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Selected configuration interaction �SCI� for atomic and molecular electronic structure calculations is
reformulated in a general framework encompassing all CI methods. The linked cluster expansion is
used as an intermediate device to approximate CI coefficients BK of disconnected configurations
�those that can be expressed as products of combinations of singly and doubly excited ones� in terms
of CI coefficients of lower-excited configurations where each K is a linear combination of
configuration-state-functions �CSFs� over all degenerate elements of K. Disconnected configurations
up to sextuply excited ones are selected by Brown’s energy formula, �EK= �E−HKK�BK

2 / �1−BK
2 �,

with BK determined from coefficients of singly and doubly excited configurations. The truncation
energy error from disconnected configurations, �Edis, is approximated by the sum of �EKs of all
discarded Ks. The remaining �connected� configurations are selected by thresholds based on natural
orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected
space S, and EM =ES+�Edis+�E, where �E is a residual error which can be calculated by
well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is
presented. Convergence to within near spectroscopic accuracy �0.5 cm−1� is achieved in a model
space M of 1.4�109 CSFs �1.1�1012 determinants� containing up to quadruply excited CSFs.
Accurate energy contributions of quintuples and sextuples in a model space of 6.5�1012 CSFs are
obtained. The impact of SCI on various orbital methods is discussed. Since �Edis can readily be
calculated for very large basis sets without the need of a CI calculation, it can be used to estimate
the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken
up in a companion paper. © 2006 American Institute of Physics. �DOI: 10.1063/1.2207620�
I. INTRODUCTION

For atoms and small molecules, Schrödinger’s equation
can be approximated by a matrix-eigenvalue equation,

HC� = E�
FCIC�, �1�

where H is the representation of H in terms of the Slater
determinants or N-electron symmetry-eigenfunctions con-
structed from a given orbital basis. Equation �1�, which can
be applied to the complete range of quantum mechanical
problems associated to the given system, defines the full con-
figuration interaction �CI� method 1 and E�

FCI is the full CI
�FCI� energy. In terms of FCI quantities, the exact eigenval-
ues E� of Schrödinger’s equation may be expressed as

E� = E�
FCI + �E�

OBI, �2�

where �E�
OBI is the error due to orbital basis

incompleteness.2–5 Henceforth the subscript � will be
dropped in the understanding that the following also applies
to excited states. �EOBI shall be further discussed in Sec.
VII B.

Full CI, on the other hand, is the central referent of all
orbital methods based on Hamiltonians obtained from the
first principles:6,7 highly correlated CI �HCCI�,8

a�
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symmetry-adapted-cluster9 �SAC� and SAC—CI,10–12 size-
consistent CI,13 coupled cluster �CC� methods,14,15 many-
body perturbation theory �MBPT�,16,17 electron propagator
theory,18,19 and, more recently, density matrix variational
theory,20,21 the density matrix renormalization group
method,22 iterative CI �Refs. 23 and 24� and extended CC,25

and ab initio density functional theory.26 �Quantum Monte
Carlo methods27 are becoming increasingly competitive but
use an entirely different methodology.�

Traditional FCI is an impossible task, except to test ab
initio electronic structure methods28 with �necessarily� too
small orbital bases lacking predictive value. The new FCI
methods22,23,29,30 considerably extend the scope of traditional
FCI but will continue to be limited by the size of the orbital
bases. This paper addresses HCCI methods in general.8 Let
us convene calling HCCI any CI method which, despite a
formal lack of size extensivity,31–35 competes on a par with
the better founded coupled cluster methods such as CCSD,34

CCSD�T�,36,37 CCSDT,38,39 CCSDT�Q�,40 CCSDTQ,41,42 or
even CCSDTQQn,43 for a given problem at hand. �S, D, T,
Q, Qn, Sx, etc., refer to singles, doubles, triples, quadruples,
quintuples, sextuples, etc.�

Comprehensive studies on the water molecule44,45 in

which the HOH angle is fixed at 110.6° and the OH distance
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is varied between Re and 3Re with Re�1.843 45 a.u. show
that in order to compete with CCSDT, a CISDTQ treatment
is adequate

CISDTQ � CCSDT.

The previous assertion applies, in general, to similar situa-
tions, atoms and small molecules. The reason for the obsti-
nate endurance of CISDTQ vis-à-vis CCSDT is its varia-
tional character, not shared by standard CC methods. This is
consistent with recent results46,47 in variational CC
calculations48 achieving close to FCI quality. Accordingly,
whereas nonvariational CC methods for N-electron systems
include up to N-excited determinants that are normally ab-
sent in HCCI, the latter provides the best expansion coeffi-
cients up to the level of excitations actually incorporated,
and that is enough—at least energy wise—to compensate for
lack of size consistency. The problem with straight CISDTQ,
nevertheless, has been the excessive computer resources re-
quired for current and even future computational power.

