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Variational calculation of vibrational linear and nonlinear optical properties
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A variational approach for reliably calculating vibrational linear and nonlinear optical properties of
molecules with large electrical and/or mechanical anharmonicity is introduced. This approach
utilizes a self-consistent solution of the vibrational Schrödinger equation for thecomplete
field-dependent potential-energy surface and, then, adds higher-level vibrational correlation
corrections as desired. An initial application is made to static properties for three molecules of
widely varying anharmonicity using the lowest-level vibrational correlation treatmentsi.e.,
vibrational Møller–Plesset perturbation theoryd. Our results indicate when the conventional Bishop–
Kirtman perturbation method can be expected to break down and when high-level vibrational
correlation methods are likely to be required. Future improvements and extensions are discussed.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1909031g
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I. INTRODUCTION

The importance of the theoretical prediction of nonlin
opticalsNLOd properties can be attributed to potential des
of new materials with applications in communications, m
cine, optical computers, and holography.1 At the microscopic
level the low-order NLO properties are governed by the
and second hyperpolarizabilitiessb andgd. Within the Born–
Oppenheimer approximationsand, for a nonrotating and no
translating moleculed the hyperpolarizability can be split in
electronic and vibrational contributions, with the latter of
being as large as, or even larger than, the former.2–4 As
a result, a number of research groups have focused
attention recently on the evaluation of vibratio
hyperpolarizabilities.5–14

Bishop and KirtmansBKd have developed a perturbati
treatment of vibrational hyperpolarizabilities at nonreso
frequencies.15–17 They write the total vibrationalshyperdpo-
larizability as the sum of two terms – one is the correctio
the electronic property due to zero-point vibrational ave
ing sPzpvad and the other is the remaining pure vibratio
term sPnd. In zeroth order the BK perturbation treatment
lizes the harmonic approximation for the field-free poten
energy surfacesPESd and assumes that the electrical prop
ties depend linearly on the normal modes. Thus, it is
entirely unexpected that, in the case of highly anharm
systems, the double perturbation series in mechanica
electrical anharmonicity might be poorly behaved. Calc
tions show this to be so in the case of HFsRefs. 18 and 19d
and H2O sRefs. 18d dimers. Even for some ordina
p-conjugated NLO molecules, such as 1-formy
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hydroxyhexa-1,3,5-triene, the perturbation series for thab
initio static vibrational hyperpolarizabilities issat leastd ini-
tially divergent.13,20,21

Assuming that all vibrational frequencies are small c
pared to optical frequencies, i.e., within the infinitesopticald
frequency approximation, there exists an alternative to
perturbation approach for calculating vibratio
contributions22–25 to the most important NLO processes.
this alternative finite fieldsFFd procedure, the total vibr
tional hyperpolarizability is expressed as the sum o
nuclear relaxationsPnrd and a curvaturesPcd term.Pnr is due
to modification of the pure electronic response to a s
electric field caused by field-induced relaxation of the e
librium geometry.Pc is the sum of the zero-point vibration
averaging correctionPzpva plus a remainderPc−zpva, deter-
mined by the field-dependent change in the zero-point
tribution that arises from nuclear relaxation. The sum ofPnr

andPc−zpva gives the BKPn.23 WhereasPnr consists of low
order anharmonicity contributions, andPc−zpva contains al
the higher-order anharmonicity terms. In this paper our
mary focus will be on the latter.

One can readily expressPzpva as a perturbation series
electrical and mechanical anharmonicity. Because of co
tational difficulty in evaluating the required anharmoni
parameters, previous FF calculations have been limited
first term in that series. The time is now ripe, however,
extending the FF procedure to include all the terms by u
modern variational treatments of the vibrational Schrödi
equation which parallel those of electronic structure the
The work presented here represents the first attempt
that line.

In the particular case of diatomic molecules the tl:

vibrational hyperpolarizability can be obtained either by the
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seminumerical method of Ingamellset al.26 based on
Numerov–Cooley integration,27,28 or by combining the finit
field29,30 procedure with the standard numerical Numer
Cooley method. This approach may be extended to p
atomic molecules using the discrete variable representa31

sDVRd method, but it is limited to tetra- or penta-atom
On the other hand, the vibrational self-consistent fi
sVSCFd32–35 treatment can be applied to much larger m
ecules. Although the VSCF treatment includes mode-m
anharmonic coupling only in the mean-field approximat
this approximation can be subsequently improved u
variation or perturbation methods.

In this initial investigation we will study static vibr
tional hyperpolarizabilities obtained fromDEzpva by the FF
procedure. Our treatment will be based on VSCF, with
without a subsequent correction, suitably modified to inc
the effect of a static electric field. In the VSCF proced
each mode vibrates in the average potential generated
other modes. By definition there is no correlation betw
modes. The simplest method for introducing such correla
is second-order Møller–Plesset perturbation theorysVMP2d,
which is the approach that will be followed here. Molle
Plesset perturbation theory for vibrations was origin
known as CC-VSCF, where CC stands for “correla
corrected.”36–39 However, in order to avoid confusion wi
vibrational coupled-cluster methods,40 we will use the no
menclature VMPn,41 where n is the order of perturbatio
theory. For fundamental vibrational frequencies, i.e., z
point energies, VMP2 has been found to agree quite
with the experimental data.36–43 Other ways to introduce v
brational correlation are through coupled-clustersVCCd
methods40 and configuration interactionsVCId.44–46Although
such approaches are, in principle, more accurate than V
they have a greater computational cost and will be save
later investigation.

