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A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in
a-Si,��, and the width of the transverse optical Raman peak, �, is presented. It is shown that the
discrepancies between them are drastically reduced when unified definitions for �� and � are used.
This reduced dispersion in the predicted values of �� together with the broad agreement with the
scarce direct determinations of �� is then used to analyze the strain energy in partially relaxed pure
a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the
a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization
energy, which can be as low as 7 kJ/mol in defect-free a-Si. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2990767�

I. INTRODUCTION

Structural disorder in pure amorphous silicon �a-Si� can
be modeled by a defect-free continuous random network of
silicon atoms with tetrahedral coordination.1 This kind of
model is currently considered to be an approximation to the
real material structure.2 In fact, a continuous network is
achieved at the expense of highly distorted bond angles, �.
This built-in strain results in an intrinsic structural instability.
The highly strained bonds tend to break and defects, notably
dangling bonds, and perhaps floating bonds are created. This
evolution has been modeled2 and explains the high density of
dangling bonds in pure a-Si, which makes this material use-
less for electronic applications.

When hydrogen is added, it saturates the dangling bonds
and relaxes the Si network stress.3 These beneficial effects
render hydrogenated amorphous silicon �a-Si:H� a techno-
logically important material because its optical and electrical
properties are improved. Although when compared to pure
a-Si, the covalent Si network in a-Si:H is considered to be
“relaxed,” it is known that the degree of relaxation depends
on the deposition conditions.4 Consequently, it is worthwhile
developing accurate experimental tools for quantifying the
bond-angle dispersion, ��.

Unfortunately, direct measurements of �� by x-ray5,6 or
neutron7 diffraction involve very delicate experiments and
analyses. However, indirect routine quantification of bond-
angle disorder is carried out using Raman spectroscopy.
Experiments7 and theory8 show that the transverse optical
�TO� band broadens as �� increases. The problem is that in
literature, a number of theoretical relationships between ��
and the TO bandwidth,�,

�� = f��� , �1�

have been proposed which show notorious discrepancies be-
tween them. The lack of solid experimental confirmation
makes using one particular relationship for quantifying �� a
question of personal choice.

In this paper, we present a critical review of the theoret-
ical results published so far and compare them to the �scarce�
direct measurements of ��. This analysis provides reason-
able arguments in favor of one particular relationship. In a
second stage, this relationship will be applied to analyzing
the amount of heat that evolves from pure a-Si when it is
relaxed by thermal annealing.

II. LITERATURE REVIEW AND CRITICAL ANALYSIS
OF THE ��=F„�… RELATIONSHIP

A. Theoretical results

In Fig. 1, we have plotted all the ��= f��� relationships
so far published. Except for the one by Tsu et al.,8 all of them
have been obtained by numerical simulation of the Raman
spectra on a series of microscopic models of a-Si. Beeman et
al.9 made the first calculations with the aim of confirming the
validity of the relationship of Tsu et al.,

�2 = 322 + �6.75���2, �2�

where � �in cm−1� is the full width at half maximum
�FWHM� of the TO band and �� �in degrees� is the root
mean square �rms� deviation with respect to the tetrahedral
angle of the bond-angle distribution. For one particular
choice of the Si–Si bond polarizability, they obtained a result
that was very close to that of Tsu et al. and proposed a
formula that, in fact, was just the linearization of Tsu’s for-
mula in the �� range of practical interest:

��/2� = 7.5 + 3�� , �3�

where now, �� /2� is the half width at the high energy side of
the TO band �see Fig. 2�. Equation �3�, which herein will be
referred to as the Beeman–Tsu formula, is the one used most
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in literature. For this reason, the rest of the results plotted in
Fig. 1 take the work of Beeman et al.9 as reference.

