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In the staticfield limit, the vibrational hyperpolarizability consists of two contributions dug1p:

the shift in the equilibrium geometiknown as nuclear relaxatiprand(2) the change in the shape

of the potential energy surfadknown as curvatupe Simple finite field methods have previously
been developed for evaluating these static field contributions and also for determining the effect of
nuclear relaxation ondynamic vibrational hyperpolarizabilities in the infinite frequency
approximation. In this paper the finite field approach is extended to include, within the infinite
frequency approximation, the effect of curvature on the mayaramicnonlinear optical processes.
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I. INTRODUCTION double harmonic approximation can be important and that
the convergence behavior will vary dramatically from one

The design of materials with large nonlinear optical system to another.
(NLO) properties is currently of great interést mainly be- There have been two impediments to including anhar-
cause of potential utilization in a variety of optical and monicities in dynamic vibrational hyperpolarizability calcu-
electro-optical devices. At the molecular level these NLOlations. First, the BK compact formulas were, until ndiw,
properties are determined by the dynamic hyperpolarizabilicomplete only through first ordér.e., n+m=1). Probably
ties. Although one might, at first, think that dynamic hyper-of more importance, particularly for NLO materials which
polarizabilities are primarily electronic in origin, there is a usually involve large molecules or polymers, the anharmo-
growing body of evidence that, for materials with large NLO nicity constants that are required are often computationally
properties, the vibrations play an important role. Indeed, durdensome to evaluate.
number of cases exfst where the vibrational hyperpolariz- It is possible to circumvent these difficulties in two spe-
ability far exceeds the electronic hyperpolarizability. cial cases through the use of finite fie[@#F) methods

A perturbation treatment of dynamic vibrational hyper- whereby various molecular properties are determined as a
polarizabilities has been given by Bishop and Kirtthan function of one or more static applied electric fields. One
(BK). This treatment is based on the general sum-over-stat&pecial case is the vibrational hyperpolarizability in the static
formulag® for the total hyperpolarizability given in terms of limit,?***which satisfies the relation
vibronic energies and dipole moment matrix elements. The
vibrational and electronic contributions are, then, separated vibrational hyperpolarizability ZPVA
by applying a canonical, or clamped nucleus, approxi-
matiort* wherein the electronic and vibrational motions are
considered sequentially rather than simultaneously. BK ex- + curvature contribution. 1)
press the resulting vibrational terms using a double perturba-

tion expansion in ordersn(m) of electrical and mechanical Here the vibrational hyperpolarizability is the quantity dis-
anharmonicity, respectively. In low order, i.e.n,()  cussed in BK, and ZPVA refers to the zero-point vibrational
=(0,0), (1,0, (0,1, (1,), and (2,0, this leads to a set of ayeraging correction for the electronic hyperpolarizability
compact expressiongor the dynamic vibrational hyperpo- (which depends upon the nuclear coordinaté the right-
larizabilities. hand side (ths of Eqg. (1), the nuclear relaxation
Quite often the vibrational hyperpolarizability is esti- contributiorf* arises from the change in the electronic en-
mated in the double harmonic approximatfoh,>**i.e.,  ergy, or dipole moment, due to the field-induced relaxation
(n,m)=(0,0), but there are also a number of stutie¥  of the molecular geometry. The origin of the curvature
where anharmonic contributions have been evaluated. Aleontributiorf? is the change in zero-point vibrational energy
though these latter studies mostly pertain to the static hypegaused directly by the field and indirectly by the geometry
polarizability, they do demonstrate that going beyond therelaxation. For a diatomic molecule it has already been
demonstratett that Eq.(1) is valid. The ZPVA term, in par-

apermanent address: Institute of Computational Chemistry and Departmeficular, is part of th'e Curyature ContribUtiO_n- An EXtenSion'Of
of Chemistry, University of Girona, 17017 Girona, Catalonia, Spain. the proof for diatomics to an arbitrary polyatomic

=nuclear relaxation contribution
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molecule® building on the treatment given recently by Luis ey _.e 1pe 1e
et al,® is presented in the next paper. The relationship be- (Ana)r.=a1F gt 2 DiFgFy+ 5 01F R, Pt (O
tween the alternative approaches implied by the two sides of (Aagp)r =bSF +305F Fst..., (6)
Eq. (1) has recently been reviewéd. wrE 7 7