Continuing with the water molecule, a recent application
of the ultimate of CC tools, namely, CCSDTQQn,43 suggests
that CISDTQQnSx is a clear match,

CISDTQQnSx � CCSDTQQn.

This paper presents a complete and efficient approach to ap-
proximate CISDTQQnSx for atoms and small molecules to
within reliable and acceptable errors by means of selected CI
�SCI� and its corresponding truncation and residual energy
errors relative to the full CISDTQQnSx treatment. �The re-
sidual energy error accounts for inaccuracies in the trunca-
tion energy error itself and for other errors requiring sensi-
tivity analyses.�

SCI calls for three methodological requirements:

�i� a priori selection of configurations,8,49–51

�ii� a priori estimate of truncation energy errors, and
�iii� a posteriori assessment of all other errors not calcu-

lated in �ii�.

The present SCI method differs from its predecesors in
two important aspects: �i� truncation energy errors are quan-
titatively assessed all along making use of Brown’s energy
formula,52 and �ii� the selection scheme targets configura-
tions rather than configuration-state functions �CSFs� or de-
terminants, both advances, in combination, leading to orders
of magnitude improvements in accuracy and precision. CI
notation and the Brown formula are given in Sec. II. In Sec.
III, the linked cluster expansion is compared with the deter-
minantal cluster expansion to obtain n-excited determinantal
CI coefficients in terms of those of lower-excited determi-
nants, as already known7,53 but unexploited. The expressions
for determinantal coefficients are then generalized to ap-
proximate configurational coefficients in a quick and reliable
way, therefore opening the way for large-scale a priori ap-
plications of Brown’s formula.

Selection of configurations involves additional conceptu-
alizations discussed in Sec. IV. Truncation and residual en-
ergy errors are taken up in Sec. V, and an application on the
Ne atom is presented in Sec. VI. Present achievements, their

impact on other ab initio methods and conclusions are given
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in Sec. VII. Various details are given elsewhere.54 Efficiency
requirements in connection with the matrix-eigenvalue prob-
lem demand the development of yet another variational
method presented in a companion paper.55

II. CI NOTATION AND BROWN’s FORMULA

A general HCCI model wave function can be written as56

� = �
K=1

Kx

�
g=1

gK

FgKCgK. �3�

K and g label configurations and degenerate elements, re-
spectively, and CgK denotes a CI coefficient. Triply and
higher-excited configurations can be classified into discon-
nected and connected ones. Disconnected configurations are
those that can be expressed as products of combinations of
singly and doubly excited ones, whereas connected configu-
rations are all others. FgK is an N-electron symmetry eigen-
function or CSF expressed as a linear combination of nK

Slater determinants DiK,

FgK = O��,���
i=1

g

DiKbi
g = �

i=1

nK

DiKci
g, g = 1, . . . ,gK, �4�

where O�� ,�� is a symmetric projection operator57 for all
pertinent symmetry operators � and a given �N-electron� ir-
reducible representation �.58–61

Let ��−FgK� denote N��−FgKCgK� where N is a nor-
malization factor, viz., let us assume that after deletion of
FgK, the new wave function ��−FgK� has the same remaining
expansion coefficients except for renormalization. The en-
ergy contribution �EgK of FgK can be approximated by

�EgK = ���H��	 − ���− FgK��H���− FgK�	 , �5�

which readily yields Brown’s formula,52

�EgK = �E − HgK,gK�CgK
2 /�1 − CgK

2 � . �6�

In Eq. �6�, E= ���H��	. Approximation �6� is particularly
good for small values of �EgK, viz., for expansion terms FgK

eventually to be discarded, like triply and up to sextuply
excited configurations. As pointed out in Ref. 62 similar
equations of perturbational lineage have been used by other
authors.

Equation �6� requires previous knowledge of CgK coeffi-
cients which so far could only be obtained after making a
calculation.63 Quick prediction of CgKs for each g of a given
K is probably hopeless. Fortunately, as shown in Sec. III E, it
is possible to predict configurational BK coefficients defined
below.

First, Eq. �3� is rewritten as

� = �
K=1

Kx

GKBK, �7�

in terms of normalized symmetry configurations GK,

GK = NK�
g=1

gK

FgKCgK, �8�
therefore,
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BK =
1

NK
, NK =
1��

g=1

gK

CgK
2 . �9�

Similarly as �EgK in Eq. �6�, �EK for expansion �7� is given
by

�EK = �E − HKK�BK
2 /�1 − BK

2 � , �10�

to be used just for estimating an approximate truncation en-
ergy error. The variational calculations are still carried out
via Eq. �3� but the selection process targets configurations
GK instead of FgKs whereby the need to predict CgK coeffi-
cients is eliminated. In the next section, predictive formulas
for BK coefficients of triply and up to sextuply excited con-
figurations will be discussed.