The reduced Raman spectrum,Ired���, with the thermal
and harmonic oscillator factors removed, can be expressed as
the product of the vibrational density of states, g���, and a
coupling parameter C���,

Ired��� = C���g��� . �4�

g��� depends on the microscopic model of a-Si, whereas
C��� is a function of the bond polarizability. In their simu-
lations, Vink et al.10 used larger and more realistic a-Si mod-
els than those of Beeman et al., leading to presumably more
accurate densities of states. However, in view of their results,
it is clear that the main difference was the choice of the
coupling constant. They were led to the conclusion that the
best results were obtained with a C��� function obtained

experimentally which is almost constant in the range of the
TO band frequencies. The result of this particular choice has
been plotted in Fig. 1, where we see that the discrepancy
with the Beeman–Tsu curve is significant.

The calculations carried out by Wong and Lukovsky11

delivered the density of vibrational states for two micro-
scopic models of a-Si. Consequently, their results are equiva-
lent to considering a constant coupling parameter. The origi-
nal values of Wong and Lukovsky11 were corrected because
the FWHM was given instead of �� /2� �see Fig. 2�. The
conversion from FWHM/2 to �� /2� has been obtained from
the inset of Fig. 2. In this inset, we have plotted the widths of
the TO bands published by Battaglia et al.12 corresponding to
pure a-Si. These spectra have an outstanding signal to noise
ratio and cover the largest range of �� /2� ever measured in a
single study. In addition, we obtained the points of hydrogen-
ated films. In both cases the measured spectrum, Imeas, was
converted into the reduced spectrum according to

Ired��� =
Imeas����
n��,T� + 1

, �5�

where n�� ,T� is the number of phonons with frequency � at
the measuring temperature T. According to the inset of Fig. 2
a linear relationship between the FWHM/2 and �� /2� can be
assumed, FWHM /2=−15+1.5�� /2�. After this correction,
the results of Wong and Lukovsky11 still depart from the
Beeman–Tsu relationship �Fig. 1�. In this figure, we realize
that the relationship of Vink et al. predicts similar values of
�� /2� for the range of the bond-angle dispersion modeled by
Wong and Lukovsky. This is not surprising, as the coupling
parameter is almost constant in the calculation of Vink et al.
as well.10

From Fig. 2, it is worth noting that �� /2� is very similar
in the measured and reduced spectra and that the FWHM is
clearly larger in the measured spectrum. This fact and the
dependence of the low-energy side of the TO band on the
medium range order13 makes it preferable for quantifying the
TO width with �� /2�. Unfortunately, the results of many
papers cannot be accurately analyzed because it is not clear
which is the parameter used to characterize the TO band-
width.

The curve of Maley et al.14 cannot be directly compared
to Eq. �3�. This is due to two reasons. First, as Wong and
Lukovsky did in Ref. 11, Maley et al. calculated the FWHM
of the reduced Raman spectrum and not its half width at high
energy �� /2�. Second, they carried out their simulations with
a-Si models whose bond-angle distributions were not
Gaussian-like and decided to quantify their dispersion
through the width of the Gaussian distribution,��G, that best
fitted the actual distribution. In other words, the curve la-
beled “Maley” in Fig. 1 corresponds to the relationship be-
tween the FWHM/2 and ��G. From the values of ��G and
�� detailed in their paper,14 we have deduced the linear re-
lationship ��G=1.59+0.77��. When the FWHM and ��G

are converted into �� /2� and �� respectively, the corrected
relationship of Maley is very close to that of Beeman–Tsu.
This coincidence is very reassuring because, although the
microscopic models used by Maley et al.14 were similar to
those of Beeman et al.,9 different polarizability mechanisms
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were assumed. Finally, a model calculation without adjust-
able parameters by Marinov and Zotov15 gave �� /2�
=40 cm−1 �FWHM=90 cm−1� for a model with ��=10.8°,
in exact agreement with the Beeman–Tsu formula �Eq. �3��.

B. Comparison with experiment

As we have already mentioned in Sec. I, direct measure-
ments of �� using diffraction techniques are very scarce. In
fact, we have only found three papers5,7,16 reporting measure-
ments of the radial distribution function �RDF� on amor-
phous silicon materials that are of suitable quality for our
discussion.