The other special case is the infinite frequency limit. In (A,B‘jzﬁy)szggF,pL (7

that limit the nuclear relaxation contribution is obtained by
considering the effect of field-induced geometry relaxationWith

on the linear polarizabilitfa) and the_ first hyperpolz_irizabil- at= aiﬁ(o;o)Jr aQiB(O;O),
ity (B), rather than on the electronic energy or dipole mo-
ment. As Bishop, Hasan, and Kirtm&BHK) have showr> b$=54,(0:0,0+805,(0;0,0,

aBy
this yields the leading perturbation terms of each ¥pe e e or ®
the formulas for the most common NLO processes. In the 91 Yapys(0:0,0,0+ 7,4,5(0;0,0,0,
few examples that have been examif@it,has been found e_ pe . nr .
T T ) b5= 0,0,0 + —0;0,0) 0,
that the vibrational NLO property at a typical optical fre- 2= Bapy 0+ Bupy( ~wiw.0) 9
quency is not very different from the value at the infinite 95= Yapy5(0;0,0,0 + ¥o5,5( — ©;©,0,0) ..,
frequency limit. Thus, the latter constitutes a useful approxi-
mation. gg: Yiﬁyé(O;oioio) + 72{83/5( - Zwa w,w,O)me . (10)
The primary purpose of the current paper is to extend thg, pqq (8)—(10) we have used the standard notation, e.g.,

FF/infinite freqL_Jen_cy method to inqlude thg analog of they(_wg;wl,wz,ws)' to designate the frequencies of the os-
curvature contribution in Eq1). We find that instead of the cillating electric fields(in the orderF, ,F;,F --) and, as
) 1 Y H

electronica and B, which yield the nuclear relaxation con- usual, w,=3 ;. The value obtained for each quantity is
tribution, one must now use the ZPVA correction to thesethat at the field-free equilibrium geometR.

properties. Our treatment then follows along exactly the  Aihough all the calculations are done with static fields,
same lines as BHK and gives entirely analogous results, 35gs. (9) and (10) yield dynamic NLO properties in the
will be seen from the analysis carried out in the next section, ,c|ear relaxation infinite frequency(/ w— o) approxima-

The leading terms in the ZPVA correction farand 8 tion. Thus,,B”;,Y(—w;w,O)a,_m contributes to the Pockels

. . . . . a
are first order in e_lectrlcal or me_chanlcal anharmonlcny.effect, yr;rﬁ S~ ;0,00), .. to the Kerr effect, and
However, the required anharmonicity constants have re-nr Y

. . . Yapys(—20;0,0,0),_.. to dc-second harmonic generation
peated indices and, therefore, can be determined with Onlé'dc-SHQ. Analytical expressions for the terms included in

slightly more computational effort than is necessary for the,o 111/, — o approximation can be obtain¥dfrom a
harmonic parameters. This is discussed in Sec. lll, along, via expansion about @) of the electronic energy,
with other approximate computational simplifications. In ad'V(F,Q), in terms of the field vectoF=(F, ,F.,F,) and the
dition, the finite field approach has certain limitations from ap 21" coordinate displacement§,. For a. fixed F this
theoretical and interpretive point of view. Methods to reducey, e expansion yield®: and, then, subsequent variations

these Ilmlta_tlons are also considered in Sec. Il and, fmallyof F.Fy.F, give the coefficients in Eqg5)—(7). Exactly
we close with a summary of our results. the same expressions can be derived from the BK perturba-
tion treatment by taking the lowest order terms of each type
that survive after lettingo become infinite. These terms are
Il. ANALYSIS listed in Table | of BHK and the connections with the double
expansion method are given in Table | of Ref. 16. The two
We let the equilibrium geometry in an applied electric gpproaches together yield a definitive interpretation of the
field, F, be denoted byRg, while P(F’,Rg) is the value of quantities in Eqs(9) and (10).
the electronic propert® calculated aRg in the presence of From the BK perturbation treatment it is easy to demon-
a field F'. In the following, F and F" will always be the  strate that the nuclear relaxatiéand curvaturgcontribution
same, although this is not required. The field-dependent Vito vibrational second and third harmonic generati&G
brationally averaged value ¢¥° is given by and THG, e, ﬁzm(_zfn;w,a{)aﬁx and 72375.
(0g| PS(F,R)|0g) = PS(F,Rg) + APZPVA(E Rp), ) (.—3w;w,.w,w)waw, vanishes in th_e |nf_|n|te frequt_ancy_llmlt.
Finally, in the nr/w—o approximation the vibrational
where intensity-dependent refractive indedDRI), i.e., ¥,
APZPVA(E, Re) = (Og | PE(F,R) — PE(F,R¢) | O¢). @ (-wo,~-o0), . contains just the{_az](o'o) perturbation
term(see Tables | and Il of Ref. 30which may be estimated

