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A new efficient approach to the direct restricted active space
self-consistent field method
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We present an implicitly parallel method for integral-block driven restricted active space
self-consistent field~RASSCF! algorithms. Our algorithm entirely avoids testing the index space for
nonzero contributions to the CI vector, by finding entire blocks of contributions through use of
simple algebraic rules~propagation rules!. The blocks themselves are efficiently identified by
introducing a RASmodel space. Our algorithm is capable of making efficient use of modern
supercomputer hardware, supporting both shared and distributed memory architectures and hybrids.
Applicability of our method is demonstrated with a RASSCF investigation of the first two excited
states of indole. ©2003 American Institute of Physics.@DOI: 10.1063/1.1578620#
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I. INTRODUCTION

The restricted active space SCF~RASSCF! variant of the
MCSCF method has been first proposed by Olsenet al.1 and
many successful applications have since been reported~e.g.,
Refs. 2–4!. The RASSCF method may be considered a lo
cal extension to the CASSCF method, which allows one
tackle two limitations of the latter method.

The practical limit of the system size in a CASSCF co
putation is around 12–14 active orbitals, at least in ca
where the number of electrons is about the same as the n
ber of active orbitals and no symmetry can be exploit
However, the resulting orbital occupancies of several orbi
in the active space are frequently either close to 2 or 0 o
the entire range of electronic states and spatial configurat
of interest.

Dynamic correlation effects are frequently included in
electronic structure computation in a subsequent step,
example, by adding a calculation treating dynamic corre
tion perturbatively~e.g., Refs. 5 and 6!, or by performing a
MRCI calculation, where selected configuration state fu
tions ~CSFs! from the CASSCF wave function are used
reference configurations.7,8 However, a qualitatively ad-
equate description of some systems sometimes require
inclusion of dynamical correlation, i.e., an extended act
space. Such systems are, for example, negative ions,
tronic dipoles and excited states.

In the RASSCF formalism, the configuration space
specified by dividing the active molecular orbitals into thr
subsets and imposing restrictions on the allowed config
tions based upon occupations within those subsets. The
subset, denoted RAS1, typically includes all doubly occup
MOs in some accepted reference, e.g., a CASSCF w
function. Allowed configurations must contain a specifi

a!Electronic mail: mike.robb@kcl.ac.uk
7130021-9606/2003/119(2)/713/16/$20.00
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minimum number of electrons within RAS1. The seco
subset, denoted RAS2, includes MOs believed to be part
larly important for the system under investigation. No occ
pancy restrictions are imposed on RAS2. The third sub
RAS3, consists of weakly occupied MOs which contribu
relatively less to the description of the system of intere
Any allowed configuration can only have a specified ma
mum number of electrons in RAS3.

The main challenge in large scale CASSCF problem
the efficient computation of coupling coefficients, and this
not different in the RASSCF method. However, the restr
tions introduced for the RAS1 and RAS3 subspaces m
that the indexing of the CSFs is more complicated. This
turn means that highly efficient strategies such as the me
of reduced excitation strings9 cannot be employed.

Our aim in this paper is to propose an efficient, integ
block driven algorithm of the RASSCF method, and to d
scribe its implementation on a massively parallel compu
Our approach is based on a model space representation o
RAS active orbitals, and an efficient expansion of the mo
subspaces. This idea is inspired by the classic paper of S
ders and van Lenthe.8 The contributions of a block of inte
grals ~with an identical representation in the model spa!
are computed together. The reconstruction of binary stri
is avoided and the full list of substring addresses is c
structed directly, using simple recursive algebraic ru
~propagation rules!. Finally, the proof of applicability of our
RAS implementation is given in the form of an application
Sec. V.

II. THEORY

As in any other MCSCF method, we seek the solution
the CI eigenvalue problem,

HC5CE, ~1!
© 2003 American Institute of Physics
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where

H5$^KuĤuL&%5$HKL% ~2!

is the representation matrix in a basis of orthonormal ma
particle configuration state functions~CSF!, which we de-
note as$uK&%. In general, only the lowest eigenvalues a
their eigenvectors are of interest. In practice, use is norm
made of iterative eigenvector procedures, such as the m
ods of Lanczos10 or Davidson.11 The time consuming step in
these methods is a linear transformation of the CI vector

s5HC, ~3!

where C is an approximate eigenvector from the previo
iteration. The central practical problem is the evaluation
the $HKL%. The general result can be expressed as

HKL5(
i j

~ i u j !Ai j
KL1 1

2 (
i jkl

~ i j ukl !Bi jkl
KL , ~4!

where the summation is over orbital indices, and (i u j ) and
( i j ukl) are the usual one and two electron repulsion in
grals. TheAi j

KL andBi jkl
KL are numericalvector couplingcoef-

ficients that depend on the nature ofuK& and uL&. In second
quantization, these numerical vector coupling coefficie
emerge as matrix elements of creation and annihilation
erators,âir

† and â j r ,

Ai j
KL5^Ku(

r
âir

† â j ruL&, ~5!

Bi jkl
KL 5^Ku(

rg
âir

† âkg
† âlgâ j ruL&, ~6!

wherer,g denote spin.
Each Slater determinant of the CI expansion can be w

ten as the tensor product of two strings, one of the occup
a-orbitals,Ka , and one of the occupiedb-orbitals,Kb ,

uK&5uKaKb&. ~7!

A string Kr is an ordered product of creation operators act
on the vacuum, and can be represented by a binary wor
lengthM , where each bitbi represents a spin orbital. The b
value of bi indicates whether the orbitali is occupied or
empty, i.e., the binary representation ofKr , fKr

, contains
Nr 1’s and (M2Nr) 0’s. We denote byL the list of all
strings in a defined~lexical! order. Each stringKr can be
identified by its address,A$Kr%, which is identical to its
position inL. Knowles and Handy12 have definedA$Kr% in
full CI as

A$Kr%511 (
k51

Nr

Z„k,l ~k!…, ~8!

using the addressing arrayZ:

Z~k,l !5 (
m5M2 l 11

M2k F S m
Nr2kD2S m21

Nr2k21D G ,
~M2Nr1k> l>k; k,Nr!,

Z~Nr ,l !5 l 2Nr ~M> l>Nr!, ~9!
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wherek refers to an electron,l to an orbital,M is the number
of orbitals,Nr the number of electrons andr denotes spin.
This addressing scheme for strings in full CI is simple. Ho
ever, in anticipation of the added complexity that will ari
when addressing RAS strings we now introduce a graph
representation of Eq.~9!. Figure 1~a! illustrates thea-string
space forM58 orbitals andNa54 electrons.13 Each string
corresponds to onepathor walk on the grid of the graph. All
paths begin at the foot of the graph, and finish in its he
advancing one level upwards for each orbital. If an orbita
occupied, the sloped segment step upwards is being u
The elements of the addressing array are added to the g
in Fig. 1~a!. According to Eq.~8! the address of a stringKa

is thus the sum of all circled values visited by the appropri
walk, plus 1. Theb-string address is obtained in the sam
way. The address of the Slater determinantuK& may then be
defined as

A$K%5~A$Ka%21!3S M
Nb

D1A$Kb%. ~10!

Equation~4! is a simple sum of products. While the on
and two electron integrals are generally nonzero quantit
the coupling coefficients are mostly zero. Efficient compu
implementations of any CI method take advantage of t
fact. One can distinguish between two main types of stra
gies to deal with Eq.~4!, namely theconfiguration driven
approach~CDA! and theintegral driven approach~IDA !. In
the CDA, given a configuration pair,uK&,uL&, all index pairs
( i , j ) and quadruples (i , j ,k,l ) that give nonzero coupling
coefficients need to be found. In the IDA, by contrast,
configuration pairsuK&,uL& for nonzero coupling coefficients

FIG. 1. ~a!: a-string graph forNa54 electrons inM58 orbitals. Every
possible path from the bottom~foot! to the top~head! of the graph corre-
sponds to ana-string. The orbitals are ordered and at each orbital level
a-electron may be added. At each vertex in the graph there are up to
paths upwards, corresponding to the nexta-spin orbital being occupied
~sloped path! or unoccupied. A lexical addressing of the strings is achiev
by using Handy’s addressing array~Ref. 12! @cf. Eqs. ~8! and ~9!#. The
numbers on the slopes are thearc weights, Z(k,l ), and the address of any
string is obtained simply by taking the sum of the arc weights. This addr
ing scheme corresponds to a strict left-to-right ordering of the strings.~b!
The bold line represents the walk corresponding to the binary st
11001001. The corresponding string address is 31.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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need to be found, given a set of orbital indices,i , j ,k,l . In
modern implementations both strategies have found their
plication. To a degree, the optimum approach will depend
the properties of the computer hardware, and efficient imp
mentations that take advantage of vector processors
been devised. More recently, the development of comp
hardware has been towards parallel configurations, wh
distributed and shared memory architectures are often fo
together, and vector architectures are less relevant.
should be reflected in the design of any implementation
particular, methods for a well functioning load balanci
should be considered.