The first diffraction experiments were carried out by
Schülke16 on a-Si:H. He obtained a value of ��
=7.9�0.4°. Although no Raman measurements were re-
ported, we know that since a-Si:H has a relaxed Si network,
for this material the range of �� /2� is quite narrow. Our own
measurements of a-Si:H samples without substrate indicate
that a good estimation is 33�3 cm−1. Although wider Ra-
man spectra have been reported in literature, we should keep
in mind that macroscopic stress due to the substrate17 as well
as film inhomogeneity18 tend to increase �� /2�. Our estima-
tion allows us to plot the result of Schulke in Fig. 1 �dia-
mond�.

The original relationship of Maley was tested by Fortner
and Lannin7 with the RDF determined by neutron diffraction
experiments carried out at room temperature on films pre-
pared by rf sputtering. The experimental points �open circles�
show reasonable agreement with Maley’s curve. If we cor-
rect the FWHM/2 and ��G values of the experimental points
as we did for the theoretical curve, this agreement would be
translated to the Beeman–Tsu curve. However, analyzing the
experimental RDF �Ref. 7� allows direct evaluation of ��. A
good fit to the second RDF peak is obtained with a Gaussian

distribution with ��G=9.9° and 11.5° centered around �̄
=108.4° and 108.6°, respectively. From these values calcu-

lating �� is straightforward ���= ����G�2+ ��t− �̄�2�1/2,
where �t=109.47° is the tetrahedral bond angle� and the ��
values are almost identical to ��G ���G and �� are also
similar for the RDFs measured by Laaziri et al.5,6 com-
mented below�. Our analysis agrees with the claim19 that
large deviations of bond-angle distributions from Gaussian
are due to the finite size of the microscopic models. Conse-
quently, we should consider that the standard deviation of the
Gaussian distribution used to fit the experimental RDF is
nearly the rms of the actual distribution. We have, thus, cor-
rected only the Raman width of the points of Fortner and
Lannin7 but not the angle dispersion. The result is plotted as
solid circles in Fig. 1.

Finally, the most precise diffraction experiments have
recently been reported by Laaziri et al.5,6 They carried out
x-ray diffraction �XRD� on two impurity-free, dense a-Si
samples, at a low temperature to reduce thermal broadening
effects on the RDF. For all these reasons, the results of
Laaziri et al.5,6 constitute a reference for the actual micro-
scopic models of a-Si.2,19–21 Unfortunately, the Raman spec-

tra of the same samples were of low quality and �� /2� values
have large error bars.22 The results are plotted in Fig. 1 as
solid squares.

The wide dispersion of the experimental points in Fig. 1
does not allow choosing one of the theoretical predictions as
the correct one. The ensemble of points are closer to the
Beeman–Tsu relationship, consequently we think that if one
single relationship exists between �� /2� and ���i.e., a rela-
tionship that is independent of the particular microstructure�,
it is closer to that of Beeman–Tsu than to that of Vink et al.
This conclusion is reinforced by the fact that four of the six
theoretical calculations discussed in Sec. II A deliver values
of �� /2� that are very close to Eq. �3�. In view of the coin-
cident slopes of Vink et al. and Beeman–Tsu’s formulas �Fig.
1�, probably the correct relationship will have the general
form: �� /2�=A+3�� with 12�A�7.5 cm−1. For the rest of
the paper, we will use Eq. �3� for the analysis of the relax-
ation energy of a-Si given below. However, the quantitative
results obtained here would change only slightly if the rela-
tionship of Vink et al. was used instead of that of Beeman–
Tsu.

III. MICROSCOPIC INTERPRETATION OF THE
ENERGY OF RELAXATION AND CRYSTALLIZATION
OF PURE A-SI

When pure a-Si is heated, its structure evolves irrevers-
ibly toward states of lower energy through structural relax-
ation and crystallization processes.23 Experiments have
shown that during relaxation, the bond-angle dispersion and
the density of point defects diminish.5,8,12,24,25 This evolution
has been simulated by molecular dynamics, too.26,27 How-
ever, the relative contribution of both effects to the relaxation
energy has been the object of controversy for many years.
Whereas Stolk et al.24 assigned most of the relaxation energy
to bond-angle strain, Roorda and co-workers25,28 assigned it
to defect recombination. In contrast, little attention has been
paid to the crystallization energy. It seems that there is ample
agreement that it can be almost entirely explained as arising
from strain.29,30