Returning to Eq. �10�, for highly excited configurations,
the term �E−HKK� is generally of the order of several Har-
tree, thus E can initially be approximated by any correlated
energy, viz., a singles and doubles CI �CISD� energy. Also,
HKK can be well approximated by �DiK�H�DiK	,

HKK � �DiK�H�DiK	 , �11�

where DiK is any determinant of K. In atomic work, where
degeneracies gK may easily reach several thousands, thanks
to simplification �11� Brown’s formula can be used before
generating very expensive FgKs, allowing to make a decision
at this early stage whether to incorporate these explicitly in
an ensuing variational treatment or to leave them out in the
form of a contribution �EK to the truncation energy error.

The final expression for total truncation and residual en-
ergy errors is postponed to Sec. V.

III. LINKED CLUSTER EXPANSION AND PREDICTION
OF CONFIGURATIONAL EXPANSION
COEFFICIENTS

A. Determinantal CI and Oktay Singanoğlu

A CI expansion in terms of n-excited determinants and a
single reference determinant D0 can be expressed in cluster
form as64

� = D0c0 + �
i

�
a

Di
aci

a + �
i�j

�
a�b

Dij
abcij

ab

+ �
i�j�k

�
a�b�c

Dijk
abccijk

abc + . . . . �12�

In a landmark paper,65 Oktay Sinanoğlu suggested that cijk..
abc..
coefficients of n-excited determinants can be obtained from

similar equations into the full CI equations. Instead, we shall m
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the coefficients of determinants with lower excitation order.
He gave an approximate expression for the main case: the
coefficients of quadruply excited determinants in terms of
coefficients of doubly excited determinants,

cijkl
abcd � cij

abck�
cd + cik

abcj�
cd + ci�

abcjk
cd.

In general, however, energy contributions of triples cannot be
neglected since they are about equally important as
quadruples.66 Analogously, in going to a higher order of ap-
proximation, quintuples and sextuples rather than just sex-
tuples must be incorporated, even for closed-shell systems.44

B. Exponential ansatz for the wave function

Following the linked cluster theorem,67–69 the introduc-
tion of an exponential wave function of a cluster operator
T,70,71

� = exp�T�D0, �13�

T = T1 + T2 + T3 + ¯ , �14�

established a powerful theoretical framework free from so-
called CI traps, namely, the CI limitation to a given and
necessarily low level of spin-orbital excitations. Let the clus-
ter operator be defined as70

T1 = �
i

�
a

ti
aâi

†âi, �15�

T2 = �
i�j

�
a�b

tij
abâa

†âb
†âjâi, �16�

T3 = �
i�j�k

�
a�b�c

tijk
abcâa

†âb
†âc

†âkâjâi, �17�

in terms of creation operators âa
† for unoccupied orbitals a

and annihilation operators âi for occupied orbitals i. Devel-
oping the exponentials and collecting terms,31 the following
exact relationships between determinantal CI coefficients
cijk. . .

abc. . . and cluster amplitudes tijk. . .
abc. . . are obtained33

1

c0
ci

a = ti
a, �18�

1
cij

ab = tij
ab + ti

atj
b − ti

btj
a, �19�
c0
1

c0
cijk

abc = tijk
abc + ti

atjk
bc − ti

btjk
ac + ti

ctjk
a − tj

atik
bc + tj

btik
ac − tj

ctik
ab + tk

atij
bc − tk

btij
ac + tk

ctij
ab + ti

atj
btk

c − ti
atj

ctk
b − ti

btj
atk

c + ti
btj

ctk
a + ti

ctj
atk

b − ti
ctj

btk
a, �20�

and so on for cijk�
abcd and higher-excited CI coefficients. Apart from the coefficient c0, Eqs. �18�–�20� are particular cases of Eq.

�A4� of Ref. 53. A hierarchy of coupled-cluster methods may be derived by replacing the right-hand side �rhs� of �18�–�20� and
33
 ove in the opposite direction.
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C. Predictor of determinantal coefficients

By replacing the rhs of �18� in �19� one gets

1

c0
cij

ab = tij
ab +

1

c0
2 �ci

acj
b − ci

bcj
a� . �21�

When �18� and �21� are replaced into the rhs of �20� it follows:

1

c0
cijk

abc = tijk
abc +

1

c0
2 �ci

acjk
bc − ci

bcjk
ac + ci

ccjk
ab − cj

acik
bc + cj

bcik
ac − cj

ccik
ab + ck

acij
bc − ck

bcij
ac + ck

ccij
ab� −

2

c0
3 �ci

acj
bck

c − ci
acj

cck
b − ci

bcj
ack

c + ci
bcj

cck
a

+ ci
ccj

ack
b − ci

ccj
bck

a� . �22�
Equation �22� shows that cijk
abc coefficients are given exactly

in terms of coefficients of lower excited detors plus the irre-
ducible amplitude tijk

abc. Apart from the occurrence of c0, these
and similar equations for the coefficients associated to
higher-excited determinants are particular cases of Eq. �A4��
of Ref. 53. The exciting promise of the above equations
stems from the reasonable hypothesis that distinct from
cijl. . .

abc. . . coefficients, the tijk. . .
abc. . . amplitudes diminish quickly

with the order of excitation �in analogy with the virial ex-
pansion in imperfect gas theory65�, and can be neglected.