Our presentation is organized as follows. Section II s
marizes the theory and computational considerations.
followed in Sec. III by a presentation of the VSCF a
VMP2 results obtained for H2O, HOOH, and HSSH usin
numericalab initio PES’s. These three molecules cove
wide range of anharmonicity effects from weak to strong
order to provide a reference point for the analysis of
results full vibrational CIsFVCId calculations are also r
ported. However, in our FVCI calculations theab initio PES
is truncated at the quartic terms in a normal coordinate
pansionsand, in some cases, further modifiedd. For the trun
cated PES we also make a comparison with the BK pe
bation theory. Finally, our conclusions and some future p
are given in Sec. IV.

II. THEORY AND METHODOLOGICAL
CONSIDERATIONS

This paper is concerned with pure vibrational effe
Therefore, rotation and rotation-vibration couplings are
nored. In addition, we neglect the mass-dependent term
the effective vibrational potential of the full Wats

47,48
Hamiltionian as is commonly done. Under these approxi-
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mations, the vibrational Schrödinger equation for nuc
motion of a molecule in the ground vibrational state can
expressed as

F−
1

2o
i=1

M
]2

]Qi
2 + VsQ1,Q2, . . . ,QMdGc0sQ1,Q2, . . . ,QMd

= E0
zpvac0sQ1,Q2, . . . ,QMd, s1d

whereM is the number of vibrational modessi.e., 3N-5 or
3N-6d, Qi is a normal coordinate, andV is isotopically in-
variant. In general, anharmonic terms inVsQ1,Q2, . . . ,QMd
will couple the normal modes and, thus, the e
c0sQ1,Q2, . . . ,QMd cannot be written as a simple produc
single-mode vibrational wave functions. However, in the
monic approximation we may write for the ground state

c0
s0dsQ1,Q2, . . . ,QMd = p

i=1

M

fi
0sQid, s2d

wherefi
0sQid is a single-mode harmonic-oscillator functi

and the corresponding vibrational energy, denoted byEhar
zpva,

is just the sum of individual harmonic-oscillator contri
tions.

It will be of interest to compare the variational res
obtained in this paper with the BK perturbation theory.1 For
that purpose we assume, as in previous work,49,50 that
VsQ1,Q2, . . . ,QMd can be expanded as a Taylor series in
normal coordinates and define the cubic and quartic term

be first-orderfĤs1dg and second-orderfĤs2dg perturbations
respectively. In that event, the first-order correction to
ground-state vibrational energy, which is given

kc0
s0duĤs1duc0

s0dl, vanishes whereas the second-order corre
is given by

Ezpvas2d = kc0
s0duĤs2duc0

s0dl − o
aÞ0

M kc0
s0duĤs1duca

s0dl2

Ea
s0d − E0

s0d . s3d

The vibrational energy corrected through second orde
means of Eq.s3d, with a zeroth-order harmonic approxim
tion, is hereafter denoted asEPT2

zpva. In comparison the exa
result obtained from a full spacessee later for definitiond
FVCI calculation, for atruncatedTaylor-series expansion
VsQ1,Q2, . . . ,QMd limited to no higher than quartic terms,
written asEFVCI

zpva . For the PT2 calculations we use the co
plete set of harmonic excited states that contributes to
second term of Eq.s3d si.e., harmonic excited statesa with

nonzerokc0
s0uĤs1duca

s0dld. This set is constructed from all 1
2-, and 3-mode excitations where the sum of single-m
quantum numbers is either 1 or 3sthe single-mode quantu
number is 0 for the ground state; 1 for the first excited s
etc.d.

In the FVCI calculations all the excitations where
sum of single-mode quantum numbers is less than 9
been included. This restriction on the basis set was dic
by practical considerations. By following the calculations
the maximum value for the sum of single-mode quan
numbers is increased we found that, when theab initio PES
is truncated at quartic terms, the energy diverges for the

anharmonic systems. In order to circumvent this problem the
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truncated potential was modified as described in Sec. II
An alternative approach for treating anharmonicity

VSCF.32–35 In the VSCF methodology the vibrational wa
function has the same form as in Eq.s2d, but thefi

0sQid are
effective single-modeanharmonic vibrational wave func
tions obtained by solving the single-mode vibratio
Hartree-type equation,

F−
1

2

]2

]Qi
2 + Vi

0sQidGfi
0sQid = «i

0fi
0sQid ∀ i , s4d

where the effective potential is

Vi
0sQid =Kp

jÞi

M

f j
0sQjduVsQ1,Q2, . . . ,QMdup

jÞi

M

f j
0sQjdL .

s5d

Since the evaluation ofV̄i
0sQid depends on the single-mo

wave functions, the VSCF equationfEq. s4dg must be solve
iteratively. The ground-state VSCF energy is, then, give

EVSCF
zpva = o

i=1

M F«i
0 − sM − 1dKp

j=1

M

f j
0sQjd

3uVsQ1,Q2, . . . ,QMdup
j=1

M

f j
0sQjdLG , s6d

where the second term on the right-hand side is need
that the coupling terms are counted just once.

The M-dimensionalVsQ1,Q2, . . . ,QMd can be expresse
as a sum of 1-, 2-,…, M-mode coupling terms36

VsQ1,Q2, . . . ,QMd = o
i=1

M

VisQid + o
i=1

M−1

o
j.i

M

VijsQi,Qjd

+ o
i=1

M−2

o
j.i

M−1

o
k. j

M

VijksQi,Qj,Qkd + ¯ .

s7d

While the computational cost of evaluating the integral
Eq. s5d increases rapidly with the number of modes that
coupled, the corresponding contribution to the energy is
pected to decrease. As a result most VSCF calculations
into account only 1-, 2-, and 3-mode coupling terms,37–39

although there are now programs available that will t
coupling up to four modes for small molecules.42 In this
paper we consider only the effect of 1-, 2-, and 3-mode
pling terms on the curvatureshyperdpolarizabilities.