The true computational cost of evaluating the mat
multiplication of Eq.~3! consists of finding all nonzero cou
pling coefficients,Ai j

KL ,Bi jkl
KL , and performing the SAXPY

operations,

sKªsK1~ i u j !Ai j
KLCL ,

~11!
sKªsK1~ i j ukl !Bi jkl

KL CL ,

for all nonzero coupling coefficients. As the proportion
nonzero coupling coefficients is tiny@for example,!0.01%
for a CASSCF~12,12!# an efficient method of finding non
zero coupling coefficientsimplicitly and without trying or
testing the complete space of orbital and/or configurat
indices is thus highly desirable. To find a solution to th
indexing problem, we start by rewriting thes vector of Eq.
~3! as a sum of 2 terms:

s51es12es. ~12!

The one-electron term,1esK , may be written with the oute
sum over orbital indicesi and j and the inner sums ove
a-strings andb-strings,

1esKaKb
5(

i j
~ i u j !S (

La

^Kauâia
† â j auLa&CLaKb

1(
Lb

^Kbuâib
† â j buLb&CKaLbD , ; Ka ,Kb .

~13!

Likewise, the two-electron term,2esK , may be rewritten
similarly, yielding

2esKaKb
5(

i jkl
~ i j ukl !S (

La

^Kauâia
† âka

† âlaâ j auLa&CLaKb

1(
Lb

^Kbuâib
† âkb

† âlbâ j buLb&CKaLb

1(
La

^Kauâia
† â j auLa&(

Lb

^Kbuâkb
† âlbuLb&CLaLb

1(
La

^Kauâka
† âlauLa&

3(
Lb

^Kbuâib
† â j buLb&CLaLbD , ; Ka ,Kb . ~14!

Thus, in Eqs.~13! and ~14! the outer summation is ove
orbital indicesi , j and i , j ,k,l , respectively. This implies the
use of an IDA, where the orbital indices and the repuls
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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integrals are given, and all string pairsKa ,La and Kb ,Lb

that give a nonzero contribution to1es and 2es need to be
found.

In restricted CI methods in general, and in the RASS
method in particular, the restrictions imposed on the act
orbital space give rise to certain complications concern
the construction and indexing of CSFs and their strin
However, an efficient solution to the indexing proble
should, nevertheless, as in the case of full CI/CASS
implementations, aim to minimize or eliminate redundant
dex space testing. We propose in this paper a solution to
problem, based on two steps: the introduction of aRAS
model orbital space, and the efficient reconstruction of strin
pairs Ka ,La from the model strings in that space, usin
propagation rules.

The graphical representation of CSFs used in this w
and outlined in Sec. II A greatly facilitates insight in an
treatment of the RASSCF indexing problem. In Sec. II B w
introduce themodel spacerepresentation of the RAS spac
again aided by a graphical representation. Based on
model space concept in Sec. II C we develop an effici
method for reconstructing the string pairs that give nonz
contributions to Eqs.~13! and~14!, usingpropagation rules.
The method described in this work entirely avoids pote
tially costly index space testing.

A. A graphical representation
of the RAS configurations

The string space in the RASSCF method is a subse
the corresponding CAS string space, where the total num
of active orbitals and electrons are identical. Due to the p
ticle number restriction in the RAS1 and RAS3 orbital su
spaces, the construction of CSFs is relatively more com
cated. The complication arises on two levels: the indexing
strings and the combination ofa-strings withb-strings. The
remedy to both problems lies in the classification of cert
groups of RAS strings. To this end we will make use of t
concept ofstring categories.14 Within any string category
indexing is then simple, as no restrictions apply. Allow
combinations ofa-strings withb-strings are found by iden
tifying allowed combinations of string categories.

It is convenient to define several graphs. Each gra
corresponds to a subset of the paths on the FCI graph.
space of strings is then described by the sum of all poss
walks on all graphs. In addition, there will usually be restr
tions on the allowed combination of graphs. If the state
interest is a singlet, then the set of graphs for both s
spaces will be identical.

Figure 2 shows three examplea-string graphs~of a total
of nine graphs! for the case with Na56, M512,
M (RAS1)54, M (RAS3)54 and a maximum of 2 electron
excited out of RAS1 and into RAS3, respectively. As in t
CASSCF case, the graphical representation of thea-strings
and b-strings may be used to order the paths. This is b
done by assigning consecutive local addresses to str
within one graph. If the graphs themselves are ordered, t
the global string address will be the sum of the local str
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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address and an offset accounting for all paths in preced
graphs.

Kozlowski and Pulay14 proposed a two level addressin
scheme, the first level being a string category determined
the number of holes,i h , in RAS1 and the number of elec
trons, i e , in RAS3, while the second level gives the loc
string address within a given category. A category in t
scheme corresponds exactly to a string graph as desc
above, and we will largely adopt the notation used in Ref.
The category Cat(i h ,i e) is defined as

Cat~ i h ,i e!5~ i h11!1~MxHole11!i e , ~15!

and the number of categories~graphs! for each spin space i
given by

Cat~MxHole,MxElec!5~MxHole11!~MxElec11!.
~16!

The length of that category~number of paths in the corre
sponding graph! is

L@Cat~ i h ,i e!#5S M ~RAS2!

Na2M ~RAS1!1 i h2 i e
D

3S M ~RAS1!

i h
D S M ~RAS3!

i e
D . ~17!

The address of ana-string Ka
i h ,i e in category Cat(i h ,i e) can

then be calculated as

A$Ka
i h ,i e%5A$Ka%1 (

Cat51

Cat(i h ,i e)21

L@Cat#, ~18!

whereA$Ka% denotes the local string address and the sec
term is the sum of lengths of all previous categories. T
local address can be assigned in the following way: fo
given category, Cat(i h ,i e), any string can be considered as
combination of appropriate subspace strings,

FIG. 2. Three example RASa-string graphs forNa56, M512 with RAS
subspace definitionsM (RAS1)54; MxHole52 and M (RAS3)54;
MxElec52. The total number of graphs~5categories! is here~MxHole11!
3~MxElec11!59.
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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A$Ka%5~A$Ka
RAS2%21!S M ~RAS1!

i h
D S M ~RAS3!

i e
D

1~A$Ka
RAS1%21!S M ~RAS3!

i e
D1A$Ka

RAS3%,

~19!

where each termKa
RAS1, Ka

RAS2, Ka
RAS3 denote the corre-

sponding subspace strings. This is the crucial difference
the addressing scheme used by Olsenet al.,1 who chose to
not logically separate the addressing of the individual R
subspaces. The advantage of defining the local string add
as in Eq.~19! will become clear shortly.

A choice must be made as to how the subspace str
themselves should be addressed. Since the string subsp
resemble CASSCF string spaces, it is straightforward
again use the indexing formula of Knowles and Hand12

@Eqs.~8! and ~9!#, i.e.,

A$Kr
RASX%511 (

k51

Nr
RASX

Z„k,l ~k!…. ~20!

The number of orbitals,M , and electronsNr in Eq. ~9! are
substituted with the corresponding RAS subspace variab
M (RASX) andNr

RASX, respectively, for the RASX subspace
(XP$1,2,3%).

An example may serve to clarify this. Consider a RA
problem withM512 orbitals,Na56 electrons, 4 orbitals in
each RAS subspace, and maximum numbers of hole
RAS1 and particles in RAS3 both equal 2. Onea-string that
observes these restrictions isKa5124578. Its binary repre-
sentation isfKa

50000 1101 1011. The string category is
Cat~1,0!52 ~i.e., i h51, i e50). Figure 3 shows the graphi

FIG. 3. An example of the addressing of an RASa-string: M (RAS1)
5M (RAS2)5M (RAS3)54, Ka5124578, fKa

50000 1101 1011, i h

51, i e50. The numbers on the slopes are the arc weights,Z, for each
subspace, as obtained from Eq.~9!, and the resulting substring addresses a
shown next to the corresponding graph segment. The local string add
A$Ka%, is then obtained from Eq.~19!.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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cal representation ofKa as a walk on the corresponding RA
graph@cf. Fig. 2~b!#. The arc weights are obtained individu
ally for each subspace graph@Eq. ~9!# and the local string
address is

A$Ka%5~221!S 4
1D S 4

0D1~321!S 4
0D11

54121157.

Only the graph corresponding to Cat51 precedes the curren
RAS graph, i.e., the lexicala-string addressA$Ka

i h ,i e% is

A$Ka
1,0%571L@Cat~0,0!#571S 4

0D S 4
2D S 4

0D513.