In general one has

1

c0
cijk. . .

abc. . . = tijk. . .
abc. . . + F�cij. . .

ab. . .� . �23�

Equation �23� is a shorthand for a predictor of CI coefficients
of the n-excited determinants in terms of coefficients of
lower excited detors if triply and higher-excited irreducible
tijk. . .
abc. . . amplitudes on the rhs can be neglected. If tijk. . .

abc. . .�0, as
first envisioned by Sinanoğlu, Eq. �22� and similar ones can
be used to estimate cijk. . .

abc. . . coefficients for evaluation of ap-
proximate truncation energy errors of disconnected determi-
nants through an equation similar to �6� or �10�. This is dif-
ferent from Sinanoğlu’s original proposal65 to use Eq. �22�
and similar ones as part of a scheme to calculate the total
energy itself. Also, the need for large-scale CI is here antici-
pated as unavoidable. Moreover, as it is well known,72 tijk

abc

�0 and even tijk�
abcd�0 is not always justified, causing the

need of additional considerations to be discussed in Sec. IV.

D. From determinants to configurations

Simplifications that are essential for large-scale applica-
tion of Brown’s formula will now be considered for the first
time. In molecules there is no much of an incentive to con-
tract determinantal expansions into CSFs.8 But the situation
changes, even in molecules, when the final purpose becomes
to contract sums of determinants into symmetry configura-
tions GK, Eq. �8�, embracing all degenerate elements into a
single term. Here the effective contraction factor becomes
1/nK, viz., it is equal to the reciprocal of the number of
determinants for a given configuration K, which is around
0.05 for CISDTQ with the Abelian point-symmetry groups,
falling under 0.0001 in atomic CISDTQ with orbitals of high

angular momentum, continuing to decrease for higher exci-
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tations. Therefore, the configurational counterpart of equa-
tions such as �22� is considered next.

The configurational cluster expansion is given by

� = 	0B0 + �
i

�
a

	i
aBi

a + �
i
j

�
a
b

	ij
abBij

ab

+ �
i
j
k

�
a
b
c

	ijk
abcBijk

abc + ¯ , �24�

where 
 has now taken the place of � in Eq. �12�,
symmetry-orbitals replace spin-orbitals, and the summation
over the degeneracy index g has already taken place thus
hiding the linear variational coefficients CgK through Eqs. �8�
and �9�. Formally, other than for calculation purposes, �24� is
entirely equivalent to �12� as well as to �7� and �3�, thus any
	ijk. . .

abc. . . is identical with some GK of �7�.

E. Predictor of configurational coefficients

A priori prediction of the CgK coefficients of Eq. �3� was
discussed by Pipano and Shavitt73 but the lengthy calcula-
tions of their proposal were never implemented. Rather than
deriving equations similar to �23�, approximate equations to
predict the configurational coefficients Bijk. . .

abc. . . of Eq. �24�
shall be guessed. The correctness of the guessed equations
will be tested by means of actual calculations.

When there are no equal signs among the participating
orbitals and all concerned degeneracies are equal to one, the
predictor equations for the configurational coefficients BK of
�9� or Bijk. . .

abc. . . of �24� should be identical to those for the cijk. . .
abc. . .

coefficients of determinantal expansions, Eq. �22�, and simi-
lar ones. The question to be answered then is how Eq. �22�,
for example, is to be modified when there are equal orbital
indices. Let us consider the extreme case when all occupied
orbitals i are equal among themselves, as well as the excited
orbitals a. Since the expansion in Eq. �24� does not contain
repeated coefficients, the recipe must be to drop all terms
with repeated coefficients. Consequently, for configurational
coefficients, Eq. �22� changes into

1

B0
Biii

aaa = B̂iii
aaa +

1

B0
2Bi

aBii
aa −

2

B0
3Bi

aBi
aBi

a. �25�

B̂iii
aaa in the rhs of �25� is a linked or irreducible coefficient �in
Sinanoğlu’s nomenclature� which will be neglected in the

ense or copyright; see http://jcp.aip.org/about/rights_and_permissions



014107-5 Selected configuration interaction J. Chem. Phys. 125, 014107 �2006�

Down
evaluation of the left-hand side �lhs� of �25�. In this way, of
the 15 terms of Eq. �22� only two survive. The codes ex-
pressing the 1440 formulas for up to sextuply excited coef-
ficients �2�2q−2� formulas for coefficients of q-excited con-
figurations� were produced by FORTRAN programs and are
further discussed elsewhere.54 Moreover, the irreducible

components B̂ijk. . .
abc. . . are significant in many triple excitations,

and also in those instances where the remaining terms in the
rhs of �25� are zero, as discussed in Sec. IV.