Here R is an arbitrary geometry anfDg) is the field-  through first order in the finite field methddee Eq(12) of
dependent ground-state vibrational wave function. The BHKgHK] by combining Vs~ ©;0,0,0), o,

a

nr
Ya
FF/nuclear relaxation method is based on the first term on_ 2., w,0), ..., and ", 0:0,0,0), ... In this V/f,g;

the rhs of Eq(2). One defines the difference we account for the major NLO processes. However, the IDRI
(AP®)_=P%(F,Rs)— PS(0,R,) (4) estimate is valid only for the diagonal tensor components or
F for the mean value.
and expands this quantity as a Taylor seriefinFor P® Next we consider the second, or ZPVA, term in E2j.
=u® a®, B° this leads to In this case application of the finite field method as above
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yields the vibrational curvature/~<« contribution to the verify Egs.(15—(17) with recourse to known formulas. If
various NLO processes. Unlike nuclear relaxation, the curthe static perturbation expression is availafds it always
vature contribution is not limited to low orders of perturba- is), then the infinite frequency formula is readily obtained
tion theory. It is convenient, however, to begin with the low- without knowing the general frequency-dependent result. As
est order terms in Eq3) which are given by far as the diagonal tensor componefasd the mean valugs

are concerned, the static and infinite frequency expressions
are identical except for multiplicative constants, which de-

ZPVA_ 0,1 1,0
AP =PI P 1D pend only on the NLO process and the type of perturbation
with term. This means, for instance, that the?a]" . term in
Eq. (16) can be found from the correspondifig?a]_,,
5 e P10 [pn2al) . and[u?al) _, terms.
[PPl=—— S (E abb)( i’ a) (12) The next lowest order terms inP*"V are two orders
49 \T wp w3y higher than those given in E¢LD), i.e.,
and
APZPVA=[P]'+[P]". (18)
2 2
[p]lqozﬁ 2 %_ (13 o _
473 Wa Thus, the infinite frequency curvature results obtained by the

finite field method are correct through the secdtudal) or-

der of perturbation theory. It is unlikely that EA.8) will be
utilized in the foreseeable future with standard quantum
chemistry programs since the evaluation[&]%° requires
APZPYAF Rp)— AP?PVYA(O,Ry), (14)  quintic force constants arfd]3° requires the fourth deriva-
tive of the electronic property. Without doing any further
analysis we know that the additional terms in EG®)—(17)
would be of the same type but two orders higher than those
already discussed.

On the other hand, it may be feasible to evaluate the total
ZPVA correction directly by techniques that sample the
2PVA . ) o complete potential energy surface. Taking that idea one step
AP for P® and simultaneously replace nt” by  frther, one could determine the total electronic property as
“curv.” In replacing “nr” with “curv” it should be under- given by Eq.(2). Then the entire vibrational hyperpolariz-
stood that the resulting quantity is the difference between th‘ébility, including both the nuclear relaxation and curvature

H : ZPVA
total curvature contrlbunZ%CAand that due &P Of  c,niributions, would be obtained at the same time rather than
course, fora, B, etc., AP vanishes at the infinite fre- stepwise, as in the current procedure.

qguency limit.