Contributions due to the difference between the sum
single-mode VSCF potentials and the exact coupling po
tial can be included using VMP perturbation theory.36–43 In
the VMP treatment the perturbation operatorHs1d is given by

Hs1d = VsQ1,Q2, . . .QMd − o
i=1

M

Vi
0sQid. s8d

The VMP1 energy, which is the sum of the zeroth- and fi
order terms, is just the VSCF energy. Thus, the first co
tion to the VSCF energy is given by the second-order o

perturbation theory and the total zero-point energy through

oaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license
o

-
e

-

-

-

second order will be denoted asEVMP2
zpva . For testing purpose

in addition to calculations with the “exact” numerical P
sobtained at a given level ofab initio electronic structur
theoryd, we will also present VSCF and VMP2 calculatio
using the same truncated analytical PES with modified q
tic terms as employed in the FVCI calculations descr
above.

As discussed in the Introduction we wish to obtain
staticPc sP=m, a, b, andgd by evaluating the change in t
field-dependentEzpva associated with the shift from field-fr
to field-dependent equilibrium geometry.25,51 Using the BK
square bracket nomenclature the contribution of the z
point term to Pc sPc=Pzpva+Pc−zpvad may be written as
perturbation series,17

Pzpva= fPgI + fPgIII + fPgV + ¯ . s9d

For convenience, we have omitted the superscript
on the right-hand side of Eq.s9d. The roman superscript i
dicates the total order in anharmonicityselectrica
1mechanicald and all even order corrections are zero. On
other hand, the remainingPn=Pnr+Pc−zpva contributions to
the staticshyperdpolarizabilities are given by17

aab
n s0;0d = fm2gv=0

0 + fm2gv=0
II + fm2gv=0

IV + ¯ , s10d

babg
n s0;0,0d = fmagv=0

0 + fm3gv=0
I + fmagv=0

II + fm3gv=0
III

+ fmagv=0
IV + fm3gv=0

V + ¯ , s11d

and

gabgd
n s0;0,0,0d = fa2gv=0

0 + fmbgv=0
0 + fm2agv=0

I

+ fm4gv=0
II + fa2gv=0

II + fmbgv=0
II

+ fm2agv=0
III + fm4gv=0

IV + fa2gv=0
IV

+ fmbgv=0
IV + fm2agv=0

V + fm4gv=0
VI + ¯ .

s12d

The sum of the lowest-order square bracket terms of
type in Eqs.s10d–s12d constitutes the nuclear relaxationsNRd
contribution. Thus, using the staticb as an example, the N
contribution is

babg
nr s0;0,0d = fmagv=0

0 + fm3gv=0
I s13d

andbc−zpva consists of all the other terms in Eq.s11d. Calcu-
lations of Pc−zpva have been done previously using fie
induced coordinates52–54 and the FF method of Kirtma
Luis, and Bishop25 but only fPzpvagI or Ehar

zpva was utilized
because of computational difficulties. In that event, the
calculation of Pc gives just the lowest-order nonvanish
anharmonic contributions of each square bracket type,

babg
c s0;0,0d = fbzpvagI + bsc−zpvadsId

= fbgv=0
I + fmagv=0

II + fm3gv=0
III . s14d

Note the definition ofbsc−zpvadsId; asc−zpvadsId andgsc−zpvadsId are
defined analogously. On the other hand, when the fi
dependentEPT2

zpva is employed in the FF method, the ne
highest-order nonvanishing perturbation contributionsfi.e.,
fPzpvagIII +Psc−zpvadsIII d=fbgv=0

III +fmagv=0
IV +fm3gv=0

V g are also

included.
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In principle, the completePc to all orders can be ob
tained using the FVCI method. However, the calculat
realized in this paper are not exact because a truncatedsand
modifiedd PES was employed for H2O sHOOH and HSSHd.
Nevertheless, our FVCI treatment includes a large part o
vibrational correlation not present in the VMP2 calculati
for the complete PES and, in comparison with PT2, it
cludes a portion of all higher-order terms. Thus, the V
results provide a valuable indication regarding the accu
of the PT2 and VMP2 treatments as we will see.

In order to evaluate the convergence of the BK pe
bation treatment it has been suggested that two differen
quences should be examined separately:13,20

sAd pe, fpzpvagI, fpzpvagIII , . . .,
sBd Pnr, Psc−zpvadsId, Psc−zpvadsIII d , . . . .

When thefPzpvagI /Pe and Psc−zpvadsId /Pnr ratios are smalle
than unity the series are initially convergent. If the ratios
each much less than unity, then this suggests thaPe

+fPzpvagI +Pnr+Psc−zpvadsId may be a good approximation
the complete property value. A very important advantag
the variationsvariation perturbation in the case of VMPd
methods is that an accurate numerical PES can be
which is not approximated by a truncated power series in
normal coordinates. The calculatedPc has no order-by-orde
correspondence with the BK square bracket formulas an
question of convergence with respect to anharmonicity
not arisesalthough, of course, in the MP perturbation tre
ment the convergence of the MPn series is an issued. Thus, it
is expected that VSCF and VMP2, combined with a num
cal PES, will give better results than the BK perturba
theory when the anharmonicity is large.

Our calculations were limited to the component para
to the dipole moment of the electrical properties, which
determined by numerical differentiation using field value
±0.0001, ±0.0002, ±0.0004, ±0.0008, ±0.0016, ±0.00
±0.0064, ±0.0128, ±0.0256, and ±0.0512 a.u. The sma
magnitude field that produced a stable derivative was
lected using a Romberg method triangle.55 Field-dependen
VSCF and VMP2 zero-point energies were computed us
modified version of theGAMESSab initio quantum chemistr
package.56 The field-dependent harmonic, PT2, and FV
zero-point energies were evaluated with our own code. C
and quartic vibrational force constants were computed by
own code using theGAUSSIAN98suite of programs57 to obtain
the quadratic force constants at the equilibrium and v
tionally displaced geometries. For the HF and MP2 calc
tions we utilized the basis sets developed by Sadlej.58 These
basis sets have given satisfactory polarizabilities for a l
number of molecules.59–63The field-dependent geometry o
timizations were done by our own program which rigorou
enforces the Eckart conditions.64

