS1) to assemble RAS1 substring excitation list , ERAST

(= AKE ST A{LE S, sl
-Apply P(RAS3) to assemble RAS3 substring excitation list , ERAS3,

B
-Do loop over all entries in o
-Do loop over all entries in ERAS3

—A[K,}, AL}, (ij1K1), sgn,=sgrf)'sgr, "> sgrfS?

-Do loop over all allowed Cat(i,,iz) [allowed if Max(y,ip)+ip<MxHole and Max({e,is) +i.<MxElec]
-Do loop over all Kg(Cat(y ,ig

'UKaKﬂ::UKaKﬁ+%Sgny(i”kl)CLaKﬂ

OLKG=OL KT 2sgn(ij |kI)CKaKB

-End loops

£ RAS1

2. The 2 e excitation (af part) contribution to the o-vector

-Do (parallel) loop over model space index quadruples w,X,y,z, [cf. Eq. (36)]
-Integral list {(ij|kl) } is already known from aa part .
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-Do loop over reduced model a-string list L',:fr?:lz

-Insert bits b, by into reduced model string and form model excitation

string  (— KT,LM

-If KLY are invalid, jump to loop end [this is to avoid double contributions; cf. Sec. [JC
—sg, Cat(y,io), A[KRAS2, Cat(y,,i}), A{LRAS%, P(RAS1), P(RAS3)

-Apply P(RASI) to assemble RAS1 substring excitation list , ERAST

(— A{KE S ALY, sgrif™™)

-Apply P(RAS3 to assemble RAS3 substring excitation list , ERASS

(= AKEAS (LGRS, sgf")

-Do loop over reduced model B-string list E',:I"Zq__f

-Insert bits by,b, into reduced model string and form model excitation string (— KQ,L;‘Q)
-If KJ,Ly are invalid, jump to loop end [this is to avoid double contributions; cf. Sec. | C

n

—sgrfy, Cat(y,,i), A{KF*%, Cat(y,iz), A{LF?
-If [(ip+ip)<MxHole and (;+i})<MxHole and {.+i,)<MxElec and {;+iy)=<MxElec ] then
RAS1

-Apply P(RAS1) to assemble RAS1 substring excitation list Y
(—>A{KgASl},A{L§ASl}, SgrﬁASl)
-Apply P(RAS3 to assemble RAS3 substring excitation list EFSS,

(— A{KE S, AL, sgrf™d)

-Do loop over all entries in ghast

-Do loop over all entries in ERASS
—A[K,}, AL}, sgn,=sgrfl sgrAt sgriAs?

-Do loop over all entries in EEASl

-Do loop over all entries in ERAS3

— A{K g}, A{Lgh (ijlk), sgrb=sgrﬁsgr§’*51sgrﬁ’*‘°’3
OK K=K KT 1/ZSngSgrb(ij|kl)CLaLﬂ
'ULaLB’:ULaLB"_l/ZSg@Sgrb(ijlkl)CKaKﬂ

-End loops
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