In this section we will apply the Beeman–Tsu formula
�Eq. �3�� for quantifying the strain energy stored in a-Si by
reanalyzing the excellent calorimetric experiments carried
out by Roorda et al.25 concerning the structural relaxation
and crystallization of a-Si obtained by ion implantation. In
these experiments, a number of identical samples were par-
tially relaxed by annealing them at different temperatures
�from 300 to 773 K� for 45 min. The degree of relaxation
reached in each sample was then analyzed by differential
scanning calorimetry. Every sample was heated in a calorim-
eter at 40 K/min from room temperature until a maximum
temperature where complete crystallization was reached. The
total heat evolved during the process �i.e., the evolution from
a-Si to c-Si�, Qac, was recorded. From the typical thermo-
gram shown in the inset of Fig. 3 it is clear that Qac can be
understood as the addition of two components,

Qac = Qrelax + Qcryst. �6�

The heat of relaxation, Qrelax, evolves at a low temperature
and gives an unstructured band in the thermogram, whereas
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the heat of crystallization, Qcryst, is released at high tempera-
tures and forms a sharp peak. For the samples annealed at a
high temperature, Qrelax was lower whereas Qcryst remained
constant, independent of the annealing temperature. For the
sample annealed at 773 K, Qrelax�0 and Qac=Qcryst

=13.7 kJ /mol. We can, thus, decompose Qac into its compo-
nents for any annealing temperature as sketched in Fig. 3.

In order to understand the relationship between Qac and
the energy stored as strain in a-Si, we should realize that the
vibrational energy �the zero point energy �ZPE� and heat
capacity terms� contribute with less than 10% to the value of
Qac. In other words, the heat evolved Qac can be considered
as the total static energy of a-Si at a given stage of relax-
ation, Uac �see Appendix�. From the microscopic point of
view, we can consider that the energy of a-Si has two terms.
One is due to bond strain and the other is to structural de-
fects,

Qac � Uac = Ustrain + Udefects. �7�

The strain energy of a-Si arises from bond stretching �varia-
tions of the bond length r� and from bond bending �varia-
tions of bond angle ��, and it can be written as29,31

Ustrain = N2�r2�1 +
3

2

�

�
��r

r
�2 1

����2	����2

� N2�r2����2, �8�

where N is the number of atoms in the material, �r is the
standard deviation of the bond length with respect to the
value in c-Si, and � and � are the bond-stretching and bond-
bending force constants of the Keating potential,32 respec-
tively. Extended x-ray-absorption fine structure experiments
done in a-Si and a-Si:H materials have revealed that �r is
proportional to ��:31 ��r /r���2=8.3	10−3 rad−2. A lower
value �5.6	10−3� is estimated from XRD experiments.6 On

the other hand, by fitting the Raman spectra and the density
of vibrational states of a-Si to atomistic models, several au-
thors obtained � /� values in the 2.9–6.7 range.33,34 With
these values, the expression inside the brackets departs from
unity by less than 8%. This means that as indicated in the
right-hand side of Eq. �8�, the most important contribution to
Ustrain is bond bending. From the experiments by Roorda et
al.25 we can obtain the experimental dependence between
Qac and ����2 in partially relaxed samples. Qac is delivered
by calorimetry whereas Raman measurements made on the
same samples allow �� to be quantified by applying the
Beeman–Tsu formula. The squares in Fig. 3 correspond to
the values of �� and Qac measured by Roorda et al.25 on the
same samples, whereas stars are obtained by combining the
Raman results determined by Battaglia et al.12 and the calo-
rimetric experiments of Mercure et al.28 As we commented
above, the series of points does not continue until ����2=0
because crystallization impedes further relaxation.