There is an uncertainty in the calculatedPc that arise
because of the numerical differentiations involved. Usu
the magnitude of this uncertainty will increase with the o
of differentiation and is, therefore, largest for the hyperpo
izabilities. As an example consider the evaluation ofgc,FVCI.
This requires a numerical fourth derivativeswith respect to

zpva
the fieldd of the change inEFVCI due to nuclear relaxation.
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The computation ofEFVCI
zpva , in turn, is based on the quar

PES, which means that numerical second derivatives o
analytical Hessianswith respect to nuclear displacemend
are required. Thus, the overall calculation is affected by
merical errors in sixth-order derivatives. Despite cons
able effort to achieve high accuracy in these derivative
precision of the values obtained in the Romberg procedu
not always as high as we would like. Appropriate e
bounds are included in the tables and future plans to alle
this situation are discussed in the concluding section.

In order to make the calculation of the field-depend
EVSCF

zpva and EVMP2
zpva we have linked the VSCF code imp

mented inGAMESS to the GAMESS subroutines that compu
the field-dependent electronic energy. A second key mo
cation of theGAMESS VSCF/VMP2 algorithm was made
described in the following. Sometimes the coupling te
that appear in the SCF effective potential lead to neg
vibrational eigenvalues. When this happens the terms a
duced by a scaling factorsf ,1.0d in the VSCFGAMESScode
to ensure that the eigenvalues are positive. In carrying
the subsequent VMP2 calculation this scaling is mainta
which means that the totalVsQ1,Q2, . . . ,QMd is not the sam
as that obtained from the electronic energy calculations.
result the derivatives with respect to the electric field turn
to be poorly determined. For that reason we correct the
turbation potential in the subsequent VMP2 treatment so
the total result corresponds to the exact PES, rather tha
scaled PES. In order to obtain well-determined deriva
we also need to require thatf be the same regardless of
field. To do that we choose the smallestf generated by con
sidering all the fields.

In the VSCFGAMESSalgorithmVsQ1,Q2, . . . ,QMd is ex-
pressed in terms of 1-, 2-, and 3-mode couplings in
form.36 All anharmonic contributions in the puresas oppose
to VSCFd single-mode potential are included. In this w
we have used a 16-point grid, but we have checked tha
changes in the results are negligible when a 32-point g
utilized. The one-dimensional VSCF equation given by
s4d is solved in theGAMESS program using the collocatio
method of Yang and Peet.65

III. RESULTS AND DISCUSSION

The purpose of the calculations discussed below
validate the variational approach for determining curva
contributions to nonlinearsand lineard optical properties.
should be noted that our results are the first ever obtaine
contributions beyond the lowestsnonvanishingd order of an
harmonicity in any polyatomic molecule. A second goal i
assess the accuracy of the VSCF and VMP2 method
particular. We begin by calibrating with the nearly harmo
molecule, H2O, and then move on to the more anharmo
cases of HOOH and HSSH. In this paper only static pro
ties are considered and, for convenience, we restrict
selves to the diagonal component of theshyperdpolarizabili-
ties along the molecular dipole axis.

Our general approach is as follows. Firstly, we check
initial convergence of perturbation seriessAd and sBd. The

good behavior of both series is necessary in order to obtain
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reliable results for vibrationalshyperdpolarizabilities using
the BK perturbation theory. Secondly, we test the new v
tional approaches as well as the BK perturbation theor
comparing with full vibrational CI, i.e., FVCI, results.
order to make the FVCI treatment feasible we work with
approximate PES, which is truncated at the quartic te
However, that is only for testing purposes and it should
emphasized that our final VSCF and VMP2 calculations
not subject to this limitation. Indeed, a point of interest is
magnitude of the contributions that are not captured by
quartic approximation for the PES.

A. H2O

The results for H2O based on Hartree–FocksHFd and
MP2 electronic structure calculations are given in Table
Pe, fPzpvagI, Pnr, andPsc−zvpadsId. The importance of these va

TABLE I. Values ofPe, fPzpvagI, Pnr, andPsc−zvpadsId f
andg in the direction parallel tom. The calculations
are in a.u. Error bounds were determined as th
different fields.

H2O

HF/POL MP2/POL

me 768310−3 737310−3

fmzpvagI 207310−5 109310−5

ae 834310−2 992310−2

fazpvagI 255310−3 308310−3

anr 859310−3 698310−3

asc−zpvadsId 746310−4 579310−4

be −407310−2 −915310−2

fbzpvagI −939310−3 −684310−3

bnr 438310−2 376310−2

bsc−zpvadsId 558310−3 308±1310−3

ge 7573100 1243101

fgzpvagI 458310−1 580310−1

gnr 1793100 2353100

gsc−zvpadsId 320±2310−1 406±2310−1

TABLE II. Curvature contributions tom and to the diagonal component oa
Ezpva is given as well. Calculations of the PES are at the HF/POL an
minimum difference between the final Romberg values for different fi

Harmonic PES
Pc,har

Truncated PES

Pc,PT2

3-mode coupling

Pc,VSCF Pc,VMP2

HF
Ezpva 0.023 106 0.022 831 0.022 932 0.022 857
mc 207310−5 179310−5 180310−5 171310−5

ac 329310−3 340310−3 338310−3 341310−3

bc −381310−3 −456±6310−3 −460±10310−3 −500±8310−3 −
gc 778±2310−1 890±10310−1 890±10310−1 920±20310−1

MP2
Ezpva 0.021 405 0.021 111 0.021 214 0.021 141
mc 109310−5 875310−6 858310−6 807310−6

ac 365310−3 373310−3 371310−3 373310−3

bc −376±1310−3 −355±1310−3 −369±1310−3 −389±2310−3 −
gc 986±2310−1 101±13100 101±13100 102±13100
oaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license
.