The a-strings cannot be combined freely with a
b-strings, because of the restrictions for the allowed num
of holes (i h1 i h8<MxHole; the prime8 signifiesb-spin! in
RAS1 and the allowed number of electrons (i e1 i e8
<MxElec) in RAS3. The resulting expression for valid SD
in the RAS expansion can be obtained using once aga
two level addressing scheme. The local address for a st
pair in a given set of string graphs,A$Ka ,Kb%, is given by

A$Ka ,Kb%5~A$Ka%21!L@Cat~ i h8 ,i e8!#1A$Kb%, ~21!

whereL@Cat(i h8 ,i e8)# is the total number ofb-string walks on
the correspondingb-string graph. The address of CSFuK&
5uKa ,Kb& is then

A$K%[A$Ka
i h ,i e ,K

b

i h8 ,i e8%5A$Ka ,Kb%1FCat
Cat8 , ~22!

whereFCat
Cat8 is the offset accounting for all CSFs prior toK.

It is defined as

FCat
Cat85 (

Cat51

Cat(i h ,i e)21

(
Cat851

Cat(MxHole,MxElec)

L@Cat#3L@Cat8#

1 (
Cat851

Cat(i h8 ,i e8)21

L@Cat~ i h ,i e!#3L@Cat8#. ~23!

Equation~21! assigns a unique local address to any com
nation of paths in a givena-string graph and ab-string graph
~there are L@Cat(i h ,i e)#3L@Cat(i h8 ,i e8)# such combina-

tions!. The offset,FCat
Cat8 , may be precomputed for every a

lowed graph combination. It accounts for all previous
lowed combinations, giving the global address for the S
Although we are conducting the discussion of the RAS al
rithm on the basis of SDs as basis CSFs, note that i
straightforward to use spin-adapted CSFs, by appropria

redefiningA$Ka ,Kb% andFCat
Cat8 .

It is apparent from Eq.~19!, and perhaps even more s
from the graphs in Fig. 2, that the subspace stringsKa

RAS1,
Ka

RAS2, Ka
RAS3 may be generated as all possible walks

their respective subspace graphs. The task of finding al
lowed configurations in the RAS expansion is then simply
find all allowed combinations of subspace graphs.

B. The RAS model space

We will now introduce amodel spacerepresentation of
the RAS string space. The RAS model space closely
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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sembles CAS string spaces, thus simply avoiding the pr
lems associated with the restrictions imposed on the RA
and RAS3 orbital subspaces.

Suppose we would like to construct a RAS wave fun
tion using the determinantal approach, with a maximu
number of holes~MxHole! allowed in the RAS1 space and
maximum number of electrons~MxElec! allowed in the
RAS3 space. A model RAS space may then be defined w
Mm orbitals, given by

Mm5M ~RAS2!1MxHole1MxElec, ~24!

andNm5Na
m1Nb

m electrons where

Na
m5Na2M ~RAS1!1MxHole ~25!

and

Nb
m5Nb2M ~RAS1!1MxHole. ~26!

The remaining~spin! orbitals excluded from this mode
space will always be occupied in the RAS1 subspace
unoccupied in the RAS3 subspace. Figure 4 shows a R
type a-string consisting of RAS1, RAS2 and RAS3 string
and the model space string representing it~MxHole52,
MxElec52!. Note that the number of electrons in the mod
space is constant~other than in the individual RAS sub
spaces!.

It is useful to think of the model space as~1! a compact
way of representing the total RAS space, or~2! a combina-
tion of the RAS2 space with compacted RAS1 and RA
subspaces.

These two interpretations are visualized in Fig. 5 a
Fig. 6, respectively. The most striking feature of represen
tion 1 ~Fig. 5! of the model string space is the fact tha
although representing restricted string spaces, they are
tirely unrestricted and are in fact identical to those used i
CASSCF problem withM (CAS)5Mm(RAS) orbitals and
N(CAS)5Nm(RAS) electrons. This paves the way for a
efficient construction of all model strings, since this is a w
studied problem. In particular, it is clear that the method
reduced excitation lists presented in Ref. 9 may be app
and we shall return to the details shortly.

Crucial to the usefulness of the model space idea is r
resentation 2: the subdivision of the model space into
RAS2 subspace and compacted RAS1 and RAS3 model
spaces. Because the dimension of these model subspac
MxHole and MxElec, respectively, the number of mod

FIG. 4. An example of a RASa-string consisting of four orbitals in each
RAS subspace, and its representing model space string (MxHole52,
MxElec52). The model string is constructed using the RAS2 substring
parts of the RAS1 and RAS3 substrings, of dimension MxHole and MxE
respectively. The RAS model string has no occupancy restricted subsp
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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space graphs in this representation equals the number o
egories as given by Eq.~16! for each set of RAS spin graphs
Furthermore, Eq.~15! is not dependent on any absolute nu
ber of particles in any RAS subspace, so that there is a on
one correspondence of eachcompletegraph with one mode
graph ~cf. Fig. 2 and Fig. 6!. This property will be of par-
ticular use once a model space string has been found, a
central to the method described here. The idea is sim
once a model string is found, it may be associated wit
certain model string space. It is then by implication a
associated with a certain string graph in the complete R
space.

We have already mentioned that the unrestricted cha
ter of the model string space may be exploited, since
problem of finding model string pairs$Kr

m ,Lr
m% closely re-

sembles the corresponding problem for full CI. This proble
is well studied and a number of efficient direct methods h
been proposed~e.g., Refs. 1 and 15–17!. Here we will use
the method of reduced excitation strings, which we have
troduced in Ref. 9 to entirely avoid index space testing
direct full CI/CASSCF computations. However, the mod
space and reduced string method are not interdependent
any direct method tackling the indexing problem in full C

FIG. 5. A graph representing the completea-model string space;Mm

5M (RAS2)1MxHole1MxElec; @M (RAS2)54, MxHole5MxElec52#
andNa

m54. The model string graph resembles a CAS string graph, du
the absence of occupancy restrictions in the RAS model space.

FIG. 6. Three RASa-model string space graphs forM (RAS2)54,
MxHole52 and MxElec52. Each graph corresponds to one string graph
Fig. 2, with equal string category. The superposition of all~9! restricted
model graphs gives the unrestricted RAS model string graph of Fig. 5.
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could be used. The reduced list concept may be applied
without change, and we will now briefly remind ourselves
the method, while placing it in the current context.

In order to avoid confusion between orbital labels
different RAS subspaces, the model space and the full R
space, we will use separate orbital indices for labeling
respective orbitals:$a,b,c,d%PRAS1; $ i , j ,k,l %PRAS2;
$p,q,r ,s%PRAS3; $w,x,y,z%Pmodel space;$ i , j ,k,l %Pfull
RAS space. Note that we use the same set of indicesi , j ,k,l
for both the full RAS space and the RAS2 subspace. T
reason for this is that it is~at different times! useful to liken
both sets of orbitals to the active space of a CASSCF. It w
always be clear from the context which orbital set is mea

The set of orbitals under consideration is restricted
those contained in the RAS model space. Thus, given
r-model space orbital indicesw,x, we define the mode
space excitation listX wr

xr containing, in lexical order, all

string pair addressesA$Kr
m%, A$Lr

m% and sgn
wx

K r
m

for which
the relation

^Kr
muâwr

† âxruLr
m&5sgn

wx

Kr
m

~27!

holds, with

sgn
wx

Kr
m

55 11, if (
n5x11

w21

, bn is even,

21, if (
n5x11

w21

, bn is odd,

~28!

wherebn is the bit value of thenth bit in the binary repre-
sentation ofKr

m , fK
r
m. The sums represent the number

occupied orbitals~i.e., bn51) between orbitalsw andx. Kr
m

and Lr
m are constructed by inserting the appropriate b

bw ,bx into the binary representation of areduced string, con-
sisting of Mm22 bits, with Nr

m21 1s. The list of all such

reduced strings in lexical order is denotedLN
r
m21

Mm22
.

Similarly, for 2e excitations a model space excitatio
list Xwr yr

xr zr is defined, containing all string pair address

A$Kr
m%, A$Lr

m% and sgn
wxyz

Kr
m

for which the relation

^Kr
muâwr

† âyr
† âzrâxruLr

m&5sgn
wxyz

Kr
m

~29!

holds, with

sgn
wxyz

Kr
m

5H 2sgn
wx

Kr
m

3sgn
yz

Kr
m

, if w.y.x.z;

1sgn
wx

Kr
m

3sgn
yz

Kr
m

, otherwise.
~30!