A. Structural relaxation

From Fig. 3, we see that Uac is not proportional to ����2

but that the points keep a linear relationship with an extrapo-
lated positive value of Uac at ����2=0. The most direct in-
terpretation of this result is that in addition to strain, the
contribution of defects to Uac is not negligible. Therefore,
with the help of Eq. �8� we can rewrite Eq. �7� as

Uac = K������2 + Udefects, �9�

where K�� is detailed in Eq. �8�. At this point it is necessary
to accurately define the meaning of Udefects. As discussed
extensively by Roorda et al.,25 a structural defect may pro-
duce around it a local distortion of the covalent Si–Si net-
work. So, a defect population may increase �� of the mate-
rial. Consequently, in addition to the “chemical” energy,
Udefects, associated with the bonding �for instance dangling
bonds or floating bonds�, the defects may increase the overall
strain energy �the first term of Eq. �9��.

From the nice linear behavior shown in Fig. 3, it is
tempting to consider that Udefects is constant throughout the
relaxation process. However, all experiments12,24,35 indicate
that the defect density diminishes during the structural relax-
ation of pure a-Si. Thus, we conclude that Udefects must di-
minish as the annealing temperature increases and, conse-
quently, that the slope of the experimental points must be an
upper bound to K��. This conclusion is translated through
Eq. �8� to � whose value should be lower than
4.1�0.4 N /m. Our estimate is lower than the values ob-
tained from simulating Raman spectra �6.7���16.6 N /m
�Refs. 33 and 34��. For this reason, we think that the strain
energy must be close to the dashed line of Fig. 3, otherwise
the discrepancy with the published values of � would in-
crease. In fact, the value of Uac is more sensitive than the
shape of the Raman spectra to variations of �. The analysis
of Marinov and Zotov15 showed that the most prominent
feature in the Raman spectrum of a-Si �the TO band� has a
stretching character and, consequently, it has a minor depen-
dence on the bending force constant �.

FIG. 3. Heat released when partially relaxed ion-implanted a-Si samples are
transformed into crystalline silicon, Qac. The annealing temperature is de-
tailed for several samples. Squares and stars refer to different authors. The
sample with ��=8.7° is crystallized without any significant relaxation.
Crosses correspond to the heat of crystallization measured in several a-Si:H
samples. Inset: thermogram measured for the a-Si sample previously an-
nealed at 573 K to show the meaning of the experimental components of Qac

�Ref. 25�.
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Since the slope must be close to that of the dashed line
of Fig. 3, we conclude that the �chemical� energy associated
with defects, Udefects, remains almost unchanged during
structural relaxation �i.e., 
�Udefects

Udefects, where

�Udefects
 means the total variation of the defect energy be-
tween the as-implanted and relaxed states�. Therefore, its
contribution to the heat of relaxation, Qrelax, must be much
lower than that of strain. Furthermore, from the experiments
of Stolk et al.,24 we can also conclude that defects do not
contribute appreciably to the strain energy, Ustrain. This is so
because these experiments have shown that for samples re-
laxed to a given intermediate value of ��, the density of
defects depends on how this state has been reached.24 For a
given value of �� the density of defects can vary by as much
as a factor of 3, so �� is quite independent from the density
of defects.

Our conclusion that defect annihilation does not contrib-
ute significantly to the heat of relaxation poses severe restric-
tions on the nature of the defects that recombine during
structural relaxation. For instance, from diffusivity36 and car-
rier lifetime experiments,24 we know that the amount of de-
fects that recombine during structural relaxation taking place
between 300 and 773 K is around 0.5%–1% atomic. From
our Fig. 3, an upper bound of 1 kJ/mol for the contribution of
defects to Qrelax can be assumed �this contribution would
imply decreasing � to below 3.5 N/m, i.e., to 1

2 of the theo-
retical estimates�. This results in a formation energy per de-
fect lower than 2–1 eV. Thus, the defects that recombine
during relaxation can hardly be vacancies �formation energy
of 4 eV �Ref. 37��.