IV. SELECTION OF CONFIGURATIONS

A. Disconnected and connected configurations

The selection process described so far may be summa-
rized as follows: given a model space M, all disconnected
configurations K with energy contributions �EK greater than
an energy threshold Tegy

��EK� � Tegy, �26�

are included in a selected space S that will subsequently be
subjected to a variational treatment. However, other configu-
rations also require systematic incorporation since there are
two instances when the above criterion is inadequate:

�i� It is not operative if, for a given set of indices abc. . .
ijk. . . ,

only tijk. . .
abc. . . in the rhs of �23� is different from zero.

Such configurations shall be called connected
configurations,74 while all others are called discon-
nected ones. Examples of connected configurations
are pdf in Li 2S and pdfg in Be 1S.75

�ii� it is not sufficient for triply excited disconnected con-
figurations: here, the largest part of the energy contri-
butions comes from nonnegligible irreducible tijk

abcs

and corresponding B̂ijk
abc coefficients,76 independently

of the magnitude of the disconnected terms in �22�.

Connected configurations do not exist when using orbital
bases lacking spatial symmetry. They necessarily occur when
at least one irrep does not appear as a fully occupied orbital
in the reference configuration 	0, namely, in all atomic and
linear-molecule states, and in few-electron molecules with
spatial symmetry. Our aim shall just be to guarantee that all
deleted connected configurations, together with disconnected
triples that were discarded by Brown’s energy criterion, con-
tribute less than a given amount of energy.

B. Additional selection criterion

The occurrence of connected configurations makes it
necessary to introduce a new requisite: the correlation orbit-
als a ,b ,c , . . . must be approximate natural orbitals,77 viz.,
eigenfunctions of the reduced first-order density matrix or,
better yet, average natural orbitals78 so that orbital symmetry
is preserved.

Let ��1,1�� be the average reduced first-order density
matrix with eigenfunctions �a and eigenvalues �occupation

numbers� na,
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��1,1�� = � na�a
*�1��a�1�� . �27�

In studies on atomic electron correlation79 it was found that
configurations can be chosen by the following criterion: for
each q-excited configuration K the product P�q ,K� of corre-
sponding occupation numbers is calculated

P�q,K� = �
i=1

q

nKi
, �28�

where Ki represents a correlation natural orbital. If g is the
symmetry degeneracy of natural orbital a, nKa=gna. The
whole configuration �all corresponding degenerate elements�
is incorporated if P�q ,K� is greater than some occupation
number threshold Ton,

P�q,K� � Ton. �29�

A functional form for Ton can be expressed in terms of the
excitation level q and of a parameter m as

Ton�m� = 10−mq, �30�

where m is shown explicitly on the lhs of �30� for later pur-
poses. Thus, 10−m may be interpreted as an average occupa-
tion number below which configurations involving a given
natural orbital are deleted from an original model space M.
In practice, starting from a sufficiently small energy thresh-
old Tegy, the value of m is increased until successive energy
lowerings start to converge to within a prescribed residual
energy error. Since the actual value of m in �30� guaranteeing
a given contribution to the residual energy error depends on
the holes i , j ,k , . . . of the configuration involved, there is
ample room for enriching Eq. �30�.54

C. Strategy for configuration selection

The following strategy for configuration selection is
adopted

�i� All triples with P�3,K�
10−3m are selected. This cri-
terion is applied to all triply excited configurations
alike, disconnected and connected ones. The value of
m must be sufficiently high to guarantee that the en-
ergy contribution of all deleted connected configura-
tions is negligible. This is all that is to be done to
select connected triples.

�ii� As to the disconnected triples that were not selected in
�i�, all those with ��EK�
Tegy are selected while the
energy contributions of the discarded ones are accu-
mulated into the total truncation energy error �Edis,
Sec. V A.

�iii� All connected quadruples with P�4,K�
10−4m are se-
lected. This is the mechanism used to incorporate
tijk�
abcds associated to connected configurations.

�iv� All disconnected quadruples with ��EK�
Tegy are se-
lected while the energy contributions of the discarded
ones are accumulated into �Eaf

dis. This implies to ne-
glect all tijk�

abcd associated to disconnected configura-
tions deleted by the Tegy test, no matter how signifi-

cant they might be.
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�v� Quintuple- and sextuply excited configurations are se-
lected according to �iii� and �iv�.

V. ENERGY EXPRESSION

The discussions in Secs. II and IV allow to develop an
appropriate notation and a general equation for the CI energy
in terms of the usual energy upper bound, a computable
�rather than formal� truncation energy error, and a residual
energy error. The latter two contain a part corresponding to
disconnected configurations, which can be estimated a pri-
ori, and another one due to connected configurations, which
can be evaluated after studying energy convergence as a
function of the parameter m of Eq. �30�.