In order to verify that the ZPVA/curvature relations are
correct we have, again, combined the double expansion and
BK perturbation methods. In fact, using E4J) it is easy to  !!l. DISCUSSION
show (see the Appendijxthat

Now we take the difference

where APZPYA(O,R,) is defined by Eq(3) with F=0, and
expand that quantity as a power series in the @ldThis
leads to a set of relations analogous to E&$—(7) except
that one must usé P?PVA(F,Rg) — AP?PYA(Q,R,) instead
of (AP®)g.. Similarly, in Egs. (8)—(10) we substitute

The starting point for a FF/curvature calculation is the
ZPVA correction term given, in lowest order, by Eq$1)—
ﬁzuﬁf‘;(— w;w,o)wwz[,ua]u}_m , (15) (13). It is important to note that only a subset of the mechani-

cal and electrical anharmonicity constants, i.e., those with
v - | repeated indices, are”m.aeded for evaluatior] Rf>* and .
Yapysl —@0;0,0,0) =[]t [B],_o [P]*°. Once the equilibrium geometry and normal coordi-
nates have been determined, then the required anharmonic

2 4l
Flatalo (16 force constants can be obtained by taking the diagonal sec-
73}5\;5( _ 2w;w,w,0)wﬂm=[u,8]'aﬂﬂw, 17 ond derivatives of the energy gradiertg/0Q,= —F,,

where we have used the shorthafd]"=[ ]>°+[ ]** Eo = fim [Fa(+Qp) +Fa(—Qp)] 19
+[ 1%2and[ 1"'=[ ]3'_°_+[ 1214+ ]1'2+[_]?’3. Note that the abb™ Qllﬁo Q: '
square bracket quantities depend explicitly on the NLO pro-
cess, although this has not been indicated. Thus, for example,
[M,B]'U'Hw in Eq. (16) is not the same a[s,u,B]L'Hw in Eq. From the numerical point of view, it is clear that the
7). computational effort that must be expended to obtain the set

Until recently®® the compact BK perturbation formulas of cubic force constants; .y, is similar to that involved in
of order(0,2) have not been available and formulas for total calculating the set of quadratic force constahtg,. A simi-
ordern+m=3 are still not known. One can, nonetheless,lar conclusion applies to analytical differentiation assuming
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that an appropriate computer code is available. Essentiallysing finite displacements of ti@, . Finally, bgF’VA, g%PVA,
the same analysis also pertains to the anharmonic electron%dggF’VA are found by varying the field and fitting the quan-
property derivatives’”P/9Q;. tity in Eq. (14) to the analog of either Eq6) or Eq. (7).
Beyond the simplifications discussed above we can also * |y symmary, the combination of this paper with BHK
consider various approximations that may reduce the compyie|ds a simple, practical FF method for calculating vibra-
tational effort. One possibility is to carry out preliminary tional NLO properties in the infinite frequency approxima-
calculations at a lower level than desired in terms of electipn, At the lowest level of treatment the results are complete
tronic structure method and/or basis set. These preliminanough second-order perturbation the¢and include some
calculations could be used to specify the normal modes angf the higher-order termswhere we refer here to the total
perhaps, to eliminate some of these modes as being relativebtger in mechanical and electrical anharmonicity. An analy-
unimportant. An investigatiofi of this approach for the case sjs of existing data suggests that the infinite frequency ap-

of nuclear relaxation has given promising initial results.  proximation will be adequate in most instances.
The finite field approach to dynamic vibrational hyper-