ous lower-order contributions to theshyperdpolarizabilities
and the effect of basis set and electron correlation upon
have already been analyzed in detail by sev
authors.24,51,64,66Here we simply wish to note that, at bo
the HF and MP2 levels, thefPzpvagI /Pe and Psc−zvpadsId /Pnr

ratios are always less than 0.24 and 0.18, respect
Hence, the perturbation sequencessAd and sBd are initially
convergent, althoughfPzpvagI and Psc−zvpadsId must be take
into account for quantitative accuracy. In Table II we pre
Pc,VSCFandPc,VMP2 results calculated for the exact numer
ab initio PES. This table also contains referencePc,FVCI val-
ues obtained for the truncated PES as well asPc,har, Pc,PT2,
Pc,VSCF, andPc,VMP2 results for that same truncated poten
Here the superscript har, PT2, etc. refers to the metho
determining theEzpva from which the electrical property w
calculated. Note thatPc,har=fPzpvagI +Psc−zpvadsId and Pc,PT2

ticm as well as for the diagonal component ofa, b,
done using the POL basis set of Ref. 58. All quantities

nimum difference between the final Romberg values for

HOOH
HSSH

HF/POLHF/POL MP2/POL

40310−3 699310−3 499310−3

429310−4 −333310−4 −652310−5

09310−1 133310−1 372310−1

67310−3 263310−3 492310−3

84310−1 252310−1 238310−2

11310−1 747310−2 283310−3

179310−2 −624310−2 107310−1

624310−3 −233310−3 −218310−3

4083101 −3073101 −946310−2

4283101 −2463101 −296±2310−2

743100 1663101 7233101

53310−1 539310−1 780310−1

553104 1003104 3323101

0±103104 132±53104 1003101

ndg in the direction parallel tom for H2O. The zero-point vibrational ene
P2/POL levels and all quantities are in a.u. Error bounds were determ

Exact PES

2-mode coupling 3-mode coupling

c,FVCI Pc,VSCF Pc,VMP2 Pc,VSCF Pc,VMP2

0.022 860 0.022 912 0.022 824 0.022 916 0.0
310−5 186310−5 179310−5 186310−5 178310−5

310−3 338310−3 341310−3 338310−3 341310−3

±7310−3 −445±1310−3 −475±1310−3 −449±1310−3 −483±1310
20310−1 818310−1 847±1310−1 819±4310−1 840±5310−

0.021 143 0.021 192 0.021 102 ¯ ¯

310−6 926310−6 888310−6
¯ ¯

310−3 371310−3 374310−3
¯ ¯

±3310−3 −346±6310−3 −355±6310−3
¯ ¯

±13100 101±13100 102±23100
¯ ¯
or sta
were
e mi
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=fPzpvagI +Psc−zpvadsId+fPzpvagIII +Psc−zpvadsIII d. For the sake o
completeness Table II also contains the field-freeEzpva. Val-
ues based on a treatment containing up to a maximum o
or three coupled vibrational modes are presented. Since2O
has only three vibrational degrees of freedom the 3-m
coupling model is exact.

For water, one would expectPc,har to be a reasonab
approximation to the totalPc. The truncated PES may
used to assess that proposition. From Table II it can be
that Pc,har differs from Pc,FVCI by less than 24% using th
truncated HF PES. For the truncated MP2 PES the d
ences are generally much smaller except for the dipole
ment which, itself, is quite small. Although our results sh
that Pc,har gives a reasonable approximation the errors
remain are significant, at least for the truncated HF PES

Given that the errors in the harmonic approximation
the vibrational curvature properties can be significant, it
interest to examinePc,PT2 which contains the next-highe
order nonvanishing BK perturbation contributions. Using
PT2 method for the truncated HF PES leads to much red
errors, the maximum being 9% forb. For the MP2 PES th
error inb actually increases, in contrast with the other pr
erties, although it is still less than 9%. Overall, thePc,PT2

calculation accounts fairly well for anharmonicity. Ev
though the anharmonic contributions are substantial, the
sPc,PT2-Pc,hard /Pc,har is always less than 0.20, which confir
that the BK perturbation expansion for curvature is initi
well behaved.

Next we turn to the variational approach, again using
truncated PES to assess its accuracy. In all instances,
the Pc,VSCF values are improved overPc,har. In fact, the
VSCF values are somewhat better overall than those
tained by the PT2 procedure, although the two are quite
lar. A further improvement is found upon going from VS
to VMP2. For H2O, VMP2 appears to be an excellent al
native to FVCI since the difference between them is ne
gible in all cases for the truncated PES.

TABLE III. Curvature contributions tom and to the diagonal component
energyEzpva is given as well. Calculations of the PES are at the HF/PO
the minimum difference between the final Romberg values for differen

Harmonic PES
Pc,har

Truncated PES

Pc,PT2

3s2d-mode couplinga

Pc,VSCF Pc,VMP2

HF
Ezpva 0.029 554 0.029 015 0.029 446 0.029
mc −429310−4 −595310−4 −280310−4 −406310
ac 113310−1 181310−1 637310−2 936310−

bc −4283101 −880±43101 −195±13101 −305±13

gc 250±103104 650±203104 111±73104 171±731
MP2
Ezpva 0.026 422 0.025 867 0.026 248 0.025
mc −333310−4 −434310−4 −222310−4 −322310
ac 773310−2 113310−1 442310−2 665310−

bc −2463101 −4733101 −1253101 −20431
gc 132±53104 310±203104 615±13103 106±131

a3-mode coupling at HF level and 2-mode coupling at MP2 level.
We have also investigated the influence of terms in the
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PES that are not included in the quartic power-series ex
sion. The ability to take these terms into account is a m
advantage of the VSCF and VMP2 treatments. A compa
of the 3-mode VMP2 results calculated using the trunc
HF PES with those obtained from the exact numerical
PES shows that the additional terms are roughly of the
importance as vibrational correlationsi.e., going from VSCF
to VMP2d. Finally, the effect of 3-mode coupling was co
sidered. Table II shows that the difference between 2-m
and 3-mode coupling is less than 2% for exact PES.
same result is obtained if the truncated PES is used ins