B. Crystallization

We believe that the most striking conclusion to be drawn
from Fig. 3 is the interpretation of the heat of crystallization.
Our analysis leads us to conclude that just before crystalli-
zation �i.e., the first point in Fig. 3�, about one-half of the
a-Si energy is associated with structural defects. This is in
contrast with the early interpretation of the value of
Qcryst,

29,30 which considered that most of the energy of re-
laxed a-Si was stored as bond-angle strain, i.e.,

Qcryst � Ucryst � K����2. �10�

As far as we know, this interpretation is widely accepted
without suspicion. However, it is false because the value of
K that fits the first point of Fig. 3 �sample relaxed at 77 K�
delivers a strain energy value that is clearly higher than the
experimental energy for the partially relaxed states �this situ-
ation is sketched in Fig. 4�.

An interesting prediction of our analysis is that the heat
of crystallization of a-Si may be lower than the reported
values of 11–14 kJ/mol.23,38,39 If the density of defects were
lower, Qcryst could be as low as 6.6 kJ/mol. In fact, the first
crystallization experiments of a-Si reported a value of 9.2
kJ/mol.40 This low value was subsequently considered to be
erroneous by other authors.41 However, our recent results on
several a-Si:H samples grown by plasma-enhanced chemical
vapor deposition confirm that the heat of crystallization can
be much lower than the standard value. The values we have

obtained are included as crosses in Fig. 3. The details of our
calorimetric experiments will be published elsewhere. We
should stress here that the hydrogen content cannot modify
Qcryst substantially because, at the crystallization tempera-
ture, most hydrogen has already evolved from the sample
and, additionally, any hydrogen-related group increases
�slightly� the material energy.37 Consequently, the high dis-
persion of our points in Fig. 3 probably corresponds to dif-
ferent contributions of structural defects that would be re-
lated to the deposition conditions.

C. Earlier analyses

Our analysis of Qac based on Eq. �9� agrees with that
carried out by Stolk et al.24 However, the conclusion of these
authors concerning the contribution of defects to Qrelax was
very ambiguous. On the other hand, we think that our Eq. �9�
is more realistic than the analysis given by Roorda et al.25

who supposed that all the heat released during relaxation
�Qrelax� was due exclusively to defect annihilation,

Qrelax � �Nd � ����� , �11�

where �Nd is the reduction in defect concentration during
relaxation. Additionally, they considered that this reduction
produced a diminution of �� proportional to �Nd. Conse-
quently, a proportionality between Qac and ����� was pre-
dicted. Despite of the reasonable alignment of the experi-
mental points in Fig. 4, we think that this interpretation of
Qrelax is not correct. First, if �� increased with the defect
concentration, then the associated strain energy would follow
the ����2 dependence �the parabola of Fig. 4� and the total
measured energy Qac �points in Fig. 4� would be lower than
the predicted strain energy. Second, experiments are in con-
tradiction with the hypothesis that �� increases with the de-
fect concentration. Coffa et al.42 determined, by electrical
conductivity, the density of defects near the Fermi level and
by Raman spectroscopy, the bond-angle dispersion on the
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same samples.12 The results are summarized in the inset of
Fig. 4. Although both parameters diminish with the anneal-
ing temperature, they do not keep any linear relationship. In
addition we think that the results by Stolk et al.,24 already
commented in Sec. III B, are even more definitive because
they showed that no correlation existed between the TO Ra-
man peak width and the defect concentration.

IV. CONCLUSIONS

Our critical analysis of the theoretical relationships be-
tween the bond-angle dispersion and the Raman TO band-
width has shown that once these magnitudes are quantified
with the same parameters, the discrepancies between differ-
ent authors are drastically reduced. In fact, the proposed re-
lationships can be grouped either around the relationship of
Vink et al.10 or around that of Beeman et al.9 Experimental
results show a slightly better agreement with the latter rela-
tionship. However, in view of the large error bars of the
experimental points, it is clear that the use of any relation-
ship for calculating the absolute value of �� should be done
with caution. We consider that the information critically
summarized in Fig. 1 gives a good state of the art on the
subject.