polarizabilities has certain limitations that should be borne in
mind. First of all, it is only valid in the infinite frequency AckNOWLEDGMENTS
limit. In that limit the electronic properties and their zero-
point vibrational averages vanish. In order to estimate the D.M.B. acknowledges financial support from the Natural
(zero-field AP?PVA at an optical frequency, we can scale theSciences and Engineering Research Council of Canada.
static value in the same manner often used in treating elec-M.L. was supported by the Generalitat de Catalunya
tron correlatio’ An example is afforded by a recent through the CIRIT Project No. FI/95-5101.
treatment® of the mean dc-second harmonic generation in
methane. The error due to the difference between the
frequency-dependent and the stati®?"VA was calculated APPENDIX
to be 3.5% of the corresponding electronic propertywat
=0.06 a.u. This error grows to 10.1% @t=0.10 au, but is
reduced by a factor of 2 when the stati®?"VA is scaled.
From the few other examples availatfe?it appears that, if
anything, methane corresponds to a worst case scenario.
The error in the infinite frequency approximation for
nuclear relaxation has been examined by Bishop and
Dalskov®® For five small molecules they evaluated the mean N
dc-SHG, THG, and IDRI, as well as the isotropic and aniso- AaZBN0;0)=~ 21 (2ay)
tropic Kerr effect at the He/Ne laser frequency ( B
=0.072 a.u.) and compared them with the same properties at
w—, In those cases where nuclear relaxation is important, X
the maximum errofNHs; anisotropic Kerr effegtdue to the
infinite frequency approximatiori.e., their approximation Wwhere
B) turns out to be less than 12% of the=0.072 value. alr i im
Another aspect of the finite field approach, which is a "™
limitation on the one h_and and an advantage on the other, is 1 (d™™V(Qy,....Qan_6:Fx.Fy.F2)
the fact that one obtains the entire curvat(we nuclear re- 90 90, JF - -oF,
laxation effect without knowing the contribution of indi- 't ' Jm QF
vidual terms(cf. Ref. 16. For purposes of analysis, however,
there are(at least three different ways of dividing up the
total contribution that could prove useful: (1) Instead of evaluating the potential energy derivatives in Eg.
[P]1%X+[P]*% (2) individual normal coordinate®, in Eqs.  (A2) atQ=0, F=0 as done previously, we regard them as a
(12) and (13); and (3) individual normal(or interna) coor-  function of the electric fieldF, and the field-free normal
dinates in the field-dependent geometry optimization. AllcoordinatesQ. In order to carry out an expansionfnat the
three of these divisions can be carried out separately or ifield-dependent equilibrium geometfy-, as desired, we
concert. follow the same two-step iterative procedure described in
In implementing our FF/curvature procedure it should beRefs. 16 and 1711) the stationary condition dV/dQ)g_
borne in mind that all the quantities in Eq4.2), (13), and =0 is applied to findRg, and, then(2) V is determined as
(19) are field dependent. That includes the normal coordia function ofF at that geometry. In doing this it is important
natesQ,, and the vibrational frequencies, , as well as the to correctly take into account the dependence of the vibra-
forces,F,, and the electronic propertieB, For a given field tional force constants ofr as discussed in the following
one can use standard quantum chemistry programs to detetrticle. Indeed, the same field-dependent unitary transforma-
mine the field-dependent equilibrium geometry andll, tion that diagonalizes the harmonic force constant matrix
w, and P=qa or B (note thatF,=0). Then, with the field must be applied to all the othex,, coefficients. Then,
fixed, the required derivatives &f andF, can be calculated straightforward algebra leads to the first derivative,

In this Appendix we outline the derivation of E¢L5);
Eqgs.(16) and(17) may be obtained in an analogous fashion.
Our starting point is the lowest order expression for the static
Aa®PVA=Aa*PVA(0;0) asgiven by Egs.(11)—(13). In the
notation of Ref. 17,

3N—-6

3N—-6
apy"’—3 ;21 a!équ'“ﬁ} (A1)

:n!m!

and gy *#=a)y*P2a}) . (A2)
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ﬁ[A PVA(O 0)] 13N76 3N-6 o 3N-6 . 3N-6 .
g 2 (awMea =183 alldi-6 3, alla-6 3, all o
y i=1 j=1 j=1 =1

3N-6 3N-6 3N-6

+24 2 aikqh gk *f+6 E aghals Aok /a”0+6 2 ayhalk 7qk *#rall,

3N-6 3N-6 3N-6
-18 2, dabadz PaiT—4 2 al el nY24 2 alPadiay AL
=1 jk=1
3N-6 3N-6
+24 2 all;"allk gk A1 Al —72 2 allkallialPql AL, (A3)
[
where 183, M. Luis, J. Maryy M. Duran, and J. L. And J. Chem. Phy4.02, 7573
(1995
ahyt \/a'ZO) 19B8. Champagne, Chem. Phys. Le?87, 185 (1998.
N N N N 20B. Kirtman, B. Champagne, and D. M. Bishdin preparation
ql""= a11“/2a20 , and q3’a'87= alé“ﬁy/Zazo . (A4) 2LE. A. Perpée, J.-M. Andfe and B. Champagnésubmitted.

) ) ~ 223 M. Luis, J. Mary M. Duran, and J. L. And Chem. Phys217, 29
The first two terms on the rhs of EGA3) constitute the static (1999,

ZPVA correction forg, i.e., ABZ52/(0;0,0). By comparing *J. L. Andres, J. Bertia, M. Duran, and J. Maitd. Phys. Chend8, 2803

with the BK perturbation treatment at infinite frequency, one,,(1994.
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