The model string pairsKr
m ,Lr

m are obtained by inserting th
bits bw ,bx ,by ,bz into the corresponding reduced string. T
accommodate for all possible 1e and 2e excitations we need

only five reduced lists, which may be precomputed:LN
r
m21

Mm21
,

LN
r
m21

Mm22
, LN

r
m22

Mm22
, LN

r
m22

Mm23
, LN

r
m22

Mm24
. Thus all model space

excitation lists in the model space may be constructed in
fashion, and the efficiency of this method comes from
fact that no redundant index space testing is needed in o
to find the needed string pairs.

to
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 7. The construction of the RAS
model string pairKa

m ,La
m from a re-

duced model string, for the mode
space excitationâ6a

† â3a . The string
Ka

m is represented by the left walk o
the loop.
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Figure 7 shows an example for the reconstruction of o
string pairKa

m ,La
m , for the model space excitationâ6a

† â3a

and using an arbitrary reduced model string. The resul
walks forKa

m andLa
m form a loop on the model string graph

For the assembly of the model excitation listX 3a
6a the com-

plete set of walks of reduced model strings~in lexical order!,

i.e., all entries ofLN
r
m21

Mm22
, will be used in the same manne

Once a model string pairKr
m , Lr

m is found, each model string
may be associated with one category, simply by counting
number of holes/electrons in the RAS1 and RAS3 mo
substrings. In graphical terms this means that for each w
corresponding to ar-model string, we need to find th
r-model string space graph~cf. Fig. 6! that has the correc
dimension to superimpose the walk onto it. If the lo
stretches over more than one RAS subspace, the m
stringsKr

m ,Lr
m might then belong to different model spac

graphs~categories!. In Sec. II C we will show how to expand
the model substrings. However, the RAS2 substrings,Kr

RAS2

andLr
RAS2 are already in the final form.

At this point we should mention an additional benefit
using the model space approach. In traditional impleme
tions of the RASSCF method~e.g., Refs. 1 and 14!, one has
to deal with the possibility ofout of spaceexcitations, i.e.,
the excitationâir

† â j ruLr& could result in a stringuKr& whose
number of holes in RAS1 or the number of electrons
RAS3 exceed the limits, namely MxHole and MxElec, r
spectively. Due to the resemblance of the RAS model sp
to the string space for a full CI it is, by construction, n
possible to produce anout of spaceexcitation, and the prob
lem is entirely avoided. This holds true also for double ex
tations.

C. An efficient expansion technique:
Propagation rules

Each walk on a model string graph represents a se
strings on the full graph. Correspondingly, each pair of wa
on the model string graph, related by a single (âwr

† âxr) or
double (âwr

† âyr
† âzrâxr) excitation and thus building a loop

represents a set of string pairs on the full graph. We n
need to translate each model string pairKr

m ,Lr
m , together

with its associated parity factor, sgn
wx

Kr
m

, into a set of RAS

string pairs and their parity factor,$Kr
i h ,i e ,L

r

i h8 ,i e8 ,sgnij
Kr%.

While the RAS2 substring is fully determined by the mod
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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string, the RAS1 and RAS3 substrings need to be evalua
separately by expanding the model substrings.

To achieve this, we propose a set ofpropagation rules.
The aim of the propagation rules is to efficiently compute
string pairs,$Kr ,Lr%, that give nonzero contributions for
given excitation term̂ Kruâir

† â j ruLr&. All RASX substrings
that are represented by a model substring can be constru
by propagating the binary representation of the excitat
operator from the right to the left of a binary representat
of the remaining orbitals, which we will denote r.s. Impo
tantly, it can be shown that, by defining the address of s
space strings through Eq.~20! the actual construction of the
subspace strings is not necessary and the substring addr
can be obtained directly. This is done by means of sim
recursive evaluation of blocks of substring addres
ˆA$Kr

RASX(2)%,...,A$Kr
RASX(n)%‰ from the first substring ad-

dressA$Kr
RASX(1)% of each block.

Propagation Rule I. Table I shows a series of RASX
string pairs. They are constructed from the complete list
strings generated from two08s and two18s, ordered accord-
ing to Handy’s index equation@Eq. ~9!# and supplemented by
the short strings01 and10 to the right. The resulting list is
by construction, consecutive elements of a list of strings g
erated from three08s and three18s, also ordered accordin
to Handy’s index equation. If we refer to consecutive strin
of the short list,$0011,...,1100%, as r.s. and r.s.8, respec-
tively, then, according to Eq.~20! we have the trivial rela-
tionship

A$Kr
RASX~1,r.s.8!%5A$Kr

RASX~1,r.s.!%11,
~31!

A$Lr
RASX~1,r.s.8!%5A$Lr

RASX~1,r.s.!%11,

TABLE I. The addresses of RAS1/RAS3 substrings for consecutive redu
strings are themselves consecutive numbers. This follows directly from
strict left-to-right ordering of strings on the corresponding unrestricted s
string graph.

fK
r
RASX fL

r
RASX A$Kr

RASX% A$Lr
RASX%

001 101 001 110 5 11
010 101 010 110 6 12
100 101 100 110 7 13
011 001 011 010 8 14
101 001 101 010 9 15
110 001 110 010 10 16
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Propagation of the variable bits from left to right through all bit-positions of a fixed reduced st
~01011! results in a change of substring address only if the two interchanged bits,ba and ba21 , differ. The
number by which the address changes corresponds to a precomputable binomial coefficient.

a fK
r
RASX fL

r
RASX ba21 S N

r
left~a!

M ~X!2aD A$Kr
RASX% DK A$Lr

RASX% DL

1 010 111 010 110 n/a 10 2 - 12 -
2 010 111 010 101 1 6 2 0 6 26
3 010 111 010 011 1 3 2 0 3 23
4 011 011 010 011 0 2 4 2 3 0
5 011 011 001 011 1 1 4 0 2 21
6 101 011 001 011 0 1 5 1 2 0
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where the first argument~1! simply indicates an unchange
position of the added~bold! bits.

Propagation Rule II. Table II shows a series of strin
pairs. They are constructed from a constant binary str
01011 and a bitba whose positiona is variable. The bit
value ofba is 1 for fK

r
RASX and0 for fL

r
RASX. As ba propa-

gates from the right to the left of the strings, the total stri
addresses change if the bit values in fixed bit positions in
strings change. In particular, if after the propagation of
variable bit to positiona ~from positiona21) we haveba

5ba21 , the string and its address have not changed. I
contrastbaÞba21 , the string address has changed by a nu
ber equal to the number of binary permutations of all bits
the left of positiona, represented by the binomial coefficie
(N

r
left(a)

M (RASX)2a
),where Nr

left(a) simply denotes the number o

18s to the left of positiona. This is again due to the nature o
Handy’s index equation. Ifba51; ba2150 the string ad-
dress rises, ifba50; ba2151 the string address lowers, i.e

Da51: DA$Kr
RASX%5~ba2ba21!S M ~RASX!2a

Nr
left~a! D .

~32!

These two propagation rules indicate an efficient al
rithm for the computation of the remaining RAS1/RAS
string addresses, if the first address of a given list is kno
It is necessary to know only a number of reduced RAS1
RAS3 string lists and some binomial coefficients, both
which may be precomputed at certain stages of the com
tation. The outlined scheme avoids redundant index sp
testing in a similar fashion the reduced list approach de
 to 84.88.138.106. Redistribution subject to AIP licens
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oped in Ref. 9 does for unrestricted CI. The algorithm
based on the systematic propagation of substring varia
a,b,c,d ~or p,q,r ,s) over the entries of a reduced string li
of the RAS1~or RAS3! orbital space.

It can be shown that all possible lists of string addres
can be constructed using thepropagator function,

p~u!5d1DuS M ~RASX!2u
Ng„M

left~u!… D „bu2ba2j~r.s.!…, ~33!

whereuP$a,b,c,d% and the parameterj is the number of
variable indices in the RASX substring. The propagation
rule, P, for the RASX subspace may then be expressed a

A$Kg
RASX~n,r.s.!%5A$Kg

RASX~n21,r.s.!%1 (
v51

j

p„u~v !…,

~34!

for a given reduced string~r.s.!. When proceeding to the nex
reduced string~in the case of 0 indices in RASX each entry
may be interpreted as a reduced string!, the relationship is
trivial, as shown above,

A$Kg
RASX~1,r.s.8!%5A$Kg

RASX~1,r.s.!%11. ~35!

If the number of holes and electrons in the respect
subspaces RAS1 and RAS3 is greater than 2, care mus
taken to ensure each term̂Kruâir

† â j ruLr& is represented by
only one model space term̂Kr

muâwr
† âxruLr

m&, in order to
avoid multiple contributions. Figure 8 illustrates the pro
lem. The same string pair,Kr ,Lr , is arrived at by expanding
the model space string pairs in the complete RAS spa
using the appropriate propagation rules. The string p
en
s

-
b-
FIG. 8. Unwanted double contributions may arise wh
two model string pairs generated by different term
^Kr

muâwr
† âxruLr

m& result in the same contributing term
^Kruâir

† â j ruLr&, through an application of the propaga
tion rules. The example shown here illustrates the pro
lem: the two model space excitations^Kr

muâ7r
† â6ruLr

m&
and^Kr

muâ8r
† â6ruLr

m& both give~among others! the con-
tribution ^Kruâ12r

† â10ruLr&.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Kr ,Lr , has been constructed using the same propaga
rule, but starting from different model string pair
Kr

m(1),Lr
m(1) andKr

m(2),Lr
m(2). Each model string pair is

related to a different excitation operator in the model spa
namely â7r

† â6r and â8r
† â6r , respectively. This problem is

however, easily avoided by requiring the model space ind
w,x,y,z to be flush-right in the RASXm model subspaces. In
graphical terms this means that loop-opening and lo
closing segments will be concentrated on the lowest poss
orbital level in the RASXm model subspaces~cf. Fig. 8!. It is
then straightforward to see that the only restrictions on
values of MxHole and MxElec are

0<MxHole<2M ~RAS1!,

0<MxElec<2M ~RAS3!.