A. Effect of truncating disconnected terms

The a priori computable truncation energy error �Edis

comes from truncations of disconnected configurations,

�Edis = �
deleted K

�EK, �31�

with �EK given by Eqs. �10� and �11� and predictor equa-
tions for CI coefficients such as Eq. �25� and similar ones.54

�Edis decreases monotonically with the threshold Tegy intro-
duced in �26�.

�Edis is an approximation to an exact, usually unknown
truncation energy error �Eexact

dis ,

�Eexact
dis = �Edis + �Edis. �32�

For large values of �Edis, the unknown quantity �Edis is com-
paratively small. As Tegy is made smaller, �Edis becomes tiny
and �Edis, which may end up being larger than �Edis, can be
interpreted as a residual error which may be obtained
through sensitivity analyses.

In atoms, �Edis has two sources: �Ebf
dis from truncations

before CSF evaluation and �Eaf
dis from truncations afterwards

�Edis = �Ebf
dis + �Eaf

dis. �33�

B. Effect of truncating connected terms

The existence of connected configurations, and the need
to truncate most of them, brings in a new kind of error, to be
denoted �Econ. Distinct from �Edis and analogously as �Edis,
�Econ cannot be computed a priori; it can only be estimated
after studying suitable patterns of energy convergence, see
Ref. 54. For sufficiently small thresholds, �Econ can also be
understood as a residual error. The sign of �Econ is always
negative, since the latter is made up of bonafide variational
energy contributions which have not been incorporated into

the final calculation.
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C. Energy in a model space M

The energy EM in a model space M is written as

EM = ES + �Edis + �Edis + �Econ, �34�

where �E values are conditioned by various thresholds T.54

Since EM is well defined, its value can in principle be ob-
tained by a limiting process, letting all thresholds in T to
become sufficiently small, thus

lim
T→0

EM = ES. �35�

In very precise calculations, however, one must always settle
for threshold values in T that are still too large to qualify as
sufficiently small, and therefore the use of residual errors
�Edis and �Econ is inevitable

EM = ES + �Edis + �Edis + �Econ = ES + �Edis + �E . �36�

Before �E becomes known, convergence studies necessarily
center upon gross values EM� ,

EM� = ES + �Edis, �37�

eventually converging to the net value EM. Equation �37� can
easily be applied and may well be all that is needed if pre-
cision requirements on EM are not too tight. Otherwise, one
must fall back into the more detailed Eq. �36�.

VI. RESULTS

A. Choice of system

As a numerical test, the Ne ground state is chosen be-
cause it is the simplest well known example66,79–83 exhibiting
many of the complexities of a highly correlated CI. The basis
set consists of 103 energy-optimized radial orbitals79 up to
�=13:12s12p11d10f10g9h8i7k6l5m4n3o3q3r, amounting
to 1077 orbitals.

Use was made of two programs: AUTOCL �106 000 lines
of code and comments�, for the calculation of pruned lists of
CSFs together with the corresponding truncation energy er-
ror �Ebf

dis, and ATMOL �159 000 lines of code and comments�,
for atomic and molecular SCI. The relatively large sizes of
the above codes comes from the formulas used to predict
energy contributions from quintuply and sextuply excited
configurations. Both programs can be downloaded from a
website.54

Full CI with the chosen basis calls for 2.4�1025 CSFs
�Ref. 84� and 1.4�1026 determinants disregarding spatial
symmetry. CISDTQQnSx up to �=7 demands 6.5�1012

CSFs �4.2�1015 distinct determinants� CISDTQ only re-
quires 1.4�109 CSFs containing 1.1�1012 determinants.
Thus the size of the calculation to be presented exceeds by
orders of magnitude the size of any calculations previously
attempted.

Despite neglect of relativistic effects, cm−1 precision
within the CISDTQQnSx model is sought in order to exhibit

various challenges and opportunities.
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B. Beginning of calculation

A complete calculation starts as follows:

�i� A CISD is run to obtain approximate natural orbitals.
�ii� Using these approximate natural orbitals, a CISDT is

carried out and its energy as well as the CI coeffi-
cients of single, double, and leading triple excitations
are saved on a file for later use in the prediction of
configurational BK coefficients needed for the a priori
evaluation of estimates of energy contributions of dis-
connected configurations.

�iii� With data from �ii�, a pruned list of CSFs for CIS-
DTQQnSx is calculated using suitable pruning
parameters.54

�iv� Using the list of CSFs obtained in �iii�, an approxi-
mate CISDTQ wave function is obtained for the pur-
pose of improving over the coefficients of single,
double, and triple excitations first calculated in �ii�.