Summing up for the water molecule,sid Pc,har values
constitute a reasonable approximation,sii d Pc,PT2 andPc,VSCF

contain an important part of the anharmonicity effectserrors
reduced to a maximum of 9%d, siii d Pc,VMP2 takes into ac
count most of the remainingsafter VSCFd anharmonicity du
to mode-mode couplingserror smaller than 1%d, sivd the
terms not included in the quartic PES are roughly as im
tant as vibrational correlation, andsvd the effect of 3-mod
coupling is smallsless than 2%d.

B. HOOH

The electronic and vibrational contributions to the e
trical properties of HOOH computed for the component
allel to the dipole momentsi.e., theC2 axisd, using both th
HF and MP2 PES, are presented in Tables I, III, and IV
turns outscf. Table Id that the vibrational contribution to th
hyperpolarizabilities is very important in this case. For b
b and g the sequencesBd is, initially, either divergent o
barely converging. This ill behavior of the BK perturbat
treatment is also reflected in thesPc,PT2−Pc,hard /Pc,har ratios
scf. Table IIId obtained using both truncated PES’s. For
ample, in the case ofg the value of the latter ratio is 1.6s1.3d
for the HF sMP2d potential.

The FVCI energy computed using the PES truncate
quartic terms diverges when the vibrational basis set is

, andg in the direction parallel tom for HOOH. The zero-point vibration
d MP2/POL levels and all quantities are in a.u. Error bounds were det
lds.

Exact PES

2-mode coupling 3-mode coupling

Pc,VSCF Pc,VMP2 Pc,VSCF Pc,VMP2

0.029 426 0.029 132 0.029 444 0.029
−286310−4 −374310−4 −287310−4 −376310−4

663310−2 871310−2 666310−2 876310−2

−210±103101 −280±103101 −205±73101 −280±103101

102±63104 148±13104 123±43104 170±63104

0.026 224 0.025 943 ¯ ¯

−231310−4 −303310−4
¯ ¯

464±1310−2 624310−2
¯ ¯

−127±23101 −182±33101
¯ ¯

800±1003103 109±83104
¯ ¯
ofa, b
L an
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ill behaved.41 That is to say, a large displacement in cer
directions causes the energy to go below the equilibrium
ometry value. We found a fairly simple, though by no me
unique, way around this difficulty for HOOH. The first s
was to remove the 3-mode and 4-mode coupling terms
the truncated PES. Then, performing large displacem
from the equilibrium geometry, it was determined that
major source of the problem was due to simultaneous m
along three pairs of normal coordinates. In each instance
member of the pair was the symmetric OH stretching m
and the other was either the symmetric or antisymmetric
bend or the torsion. Hence, we increased the quartic
constants of the type]4VsQd /]Qi

2]Qj
2 for these three pair

which is guaranteed to increase the potential. At the s
time the diagonal quartic force constants for all four mo
were also increased. For simplicity the additive constant
taken to be the same in all cases. The value we used
9.42310−3 s7.68310−3d a.u. at the HFsMP2d level. This is
the smallest value that eliminates the divergence and, in
sense, the modification is minimal.

The values for the curvature contribution to the st
electrical properties of HOOH obtained using the trunc
HF and MP2 PES’s, modified as described above, are g
in Table IV. The same 2-mode coupling approximation
used as for the truncatedsunmodifiedd MP2 PES in Table III
Thus, a comparison of results in the two tables provid
measure of the effect due to modifying the quartic force
stants. From the VSCF calculations we see that the mo
cation reduces all electrical properties by roughly 1/3.
though that is substantial we judge that the mod
potential is still suitable for a qualitative assessment of
reliability of the PT2, VSCF, and VMP2 methods for HOO
The VSCF values turn out to be in reasonable accord
VFCI in all cases except for the second hyperpolarizab
determined for the HF PES, which is in error by 59%. On
other hand, there is no such agreement for the harmon
the PT2 treatment which means that neither can be r
upon. Note that PT2 uniformly gives the wrong sign. Fr

TABLE IV. Curvature contributions tom and to the
to m for HOOH. The zero-point vibrational energE
HF/POL and MP2/POL levels and all quantities
difference between the final Romberg values for

Truncated an

Pc,PT2 Pc,VS

HF
Ezpva 0.029 878 0.029
mc 883310−5 −1903

ac −783310−2 45231
bc 6503101 −133±13

gc −608±83104 760±303
MP2
Ezpva 0.026 648 0.026
mc 550310−5 −1473

ac −479310−2 29931
bc 333±13101 −782±83

gc −250±203104 370±103
the difference between the VSCF and VMP2 results in Tables
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III and IV it is clear that vibrational correlation is importa
For mc and ac the VMP2 method gives a substantial
provement over the VSCF valuescf. FVCI in Table IVd;
however, hyperpolarizabilities are generally not impro
We conclude that, in our final calculations with the exacab
initio PES reported in Table III, the VMP2 results for
effect of vibrational correlation should be regarded as m
ingful for m anda, though notb or g.

At the VSCF and VMP2 levels the differences in Ta
III between the truncated PES and the exact PES are s
less than 13%, except for the VSCF second hyperpolariz
ity obtained from the MP2 PES. For HOOH, the influenc
terms not included in the quartic power-series expansio
the potential is clearly less important than vibrational co
lation. From Table III it is seen that the effect of 3-mo
coupling for the exact HF PES is also small, as in H2O,
except perhaps for the second hyperpolarizability. This
ception may or may not be meaningful since it corresp
to the one property where there is a larger difference bet
the VSCF/VMP2 and FVCI values in Table IV. We belie
that higher-order coupling terms are, for the most part,
ligible. At this point we want to reemphasize the advan
of VSCF and VMP2 in that all anharmonicity is includ
except for coupling terms of high dimensionality which
our case isM ù4.