In the special case of both MxHole and MxElec assum
their maximum values the configuration spaces of CAS
RAS become identical.

The 2e Excitation Contribution. The 2e excitation term
@Eq. ~14!# of the vectors @Eq. ~3!# is by far the computa-
tionally more expensive one. It consists of two parts t
differ conceptually. Theaa/bb parts ~first two terms! each
represent a double excitation involving electrons of one s
type only. All that is needed to accommodate for the dou
excitations in a single string space, using the model sp
approach, is an extension of the model subspace by up to
extra model space orbitals for each model subspace.
ab-part andba-part @the last two terms in Eq.~14!# are
simply combinations of single excitations in both th
a-string space and theb-string space. Thus, for the purpos
of finding all spin-string pairs, theab part of the 2e excita-
tion may be treated in an identical fashion to the 1e excita-
tion.

As in the case of the 1e excitation, out-of-space excita
tions within a spin-string are entirely avoided by constru
tion, through usage of the model space approach. The c
bination of two valid model string pairs for theab-part and
ba-part may, though, result in an out-of-space excitati
However, such a combination may simply be rejected at
model space level, before any expansion of external s
spaces takes place.

The symmetry properties of the two-electron integr
( i j ukl) mean that it is possible to reduce the loops o
i , j ,k,l to unique integrals and the summation in Eq.~4! over
i> j , k> l and i ( i 21)/21 j >k(k21)/21 l . By introducing
the model space we replace summation over orbital ind
i , j ,k,l with model space orbital indicesw,x,y,z. A single set
of model space indices potentially represent a set of orb
indices. Nevertheless, the symmetry condition also holds
the RAS model space:

w>x, y>z ~wx!>~yz!,

with ~36!

~wx!5
w~w21!

2
1x, ~yz!5

y~y21!

2
1z.

Because of these restrictions we will only find a restric
number of excitation combinations between RAS subspa
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
on

e,

s

-
le

e

g
d

t

in
e
ce

o
he

-
m-

.
e
b-

s
r

s

al
r

d
s.

The possible combinations are shown in Table III. Assum
MxHole>2 and MxElec>2, how many excitationsx→w are
possible? There are only two possibilities for excitations
type RAS1→RAS1 ~1→1!, namelyw→w andx→w. Like-
wise there are only two realizations for excitations of ty
3→3. Excitations 1→3 are all represented by one mod
space excitation,x→w. We haveM (RAS2) possible mode
space excitationsx→w of type 1→2 ~one for each RAS2
orbital!, and alsoM (RAS2) excitations of type 2→3, again,
one for each RAS2 orbital. Finally, there are (2

M (RAS2)) pos-
sibilities for excitations of type 2→2. Table IV shows these
numbers analytically and numerically forM (RAS2)53, 6
and 10. Table V summarizes the number of unique ind
quadruples, due to the restriction on possible combinati
of (wx) with (yz) @cf. Eq. ~36!#. The following can be seen

~1! The contribution of (w→x,y→z)5(2→2,2→2) is
the largest one and its relative importance grows with
creasing size of the RAS2 subspace,M (RAS2). This means
that in most cases the extension of RAS1 and RAS3 s
spaces will simply result in a list of consecutive subspa
addresses, and that both sign, sgnijkl

Kr , and integral, (i j ukl),
are constant for all contributions derived from a model sp
string pair.

~2! All other relatively large contributions stem from ex
citations with at least one of the two excitations being a
→2. The advantage in this case is that the problem of find
relevant pairsKa

i h ,i e , La
i h ,i e is very similar to the 1e case.

In summary, most double excitations are computed fr
consecutive CSFs, with constant integral (i j ukl) and parity
factor sgnijkl

Kr . This part is getting relatively more importan
as the system size grows. The next most relevant part c
sists logically of a 1e excitation type problem. This is par
ticularly true for theaa 2e part. In Table VI the dimension

TABLE III. Possible combinations of excitations between RAS subspac
(1→2 reads: excitation from RAS1 to RAS2!.

y→z

w→x

1→1 1→2 2→2 1→3 2→3 3→3

1→1 3 3 3 3 3 3

1→2 3 3 3 3 3

2→2 3 3 3 3

1→3 3 3 3

2→3 3 3

3→3 3

TABLE IV. Number of model space excitationsx→w between RAS model
spaces, provided MxHole>2 and MxElec>2; analytically and numerically
for different RAS2 orbital subspace sizes.~1→2 reads: excitation from
RAS1 to RAS2!.

1→1 1→2 2→2 1→3 2→3 3→3

M (RAS2) 2 M (RAS2)

1
2„M~RAS2!2

1M (RAS2)… 1 M (RAS2) 2

3 2 3 6 1 3 2
6 2 6 21 1 6 2

10 2 10 55 1 10 2
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE V. Number of double excitationsx→w, z→y between RAS model orbital subspaces; analytically a
numerically for different RAS2 orbital subspaces.@Constructed using Tables III and IV and Eq.~36!#.

x→w z→y

Number of combinations

Analytically

M (RAS2)5

3 6 10

1→1 1→1 4 4 4 4
1→2 1→1 23M (RAS2) 6 12 20

1→2 1
2 „M (RAS2)21M (RAS2)… 6 21 55

2→2 1
6 „M (RAS2)32M (RAS2)… 4 35 165

2→2 1→1 M (RAS2)21M (RAS2) 12 42 110
1→2 1

6 „2M (RAS2)3

13M (RAS2)21M (RAS2)…

14 91 385

2→2 1
8 (M412M313M 212M ) 21 231 1540

1→3 1→1 2 2 2 2
1→2 M (RAS2) 3 6 10
2→2 1

2 „M (RAS2)21M (RAS2)… 6 21 55

1→3 1 1 1 1
2→3 1→1 23M (RAS2) 6 12 20

1→2 M (RAS2)2 9 36 100
2→2 1

2 „M (RAS2)31M (RAS2)2… 18 126 550

1→3 M (RAS2) 3 6 10
2→3 1

2 „M (RAS2)21M (RAS2)… 6 21 55

3→3 1→1 2 4 4 4
1→2 23M (RAS2) 6 12 20
2→2 M (RAS2)21M (RAS2) 12 42 110
1→3 2 2 2 2
2→3 23M (RAS2) 6 12 20
3→3 4 4 4 4

S 155 743 3242
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of the discussed cases is summarized analytically and fo
same example cases already used above. The two domin
contributions are becoming more important with the grow
size of the orbital space, and as a consequence, the effici
of the propagation rule scheme becomes relatively greate
larger problems.

D. The effect of propagation rules on the order
of integrals and the computation of parity factors

In an actual implementation of the propagation rule
gorithm, once a model string pair is found for both t

TABLE VI. General overview of the total numbers of distinctivew,x,y,z
quadruples for MxHole52, MxElec52, analytically and numerically for a
few RAS2 subspace sizes.

Number of
indicesw,x,y,z
in RAS2

Total dimension . . .

. . . analytically

M (RAS2)5

3 6 10

4 1
8 (M412M313M212M ) 21 231 1540

3 M (RAS2)31M (RAS2)2 36 252 1100
2a 7

2 „M (RAS2)21M (RAS2)… 42 147 385

2b M (RAS2)2 9 36 100
1 10M (RAS2) 30 60 100
0 17 17 17 17

S 155 743 3242

aWithout excitations of type 2→3 and 1→2.
bExcitations of type 2→3 and 1→2 only.
 to 84.88.138.106. Redistribution subject to AIP licens
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a-spin andb-spin model string space, the RAS1 and RAS
subspace strings need to be expanded. This will be done
nested loop over all RAS1 and RAS3 expansions. If
model space indicesw,x (w,x,y,z) lie within the RAS2 sub-
space, then all contributions will be for the same integ
( i u j ) „( i j ukl)…. If, on the other hand, some or all model spa
indices fall into one or both of the other subspaces, the c
tributions will be for a list of integrals. It is therefore usefu
to assemble the corresponding list of integrals, for every
of model space indices, in the order they will be access
This order is entirely given by the propagation rules, a
only one list needs to be assembled for any set of mo
space indices. The integral lists foraa-, ab-, ba- and bb-
contributions will be identical and need to be assembled o
once.