�v� These are used to run �iii� once more, yielding a very
similar list of CSFs. The new CI coefficients of
singles, doubles and triples yield more accurate trun-
cation energy errors �Ebf

dis and �Eaf
dis. In all, the said

CI coefficients were iterated fourfold.

The eigenproblem is determined variationally by a
method whose accuracy can be controlled,55 presently to
within less than one microhartree in the largest reported cal-
culations.

C. General strategy

Convergence of connected configurations was first stud-
ied in detail54 as a function of m until reaching very small
values of Ton�m� using triples and quadruples truncated after
�=7 for the purpose of gaining an idea about convergence
behavior and expected values of m for �=13.

The final parameters for pruning the configuration list
before CSF evaluation were obtained from various studies54

aiming at both a sufficiently small truncation energy error
�Ebf and a negligible residual error �Ebf. In particular, the
maximum value of degenerate elements gK per configuration
was set at gK=261, whereas a maximum value of nK

TABLE I. Convergence of the CISDTQQnSx ground state energy of N
=10−n a.u., using fourfold iterated CI coefficients

n Nsd Ncsf Nhme −ES −�

8 28.05 55.95 4.58 128.936 460 61 6.
9 28.24 57.04 4.69 128.936 513 93 6.

10 28.72 59.68 4.99 158.936 528 72 6.
11 29.78 65.12 5.68 128.936 532 41 6.
12 31.75 74.64 7.11 128.936 533 09 6.
13 34.76 88.35 9.59 128.936 533 15 6.
11 41.07 86.00 8.21 128.936 532 75 6.

aTon=10−8q, three times smaller than in the calculations above.
=70 000 was chosen for reasons explained in Ref. 54.
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D. CISDTQQnSx results for Ne ground state

After the several studies outlined in the previous subsec-
tion CISDTQQnSx calculations are presented as a function
of Tegy in Table I. The occupation number thresholds are set
at Ton,dis=Ton,con=3�10−8q

The second and third columns show the number of de-
terminants, Nsd �in 109�, and of CSFs, Ncsf �in millions�, re-
spectively. These large numbers in many routine calculations
are comparable to those in state-of-the-art full CI prowess,28

except that in the present case the orbital bases are consid-
erably larger while the sparseness of the CI matrices is
greatly reduced due to the selection process. The fourth col-
umn holds the number of nonzero Hamiltonian matrix ele-
ments, Nhme �in 1012�. In the penultimate row, this number
amounts to 9.59�1012, entailing 153 terabytes of disk stor-
age in a traditional application of Davidson’s eigensolver85 in
which the matrix elements are expensive to evaluate thus
precluding their recalculation at each iteration. Fortunately,
this demand is obviated by the use of a select-divide-and-
conquer method55 to solve the eigenproblem.

Neglecting residual errors �E coming from quintuples
and sextuples, the following conclusions are obtained.

�i� For Tegy=10−8, �Eaf
dis is larger than the actual energy

lowering, yielding a too low gross energy. However,
as Tegy becomes 10−10 a.u. and smaller, �Eaf

dis values
achieve remarkable accuracy, allowing to produce a
reliable converged energy as far as disconnected con-
figurations are concerned; it is estimated that ��Eaf

dis�

0.05 �hartree.

�ii� In order to estimate �Eaf
con, a final calculation with

Tegy=10−11 a.u., and Ton,dis=Ton,con=10−8q was carried
out and reported in the last row of Table I. Consider-
ing patterns of energy convergence of connected con-
figurations from previous studies54 it may be esti-
mated −�Eaf

con
0.55±0.15 �hartree.
�iii� Studies of �Ebf

dis values in various circumstances54 in-
dicate that �Ebf

dis is negligible, around ±0.15 �hartree.
�iv� From pilot calculations it was estimated −�Ebf

con


0.5 �hartree. The significance of connected con-
figurations for still higher values of gK and nK not yet
considered is deemed to be equally negligible. Adding
both contributions, −�Ebf

con
1 �hartree.

As to the truncation error �Ebf
dis �QnSx� from quintuples

h a 12s12p11d10f10g9h8i7k6l5m4n3o3q3r basis, as a function of Tegy

−�Ebf
dis�QnSx� −�Eaf

dis −EM� �Eaf
dis

373.16 105.71 128.936 945 55 33.15
373.16 23.80 128.936 919 96 4.57
373.16 4.55 128.936 912 50 0.11
373.16 0.75 128.936 912 39 0.00
373.16 0.10 128.936 912 42 −0.03
373.16 0.01 128.936 912 39 0.00
373.16 0.75 128.936 912 75a 0.00
e wit

Ebf
dis

07
07
07
07
07
07
07
and sextuples, it amounts to 373 �hartree subdivided as fol-
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lows: 22 �hartree from quintuples �16 from singles times
doubles times doubles, and 6 from connected triples times
doubles�, and 351 �hartree from sextuples �doubles times
doubles times doubles�.