For the HOOH molecule our major results aresid Pc,har

values are very poor,sii d Pc,PT2 results are even worse sin
they give the wrong sign,siii d Pc,VSCF yields a big improve
ment and, with the exception of the second hyperpolariz
ity, accounts for anharmonicity fairly well,sivd for mc andac

Pc,VMP2 includes most of the vibrational correlation corr
tion, but for bc and gc there is no improvement over t
VSCF values,svd the effect of terms not included in t
quartic PES is less important than vibrational correla
and svid 3-mode coupling is potentially significant on

c

nal component ofa, b, andg in the direction parallel
is given as well. Calculations of the PES are at the
in a.u. Error bounds were determined by the minimum
rent fields.

dified PESs2-mode couplingd

Pc,VMP2 Pc,FVCI

0.029 692 0.029 665
−226310−4 −240310−4

520310−2 513310−2

−155±13101 −1243101

900±803103 479±33103

0.026 490 0.026 468
−177310−4 −188310−4

350310−2 358310−2

−933±53100 −849±13100

444±53103 3443103
diago
yzpva

are
diffe

d mo

CF

906
10−4

0−2

101

103

694
10−4

0−2

100

103
for g .
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C. HSSH

The diagonal component of the electronic and vi
tional shyperdpolarizabilities of HSSH in the direction of th
dipole momentsi.e., theC2 axisd is presented in Tables I,
and VI. The results for the HF PES in Table I show tha
the case ofm, a, andg the electronic contribution is dom
nant, but forb the vibrational contribution is essential
reproduce the correct sign and order of magnitude. Neve
less, thesAd and sBd sequences are initially convergent
all properties. For the truncated PES thesPc,PT2

−Pc,hard /Pc,har ratios are all less than 0.21 except forb, in
which case the ratio is 0.79. It should be noted that thbc

and gc values for HSSH are three orders of magnit
smaller than those of HOOH. These relatively small va
are often accompanied by large uncertainties as seen in
instances in Tables V and VI.

The FVCI energy calculations have the same diverg
problems as the preceding system. In order to obtain co
gence we follow exactly the same procedure as before
problematic pair of normal modes and the modified fo
constants are exactly analogous to those of HOOH.
HSSH the additive constant is 2.05310−3 a.u.

From Table VI we see that HSSH is similar to H2O in
that the VMP2 method gives accurate results versus the
erence FVCI treatment for the truncated and modified
PESswith 2-mode couplingd and appears to be consisten
better than VSCF. A comparison of VMP2 and VSCF va

TABLE V. Curvature contributions tom and to the diagonal component
energyEzpva is given as well. Calculations of the PES are at the HF/PO
difference between the final Romberg values for two different fields.

Harmonic PES
Pc,har

Truncated

Pc,PT2

2-mode coupling

Pc,VSCF Pc,VMP

HF
Ezpva 0.019 326 0.019 098 0.019 239 0.01
mc −652310−5 −722310−5 −643310−5 −70731
ac 775310−3 824±1310−3 763310−3 819±131
bc −318±2310−2 −570±50310−2 .−100310−2a −450±403
gc 1083101 130±503101 582±13100 100±203

aThis value is not converged but from the Romberg triangle we know

TABLE VI. Curvature contributions tom and to the
to m for HSSH. The zero-point vibrational energE
HF/POL level and all quantities are in a.u. Error
the two final Romberg values for two different fie

Truncated an

Pc,PT2 Pc,VSC

HF
Ezpva 0.019 353 0.019
mc −583310−5 −57631
ac 682310−3 69431
bc 150±30310−2 230±503
gc 450±303100 320±803

a
This value is not converged but from the Romberg tr
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in Table VI indicates that vibrational correlation is import
for bc and gc. The relatively large probable errors in o
values make this point somewhat uncertain, but it is r
forced by the data in Table V. Unlike H2O and HOOH we
find that, in the case of HSSH, PT2 yields distinctly be
results than VSCF forbc andgc. This may be seen from th
truncated PES calculations by comparing the two met
with FVCI in Table VI and with VMP2 in Table V. Th
Pc,PT2 values, in turn, show a modest improvement o
Pc,har for m and a but, given our precision, we cannot s
whether the same is true forb andg. Apparently anharmo
nicity does not play an important role in determiningm or a.
On the other hand, the fact thatPc,har results forb andg are
in fairly close agreement with those obtained by VMP2
the exact PESscf. Table Vd is due to an accidental cance
tion of anharmonicity contributions. This conclusion follo
from the substantially larger differences found between
harmonic results and the VSCF values, which include in
modal anharmonicity.

Finally, the data in Table V establish that terms in
PES which are not included in the quartic power-series
pansion have a very small effect onmc andac sless than 2%d
but, in general, these terms have an important effect o
curvature hyperpolarizabilities. This is consistent with
analysis given in the previous paragraph. We also note
the differences between the 2-mode and 3-mode pro
values are negligible formc and ac sless than 1%d and no

, andg in the direction parallel tom for HSSH. The zero-point vibration
vel and all quantities are in a.u. Error bounds were determined as th

Exact PES

3-mode coupling 2-mode coupling

Pc,VSCF Pc,VMP2 Pc,VSCF Pc,VMP2

0.019 240 0.019 101 0.019 234 0.019
−642310−5 −708310−5 −644310−5 −698310−5

757310−3 816310−3 761310−3 805310−3

.−100310−2a −400±50310−2 −260±20310−3 −312310−2

608±33100 100±203101 800±1003100 110±203101

between −100310−2 and zero.

nal component ofa, b, andg in the direction parallel
s given as well. Calculations of the PES are at the
ds were determined by the minimum difference between

dified PESs2-mode couplingd

Pc,VMP2 Pc,FVCI

0.019 341 0.019 334
−605310−5 −616310−5

709310−3 721310−3

120±50310−2 .100310−2a

470±703100 520±503100

−2
ofa, b
L le

PES

2

9 117
0−5

0−3

10−2
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d mo
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440
0−5

0−3

10−2

100
iangle we know it is between 100310 and zero.
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very important forbc and gc. This result suggests that t
2-mode results obtained for the exact PES provide a sat
tory treatment of the mode-mode coupling.