It is by now clear that the value associated with a bra-
term of the form^Kruâir

† â j ruLr& may differ from its model
space analog sgn0

m,r5^Kr
muâwr

† âxruLr
m& at most by a factor of

21. If, for example, the indexi lies within the RAS3 orbital
subspace, then the propagation of the appropriate bit tow
the left will result in a sign change every time the bit value
bi 21 equals 1. Because of this behavior and the direct as
ciation of the sign change with the propagation of varia
bits, it is convenient to pre-compute the sign-changing f
tors for each spin subspace together with the RAS1

RAS3 subspace string address pairs. The term sgij
Kr

5^Kruâir
† âjruLr& is then computed as
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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sgni j
Ka5sgn0

m,a3sgn
i j

Ka
RAS1

3sgn
i j

Ka
RAS3

. ~37!

The same applies without change to the 2e equivalent,
sgnij

Kr5^Kruâir
† âkr

† âlrâjruLr&,

sgni jkl
Ka 5sgn0

m,a3sgn
i jkl

Ka
RAS1

3sgn
i jkl

Ka
RAS3

. ~38!

III. THE DIRECT RAS ALGORITHM

The algorithm that follows from the use of an integr
driven CI is inherently parallel, and the parallel loop m
include any combination of orbital indicesi , j ,k,l . We will
now provide the algorithms for one- and two-electron ex
tation term contributions of Eq.~12!. All reduced lists of
model space and RAS subspaces and the associated Ha
index matrices are precomputed only once. The outer loo
over the model space orbital indicesw,x,y,z. The computa-
tion of model space string pairs is analogous to string p
computation as described in Ref. 9 for full CI string pai
Once the model string pairKr ,Lr is known, its category and
propagation rules for both the RAS1 and RAS3 subspa
are identified. This information is used to assemble the lis
integrals into a vector, where they will be accessed in a
quential manner during updating of thes-vector. Then all
excitation lists are assembled, by application of the propa
tion rules to the RAS subspace model strings, RAS1m and
RAS3m. We denote these subspace excitation listsE r

RASX .
Finally, nested loops over subspace excitation list ent
lead to the local address, and by combininga- andb-strings,
to the CSF address. The appropriate algorithms for 2e aa
and 2e ab parts, respectively, of thes-vector are summa
rized in the Appendix.

The dimension of the integral list is a function of th
number of orbital indices in RAS1 and RAS3,n1 andn3,
respectively,

D~n1,n3!5S M ~RAS1!

n1 D S M ~RAS3!

n3 DU 0<n1<4,
0<n3<42n1.

~39!

If all orbital indices lie within RAS2, then the integral lis
contains only one element. The maximum length of the in
gral vector depends on the relative size of the RAS1
RAS3 orbital subspaces. In the special case ofM (RAS1)
5M (RAS3).2 the maximum dimension is for two indice
each in the RAS1 and RAS3 subspaces,

D~2,2!5S M ~RAS1!

2 D 2

uM ~RAS1!

5M ~RAS3!.25S M ~RAS1!22M ~RAS1!

2 D 2

.

For example, withM (RAS1)5M (RAS3)510, the maxi-
mum length of the integral vector is 2025. At any stage
length of the integral vector will be small when compared
the CI vector. The memory requirements for the reduced l
of RAS subspace strings and model space strings are eq
small compared to the CI vector, as are the partial excita
strings,E r

RASX .
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Thus the memory requirements are dominated by
vectorss and C. However, if the working memory is no
large enough to accommodate the entire CI vectors, i
straightforward to adapt the algorithm to use only cert
blocks of these vectors, by taking advantage of the block
of string addresses of all strings that belong to a cert
graph. This means that the vectorss and C with elements
sKaKb

and CKaKb
are also blocked with respect to grap

combinations~categories!. Since the graph combination i
fixed for all contributions of a found model string pair, it
possible to adapt the described scheme by either readin
the required block of the CI vectors from distribute
memory, or by restricting contributions to a given CI vect
block at a time.

Particularly in the first iterations of a typical MCSC
computation, there are only very few nonzero eleme
CKaKb

. This means that in principle, only those contrib
tions,

sLaLb
ªsLaLb

1~ i u j !Ai j
KLCKaKb

,

~40!
sLaLb

ªsLaLb
1~ i j ukl !Bi jkl

KL CKaKb
,

with CKaKb
Þ0 need to be considered to computes. This is

an inherent weakness of the integral driven approach, s
the resulting algorithm does not provide for efficient exc
sion of blocks of the CI vector. However, to increase e
ciency in the model space approach proposed here, one c
assemble a short list of flags that indicate whetheranyof the
a-strings obtained by expanding aa-model string belongs to
a block ofC with at least one nonzero element An analogo
list would be needed forb-string blocks. The most simple
realization of this idea would be to define the blocks as h
ing contributions of a uniquea-graph/b-graph combination.
More elaborate methods could include, for example, lists
specific RAS2 substrings, possibly combined with the app
priate propagation rules. Finally, it should be noted that
of the propagation rules means that it is not straightforw
to take advantage of point group symmetry.

IV. PARALLELIZATION

We will now describe the parallel implementation of th
direct RASSCF algorithm. A thorough discussion of t
method of parallelization used and its performance can
found in Ref. 9. We assume a scalable parallel distribu
memory computer architecture consisting of nodes, e
with local memory. The nodes themselves may be symme
multiprocessor~SMP! machines with shared memory. A
mentioned in the previous section, the integral driven al
rithm is already inherently parallel. The main issue to a
dress is thus how to ensure good load balancing. A flex
load balancing mechanism helps to achieve optimum sca
and is essential in heterogenous environments, where a
ter may consist of nodes of different architecture. It is a
important in the realistic situation of uneven preloading
allocated nodes, i.e., in situations where some workers m
share resources with concurrently running programs on
same node.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Load balancing can be achieved when the total num
of independent, parallel tasks is large compared to the n
ber of processing elements~PEs, also: CPUs!. The overhead
of subdividing the total work into parallel sub-tasks shou
ideally be kept small compared to total execution time. Co
munication between workers should be avoided and sho
be handled by a separate process, in order to avoid sync
nization delays.18

The sub-tasks that are executed on parallel nodes co
spond to model space index pairsw,x (1e contribution!, or
model space index quadruples,w,x,y,z (2e contribution!.
The relatively small size of the model space~as opposed to
the orbital space comprising all active orbitals! means the
total number of independent tasks is much reduced. Ta
VII shows for different sizes of the RAS2 subspace a
MxHole5MxElec52 the number of parallel tasks for bot
the 1e and 2e contributions. The number of tasks is ind
pendent of the size of the RAS1 and RAS3 subspaces,
lies within a useful range, i.e., there are sufficiently ma
sub-tasks to enable load balancing for a large number of P
even for the smallest RAS2 orbital subspace. For lar
RAS2 subspaces, in order to reduce overhead due to c
munication, several subtasks may be grouped together in
der to adapt granularity of the parallelism. This may be do
dynamically, in order to adapt to the number of requested
allocated CPUs.

The IDA approach followed by us here involves th
outer loops over the model space orbital indicesw,x,y,z.
Inside these nested loops, the assembly of certain block
the vectors takes place. However, with the exception of t
CI vectors itself, all data inside the loops are static. The
fore, we can minimize communication overhead by pass
these static data to all worker nodes only once at the be
ning of each eigenvector iteration. This is of advantage
pecially for distributed memory architectures, and, in p
ticular, for low-cost configurations with standard netwo
interprocessor communication. On shared memory archi
tures~e.g., an SMP node! these static data need to exist on
once.

We now discuss the implementation of the general st
egy just discussed for distributed memory architectures u
Linda.18 We begin with a few definitions. We assume th
each node may be an SMP. The number of processor
each SMP is indicated asNProcS ~on single processor node
NProcS51). The valueNTask is computed, withNTask
5NProcS3H and H is chosen to both optimize load
balancing and minimize communication overhead. The m

TABLE VII. The number of independent parallel tasks, defined as uni
model space index quadruples,w,x,y,z, for various RAS2 orbital subspace
(MxHole5MxElec52).

M (RAS2)

Number of parallel tasks

Index pairs (w,x) Index quadruples (w,x,y,z)

4 23 410
6 38 947
8 57 1947

10 80 3638
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process is called the master process~master!. The process
spawned on the first processing node retrieves the in
(wxyz) ~initially ( wxyz)5 (wx)max„(wx)max11…/2 with
(wx)max5Mm(Mm11)/2). A list of NTask indices is as-
sembled on the worker, by testing the validity of (wxyz),
storing it if valid, testing (wxyz)21, and so forth. Invalid
indices are simply dropped when found. The worker th
puts a new index (wxyz)85(wxyz)2NTask2Ninvalid into
tuple space~the virtual shared memory area in the Lind
model!, which is then retrieved by the next worker, etc.
NProcS.1, thenNProcS21 shared memory processes a
created, each of which will be assigned a subset
NTask/NProcS tasks. Thus the original loop over model o
bital space indices,w,x,y,z, is parallelized. Each processo
then carries out the assembly ofs using the original serial
algorithm. On finishing, the next available index (wxyz) is
retrieved from tuple space and this procedure is contin
until all model space generator combinations are proces
i.e., the index (wxyz)50 is found. Finally the intermediate
results are passed through tuple space to be combined to
the final result of the computation.