In a second stage, the Raman TO half width has been
used to quantify the strain energy in pure a-Si. It has been
concluded that in a-Si obtained by ion implantation, the heat
evolved during relaxation is mainly due to the diminution of
bond-angle strain, whereas the contribution of defect anneal-
ing is much smaller. This conclusion refers to the heat of
relaxation and does not imply that defects play a secondary
role in the relaxation kinetics. Probably, as supposed by
Stolk et al.24 and indicated by molecular dynamics
simulation,27 the network rearrangement leading to lower
strain energy is mediated by defect diffusion and annihila-
tion. Concerning the contribution of defects to the heat of
crystallization, it is very similar to that of bond-angle strain.
Crystallization energy around 7 kJ/mol is predicted for
defect-free, relaxed a-Si.
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APPENDIX: RELATION BETWEEN UAC AND QAC

In this Appendix we will show that the heat evolved
during relaxation and crystallization is nearly equal to the
energy difference between the partially relaxed amorphous
state and the crystalline state. The energy difference at 0 K
will be simply the heat evolved during the ideal process
sketched in Fig. 5. First, the sample is heated until it reaches
the relaxed state. The heat exchanged during this step is

Q1 = Qrelax − �
0

Tmax�1000 K

mcadT , �A1�

where m is the sample mass, ca is the specific heat of a-Si,
and Qi0 is for exothermic processes. The value of Tmax can
be taken as the maximum temperature of the calorimetric

signal �see the inset of Fig. 3�. Second, at Tmax the material
crystallizes and releases the heat of crystallization

Q2 = Qcryst. �A2�

Finally, the heat related to cooling the crystallized state down
to 0 K amounts to

Q3 = �
0

Tmax

mccdT , �A3�

where cc is the specific heat of c-Si.
Collecting the three terms we get

Uac�0 K� = Qac − �
0

Tmax

m�cacdT , �A4�

where Qac�Qrelax+Qcryst and �cac�ca−cc. Finally, as we
are interested in the static energy, the ZPE must be sub-
tracted from Uac�0 K�, i.e.,

Uac = Qac − �
0

Tmax

m�cacdT − Uac
ZPE. �A5�

This formula allows us to calculate the correction term be-
tween Uac and Qac. Uac

ZPE can be calculated from the experi-
mental density of vibrational states, gi���, of a-Si and c-Si,43

Uac
ZPE = V�

0

�max

� 1
2����ga��� − gc����d� , �A6�

where V is the sample volume. We obtain Uac
ZPE�

−0.5 kJ /mol.
On the other hand, the specific heat term requires knowl-

edge of �cac. It has been measured for Ge �Ref. 44� but not
for Si,

�cac�Ge� = 4.2 	 10−3�T − 50� J/�mol K� , �A7�

where T is given in K. �cac has the same temperature depen-
dence as the anharmonic contribution to the specific heat of
c-Ge,45

�ch�c-Ge� = 2.0 	 10−3�T − 50� J/�mol K� , �A8�

which indicates that the anharmonic effects are responsible
for most of the specific heat excess of a-Ge with respect to
c-Ge. In fact, comparing Eqs. �A7� and �A8� leads to

a-Si

(0 K)

Relaxed a-Si

(1000 K)

c-Si

(1000 K)

c-Si

(0 K)

Q1

Q2

Q3

Uac

a-Si

(0 K)

Relaxed a-Si

(1000 K)

c-Si

(1000 K)

c-Si

(0 K)

Q1

Q2

Q3

Uac

FIG. 5. Scheme that allows the energy difference to be calculated between
the amorphous and crystalline state at 0 K, Uac �0 K�, through the heat
exchanged during the process of heating and cooling down the sample.
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�cac � 2�ch. �A9�

This expression will also be considered valid for silicon, and
since �ch�Si� has been measured,46 it allows �cac�Si� to be
calculated,

�cac�Si� � 5 	 10−3�T − 200� J/�mol K� . �A10�

Integration of �cac�Si� from 0 to 1000 K gives 1.5 kJ/mol,
which is similar to the result we would obtain with the esti-
mation for �cac�Si� used by other authors47 following differ-
ent assumptions. Now, adding the �cac and Uac

ZPE terms leads
to the final result,

Uac � Qac − 1.0 kJ/mol. �A11�
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