Summing up for HSSH,sid as in the case of H2O the
VMP2 method gives accurate results,sii d for b andg vibra-
tional correlation is important andPc,PT2 is better than
Pc,VSCF, siii d vibrational anharmonicity is insignificant form
anda, sivd the effect of terms not included in the quartic P
is small for m and a but generally substantial forb and g,
and svd the 3-mode contribution is either negligible or
minor importance.

IV. CONCLUSIONS

The particular vibrational contribution to dipole m
ments andshyperdpolarizabilities known as curvature aris
from electrical and mechanical anharmonicity. Although
contribution can be quite significant its evaluation fr
field-dependent zero-point vibrationally averaged prope
has, thus far, been limited to a first estimate because of
putational difficulties. We have presented a new variati
approach that circumvents these difficulties. Our appr
utilizes the self-consistent solution of the vibratio
Schrödinger equation for the field-dependent PES. Just
the analogous electronic structure treatment this initial V
model can be improved by adding higher-level VMP2, V
etc. corrections. Here, in calculations for the exact PES
limit ourselves to VSCF and VMP2. The fact that the ex
PES can be taken into account is a noteworthy advanc
this initial study we consider only static dipole moments
shyperdpolarizabilities, which are determined from the
ergy property by differentiation with respect to the field
order to obtain satisfactory electrical field derivatives i
necessary to modify the methodology of theGAMESS quan-
tum chemistry program employed for the VSCF and VM
calculations.

Our new approach has been applied to three molec
H2O, HOOH, and HSSH. As expected beforehand an
monic effects are small for H2O and larger for the other tw
molecules. This provides an opportunity to comparePc,VSCF

and Pc,VMP2 with each other, and with thePc,har and Pc,PT2

values of the BK perturbation theory, for varying degree
anharmonicity. To our knowledge the calculations repo
here represent the first time that vibrational contributions
yond Pc,har fi.e., beyondfPzpvagI and Psc−zvpadsIdg have eve
been obtained for other than a diatomic molecule. For be
mark purposes a full vibrational CIsFVCId treatment wa
also carried out. However, to make such calculations fea
the PES’s had to be truncated after the quartic terms
normal coordinate power-series expansion. Additional m
fications were required to obtain convergence with incr
ing size of the basis set in the case of HOOH and HS
Nonetheless by combining all of the information we w
able to assess the performance of different levels of th
We emphasize again that the final VSCF and VMP2 repo
here are based on the exact numericalab initio PES.

For the molecules we have studied the initial con
gence of sequencessAd andsBd give a reliable indication o

the importance of anharmonicity. Thus, the magnitudes o
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the ratiosfPzpvagI /Pe and Psc−zvpadsId /Pnr are the determinin
factors. Accordingly, H2O is nearly harmonic for all prope
ties; HOOH is quite anharmonic, particularly forshyperdpo-
larizabilities; and HSSH lies in between. Consistent with
classification we find thatPc,har, which corresponds to th
first term in sequencessAd and sBd, represents a good a
proximation for all properties of H2O as well as form anda
of HSSH. In these same instances the PT2 method, w
corresponds to the second term in sequencessAd and sBd,
leads to significantly improved results. For these case
BK perturbation method is a reliable procedure for trea
the effect of the anharmonicity. However, the remain
cases involve large anharmonicity and the BK perturba
method breaks down. In highly anharmonic situations
new variational approach is required to ensure reliable
ues.Pc,PT2 values may even have the wrong signsalthough
fortuitous cancellation of large anharmonicity effects
sometimes occurd. Pc,VSCF, which is roughly comparable
accuracy toPc,PT2 when the anharmonicity is weak, turns
to be a reasonable starting point even for large anharm
ity. Nonetheless, it is insufficient in the latter case to ob
quantitative results, for which vibrational correlation
needed. VMP2 is the lowest-level vibrational correla
treatment and it works well as long as the anharmonic
pling terms are not too large as they are forbc and gc of
HOOH. In such highly anharmonic cases one must cho
higher-level method such as VCC or VCI. One of our fu
goals is to develop and implement the necessary meth
ogy to compute vibrational contributions to NLO proper
using these higher-level methods.

Generally speaking, the effect of 3-mode coupling tu
out to be small, though nonnegligible when anharmonici
very importantse.g.,g of HOOHd. Of course, the molecul
considered in this paper are small and that picture
change when larger species having more vibrational de
of freedom are examined. The effect of terms not include
the quartic PES is roughly comparable to, or smaller t
the effect of vibrational correlation. These terms are a
matically taken into account by using a numerical PES a
have done here. However, the efficient extension of cu
numerical methodology to higher-level vibrational tre
ments and/or larger systems, with or without trunca
schemes, remains an open question to be examined in f
work.

One problem that has already been encountered i
imprecision due to numerical noise. In the future we pla
implement the method of Kirtman, Luis, and Bish
sKLB d,25 for dynamic as well as static properties. Follow
KLB the zero-point vibrational energy will be replaced w
the zero-point vibrational average ofm, a, andb. As a resul
the order of numerical differentiation will be reduced by o
two, and three, respectively.
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