SMP architectures are supported in three ways:~i! using
Linda, ~ii ! using shared memory, or~iii ! a combination of
both. In the first case,~i!, one Linda worker is created o
each PE. The communication overhead in this scheme is
tremely small. Furthermore, using Linda even on SMPs ta
full advantage of the load balancing mechanism descri
above. However, the static data~e.g., the CI vectorC, inte-
grals, etc.! must be replicated for each Linda worker.

The alternative~ii ! is the usage of shared memo
(NProcS.1). In this case all static data get replicated on
once per SMP and are shared by all PEs. All result vec
~one per PE! are summed before the result of this worker
passed back to tuple space, where it is subsequently retri
by the master process. This method has the advantage th
static data exist only once in working memory on an SM
node. For example, on an SMP withNProcS52 the memory
requirements are for three CI vectors; i.e., one result ve
for each PE plus one shared CI vector~C!. This is particu-
larly useful if available working memory is limited and/or
the size of the CI vector is very large. A further advantage
this option is a reduction of communication by a factor
NProcS, since all static data and also the combined res
have to be passed only once perNProcS workers. The price
to be paid in this case is that there is no load balanc
between PEs on an SMP. The tasks defined by theNProcS
indices are of very similar length, but will be slightly differ
ent. In practice, this means that efficiency will decrease
NProcS becomes very large.

The third option is any combination of the previous tw
In this case the number of PEs using shared mem
NProcS, may be chosen to comprise any available numbe
PEs on each node, i.e., on a 4way SMP nodeNProcS can
assume the values 1, 2, 3 or 4. Case~iii ! would then corre-
spond to two Linda workers running on that node, each
them comprisingNProcS52 shared memory processes. Ta
ing advantage of this option the mode of parallelism may
tailored to the available architecture.

The approach described above ensures great flexibilit

e

e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE VIII. CASSCF and CAS-PT2~Ref. 19! results for indole. For the source of experimental results see
references in~Ref. 19!.

Geom. State

CASSCF(10,9)/6-31G* CAS-PT2/ANO Experiment

E @hartree# Erel @eV# Erel @eV# Erel @eV#

FC S2 (1La) 2361.3371 6.20 ~vert.! 4.73 ~vert.! 4.77
FC S1 (1Lb) 2361.3810 5.00 ~vert.! 4.43 ~vert.! 4.37
FC S0 2361.5648 0.00 0.00 0.00

1Lb min. S1 2361.3940 4.65~0–0! 4.35 ~0–0! 4.37
1La min. S1 - - 4.66~0–0! 4.54

S2 2361.3506 5.83~0–0! - -
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choosing the number of processors and leads, due to
relatively high number of tasks, to an effective load bala
ing, provided the number of PEs is small compared to
number of tasks. The intermediate assembly of a sublis
NTask tasks ensures the optimum granularity, through
namical adaptation ofNTask. The load balancing schem
implemented also allows for the fact that, in many enviro
ments, the CPU-time on different nodes of a parallel mach
may be shared among a number of running programs
thus automatically uses the resources as they become a
able.

V. EXAMPLE APPLICATION

The RASSCF program developed and implemented
part of this work, has so far been applied in a small num
of projects, including the calculation of the first two excite
states of indole. We will in this section denote b
RAS(N,MI1MII 1MIII )@MxHole,MxElec# a RASSCF cal-
culation with N electrons in an active space ofMI RAS1
orbitals,MII RAS2 orbitals andMIII RAS3 orbitals. MxHole
and MxElec signify the maximum number of particles e
cited out of the RAS1 space, and into the RAS3 orb
space, respectively.

Indole has two low singlet excited states,1Lb ~covalent!
and1La ~ionic!, which are separated by a small energy gap
approximately 0.4 eV. A CASSCF(10,9)/6-31G* calculation
overestimates this gap~1.20 eV!, mainly because the energ
of the ionic 1La state is overestimated. CAS-PT2/ANO ca
culations by Serrano and Roos19 reproduce the experimenta
value. The goal of this study is to give a balanced descrip

FIG. 9. Potential energy surfaces~S1,S2! of indole, calculated at the
CASSCF level@CAS(10,9)/6-31G* #.
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of the excited states that includes a good approximation
the energy gap of 0.4 eV between the S1 and S2 exc
states.

In Table VIII and Fig. 9 we illustrate the results of th
CASSCF computation. A comparison with experimental
sults in Table VIII clearly shows that the results of th
CASSCF computation are not only quantitatively, but a
qualitatively, incorrect. According to the experimental da
the two states of indole (1La and 1Lb) have similar 0–0
transitions~emissions from the minimum for the state to th
ground-state minimum!. Therefore, the potential energy su
face probably has two different minima on the surface
S1: one for each state. Presumably there is a conical in
section~surface crossing! between S1 and S2, because t
1La state is S2 at the Franck–Condon geometry. At
CASSCF(10,9)/6-31G* level, the surface is wrong: the1La

minimum lies on S2.
A common technique used in order to enhance qual

tively the description of electronic states is to ‘‘double’’ th
active space ofp-orbitals in a CASSCF computation. Th
corresponding CASSCF~10,18! in the case of indole is, how
ever, outside the scope of practical computation. T
RASSCF treatment of this enlarged active space on the o
hand is absolutely practical. A second possibility for quali
tively improving the wavefunction is to includes-orbitals
into the set of active orbitals.

Preliminary computations using the 3-21G basis set w
performed in order to identify the most suitable RAS acti
space definition. In a first test the active space was doub
by including the 9 2p orbitals of A9 symmetry~a p-system
used in the CASSCF computation! and the 9 3p orbitals of
A9 symmetry. Ten of these orbitals were placed in the RA
subspace, and the 3 nearly doubly occupied orbitals from
CASSCF computation in the RAS1 subspace. This co
sponds to a CAS~4,5! reference space in RAS2. Two comp
tations were performed, one with MxHole5MxElec52 and
one with MxHole5MxElec51. In a second test the activ

TABLE IX. Results of preliminary RAS computations of the first two sin
glet excited states of indole. The 3-21G basis set was used for these
putations.

N MI MII M III MxHole MxElec DES12S2

10 3 5 10 1 1 0.90 eV
10 3 5 10 2 2 1.09 eV
30 13 5 20 1 1 0.78 eV
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE X. Orbital occupancies for RAS(30,1315120)@1,1# and RAS(20,815111)@1,1# computations at the
Franck–Condon geometry (6-31G* basis set!. Orbitals that have been excluded in the latter RAS computa
are shown in italics.

Sym. RAS(30,1315120)@1,1# Sym. RAS(20,815111)@1,1#

RAS1 10A8 1.9986, 1.9984, 1.9983, 1.9979, 1.9978 5A8 1.9979, 1.9960, 1.9958, 1.9955, 1.9951
1.9960, 1.9957, 1.9952, 1.9949, 1.9932

3A9 1.9866, 1.9842, 1.9731 3A9 1.9847, 1.9808, 1.9716
RAS2 5A9 1.8567, 1.0755, 0.9368, 0.1057, 0.0509 5A9 1.8377, 1.0966, 0.9312, 0.1136, 0.0535
RAS3 1A9 0.0210 1A9 0.0233

10A8 0.0062, 0.0039, 0.0038, 0.0037, 0.0036 5A8 0.0059, 0.0038, 0.0038, 0.0031, 0.0031
0.0036, 0.0033, 0.0024, 0.0019, 0.0016

9A9 0.0025, 0.0013, 0.0011, 0.0011, 0.0010 5A9 0.0028, 0.0013, 0.0013, 0.0013, 0.0011
0.0010, 0.0009, 0.0009, 0.0001
1
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at
orbital space from the first test was augmented by
s-orbitals ands* -orbitals corresponding to the 10 CC an
CN s-bonds. The RAS1 subspace now contained 13 orbit
RAS2 5 orbitals and RAS3 20 orbitals, and excitations ou
RAS1 and into RAS3 were limited to 1 particle each. Aga
the RAS2 subspace translates into a CAS~4,5! reference
space. In Table IX we summarize the computations and t
results. It is clear from these preliminary results that inc
sion of s-orbitals and single excitations relative to the refe
ence space are particularly important.

The strategy from now on was~a! to increase the basis t
6-31G* , ~b! to reduce the RAS space by eliminating t
MOs with occupancies closest to 2.00 and 0.00, and vary
RAS2 subspace, and~c! to improve the energies with th
6-3111G* basis set. Table X shows the orbital occupanc
resulting from step~a!. A number of orbitals that are virtually
doubly occupied or unoccupied are excluded from the ac
space and the orbital occupancies from the resul
RAS(20,815111)@1,1# are also shown in Table X. The ex
citation energies obtained from these calculations are sh
in Table XI. In general, all calculated energies for S1 a
0.7–1.4 eV higher than the experimental value. However,
energy gap between S1 and S2 is much more accurate
the CASSCF value of 1.20 eV~cf. Table VIII!. The reduction
of the active space has only a small effect, while the use
the larger (6-3111G* ) basis set improves the results su
stantially.

TABLE XI. Results of RASSCF computations of indole, at the FC poi
The experimental values are 4.77 eV~S1!, 4.37 eV ~S2!, 0.40 eV
(DES22S1).

Basis set (N,MI1MII 1MIII ) RAS2
Erel

~eV!
DES22S1

~eV!

6-31G* (30,1315120) ~4,5! S2: 6.41 0.67
S1: 5.74

6-31G* (20,815111) ~4,5! S2: 6.01 0.74
S1: 5.27

6-31G* (20,715112) ~6,5! S2: 6.74 0.68
S1: 6.06

6-31G* (20,716111) ~6,6! S2: 5.98 0.83
S1: 5.15

6-3111G* (20,716111) ~6,6! S2: 5.73 0.65
S1: 5.08
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Figure 10 shows the potential energy surface as co
puted at the RAS(20,716111)@1,1#/6-31G* level. The re-
sults in the figure are qualitatively correct, although the 0
energy for the1La state is off by more than 1 eV. In contra
to the vertical excitations, the potential energy surface c
rected with the 6-3111G* basis is worse than the ones wi
6-31G* . The reason for this is probably that the points we
optimized with the latter basis.

The result of this first application of our RASSCF pr
gram is encouraging. The improvements of the obtained
citation energies compared to the CASSCF(10,9)/6-31G* is
considerable, but the crucial result is the qualitatively corr
potential energy surface. The computational cost increa
only moderately, with the number of CSFs increasing fro
8001 for the CASSCF~10,9! computation, to 53735 for the
RASSCF(20,716111)@1,1#. On the other hand, explor
atory calculations have shown that in order to complete
study of the potential energy surface and optimize the tr
sition structure between the two minima on the S1 surfa
extension of the RAS2 subspace is necessary.

FIG. 10. Potential energy surfaces calculated at the RASSCF level~energies
in eV, bond distances in Å!. The geometry optimizations were carried out
the RAS(20,716111)@1,1#/6-31G* level ~the number in brackets! end the
energetics recalculated with a larger basis set, at the RAS(20,716111)
3@1,1#/6-3111G* level.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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VI. SUMMARY

In this paper we have developed an efficient method
updating the CI vector in a RASSCF computation within t
iterative Davidson/Lanczos methods. The string based a
rithm arises due to two new concepts:~i! the RAS model
space concept ensures a very efficient identification of blo
of contributions to thes-vector, and we have made use
the reduced list algorithm previously introduced in Ref. 9
efficient CASSCF computations. The RAS model space
lows the representation of a restricted space problem in
unrestricted manner, thus avoiding the complications inh
ent in the RASSCF method.~ii ! Propagation rules are used
efficiently construct the string addresses~as opposed to the
strings! in a predefined order. Propagation rules are a sim
but very efficient algebraic tool avoiding table-lookups a
the construction of contributing strings themselves.

The resulting method is memory efficient, since it u
lizes compressed storage of precomputed model excita
lists in the main memory. The construction of the full exc
tation strings is fully avoided. The algorithm developed fo
lows an integral driven approach. The resulting outer nes
loops over model orbital indicesw,x,y,z lends itself to effi-
cient parallelization. Every model space index quadru
w,x,y,z represents a list of integrals (i j ukl), i.e., we have an
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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integral block drivenapproach. Clusters of index quadrupl
with variable cluster size ensure adjustable granularity of
parallelism, thus avoiding scaling problems. Communicat
overhead~if run in parallel! is minimal through implicit task
definition by only one integer. This technique also leads t
natural load balancing.

The algorithm is implemented in the current develo
ment version of the Gaussian package of programs.20 The
implementation comprises the option of parallel executi
Running in parallel may be done using distributed mem
~Linda! or shared memory, or a combination of these.
well as the most general case of Slater determinants, we
implemented the straightforward simplifications for single
and triplets using Hartree Waller functions.

A test example application has been performed with
current version of the program. The results show that
RASSCF method is a useful tool allowing us to approa
problems that are currently not tractable with the CASS
method.
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APPENDIX: ALGORITHM

1. The 2e excitation „aa part … contribution to the s-vector

-At program initialization, precompute all reduced model string lists
-Do (parallel) loop over model space index quadruples w,x,y,z, @cf. Eq. ~36!#

-Do loop over reduced model a-string list LN
a
m22

Mm24

-Insert bits bw ,bx ,by ,bz into reduced model string and form model excitation string
(→ Ka

m ,La
m)

-If Ka
m ,La

m are invalid, jump to loop end @this is to avoid double contributions; cf. Sec. II C#
→sgna

m, Cat(i h ,i e), A$Ka
RAS2%, Cat(i h8 ,i e8), A$La

RAS2%, P(RAS1), P(RAS3)
-Assemble integral list $ ( i j ukl) %, using the propagation rules P(RAS1) and P(RAS3)

-Apply P(RAS1) to assemble RAS1 substring excitation list , E a
RAS1,

(→A$Ka
RAS1%,A$La

RAS1%,sgna
RAS1)

-Apply P(RAS3) to assemble RAS3 substring excitation list , E a
RAS3,

(→A$Ka
RAS3%,A$La

RAS3%,sgna
RAS3)

-Do loop over all entries in E a
RAS1

-Do loop over all entries in E a
RAS3

→A$Ka%, A$La%, (i j ukl), sgna5sgna
msgna

RAS1 sgna
RAS3

-Do loop over all allowed Cat(i h9 ,i e9) @allowed if Max(i h ,i h8)1 i h9<MxHole and Max(i e ,i e8)1 i e9<MxElec]
-Do loop over all Kb(Cat(i h9 ,i e9)
-sKaKb

ªsKaKb
1 1

2 sgna(ij ukl)CLaKb

-sLaKb
ªsLaKb

1 1
2 sgna(ij ukl)CKaKb

-End loops

2. The 2e excitation „ab part … contribution to the s-vector

-Do (parallel) loop over model space index quadruples w,x,y,z, @cf. Eq. ~36!#
-Integral list $( i j ukl) % is already known from aa part .
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Down
-Do loop over reduced model a-string list LN
a
m21

Mm22

-Insert bits bw ,bx into reduced model string and form model excitation
string (→ Ka

m ,La
m)

-If Ka
m ,La

m are invalid, jump to loop end @this is to avoid double contributions; cf. Sec. II C#
→sgna

m, Cat(i h ,i e), A$Ka
RAS2%, Cat(i h8 ,i e8), A$La

RAS2%, P(RAS1), P(RAS3)
-Apply P~RAS1! to assemble RAS1 substring excitation list , E a

RAS1

(→A$Ka
RAS1%,A$La

RAS1%, sgna
RAS1)

-Apply P~RAS3! to assemble RAS3 substring excitation list , E a
RAS3

(→A$Ka
RAS3%,A$La

RAS3%, sgna
RAS3)

-Do loop over reduced model b-string list LN
b
m21

Mm22

-Insert bits by ,bz into reduced model string and form model excitation string (→ Kb
m ,Lb

m)

-If Kb
m ,Lb

m are invalid, jump to loop end @this is to avoid double contributions; cf. Sec. II C#
→sgnb

m, Cat(i h9 ,i e9), A$Kb
RAS2%, Cat(i h- ,i e-), A$Lb

RAS2%
-If @( i h1 i h9)<MxHole and (i h81 i h-)<MxHole and (i e1 i e9)<MxElec and (i e81 i e-)<MxElec # then
-Apply P(RAS1) to assemble RAS1 substring excitation list , E b

RAS1,
(→A$Kb

RAS1%,A$Lb
RAS1%, sgnb

RAS1)
-Apply P~RAS3! to assemble RAS3 substring excitation list , E b

RAS3,
(→A$Kb

RAS3%,A$Lb
RAS3%, sgnb

RAS3)
-Do loop over all entries in E a

RAS1

-Do loop over all entries in E a
RAS3

→A$Ka%, A$La%, sgna5sgna
msgna

RAS1 sgna
RAS3

-Do loop over all entries in E b
RAS1

-Do loop over all entries in E b
RAS3

→A$Kb%, A$Lb%, (i j ukl), sgnb5sgnb
msgnb

RAS1 sgnb
RAS3

-sKaKb
ªsKaKb

11/2 sgna sgnb(ij ukl)CLaLb

-sLaLb
ªsLaLb

11/2 sgna sgnb(ij ukl)CKaKb

-End loops
ys
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