By taking together all previous considerations, it is esti-
mated �Econ=−1.5±2.0 �hartree, thus ES=−128.936 541�2�
and the total energy in the model space M, Eq. �36�, becomes
EM =−128.936 914�2� a.u.�Ne�, neglecting �E from quin-
tuples and sextuples.

E. Comparison with previous Ne results

The best previous variational calculation79 used the same
orbital set and consisted of a multireference CISD �MRCI-
SD� supplemented with connected configurations selected
according to Eqs. �33� and �35� including 0.35�106 CSFs
and 34�106 determinants. Unknown and unsuspected to the
authors at the time,79 its CI energy error amounted to
739 �hartree, as it may be deduced from Table I after sub-
tracting the energy contribution from quintuples and sex-
tuples.

From the previous subsection, ES=
−128.936 541 a.u.�Ne�, and EM =−128.936 914�2� a.u.�Ne�
�Table II�. The energy error �EOBI due to orbital basis in-
completeness was computed previously as
−643±20 �hartree �this value may be deduced from Table
VI of Ref. 79� through studies of successive saturation with
radial functions for a given � value at the CISD level of
approximation, together with patterns of convergence of an-
gular energy limits.2,66

Adding EM to �EOBI, an upper bound Eu

=−128.937 557 a.u.�Ne� is obtained, 13 �hartree above the
“exact” value estimated by Chakravorty et al.,86 and prob-
ably fortuitously close to it since septuples and higher exci-
tations are deemed to contribute slightly more than the ob-
served 13 �hartree. More accurate estimates of �EOBI and of
energy contributions beyond quadruples are needed to test
the reliability of this exact energy prediction.86

VII. DISCUSSION

A. Achievements

A priori SCI together with truncation and residual en-
ergy errors, Eq. �36�, has been generally formulated, and a
practical approach to approximate CISDTQQnSx has been
given. SCI rests upon

52

TABLE II. Comparison with best previous calculation using the same or-
bital basis; energies in a.u.�Ne�.

Description Energy

ES, Ref. 79 128.935 802
ES, Table I 128.936 533
EM, CISDTQ, Eq. �36�, Sec. VI D. 128.936 541�2�
EM, CISDTQQnSx, Eq. �36�, Table I 128.936 914�2�
�EOBI, Ref. 79 0.000 643�20�
E�CISDTQQnSx� 128.937 557
E“exact”, Ref. 86 128.937 570
�i� Brown’s formula �Sec. II�,

loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP lic
�ii� the use of predictors for configurational CI coeffi-
cients to select and assess disconnected configurations
via Brown’s formula,

�iii� the use of natural orbital concepts to select connected
configurations and disconnected triples, and

�iv� sensitivity analyses to determine residual errors.

Predictors for configurational rather than determinantal
coefficients are essential to reduce computational require-
ments by several orders of magnitude. Gross energies con-
verge from below, however, as Tegy becomes sufficiently
small, �Eaf

dis values become remarkably accurate, well under
1 �hartree �see Table I�.

As implemented here, the method can be applied quite in
general to an important range of electronic systems including
all atoms, for CISDTQQnSx calculations in model CI spaces
exceeding 1012 CSFs and quadrillions of determinants.

SCI has been tested on the Ne ground state using a
single computer processor. A rapidly convergent sequence of
energies and wave functions �Table I� together with calcu-
lated truncation and residual energy errors is used to achieve
an precision of 2 �hartree within a CISDTQ model. A less
precise result within a CISDTQQnSx model is also given.
The final energy result still needs to be complemented by
similar analyses with septuply and higher-excited configura-
tions, and also by more accurate estimates of �E�

OBI due to
orbital basis incompleteness,3,4 as discussed earlier in the
Introduction in connection with Eq. �2�.

The largest previous CI calculation28 involved ten elec-
trons, 34 orbitals, 9.68�109 determinants, 128 processors,
and attained absolute convergence to within 5 �hartree. For
comparison, the largest calculation in this paper �penultimate
row of Table I� also involves ten electrons, 1077 energy-
optimized orbitals, 88�109 CSFs expanded in 35�109 de-
terminants in the selected space S with all corresponding CI
coefficients being calculated variationally at least once,
while energy convergence in S attains a fraction of
1 �hartree. �The last entry of Table I features 41�109 deter-
minants.� A recent FCI calculation87 on the eight valence
electrons of the C2 molecule uses 68 orbitals, 65�109 deter-
minants, and 432 processors, achieving convergence with a
residual norm of 10−5.

B. Estimate of the orbital basis incompleteness error
�EOBI

Whatever ab initio method is being used, Eqs. �31�–�33�
can be applied to quickly estimate the orbital basis incom-
pleteness error �EOBI without ever carrying out a major cal-
culation, if connected configurations can be neglected or do
not occur altogether: �EOBI can be approximated by the dif-
ference between �Eaf

dis values for one very large basis set and
for the original basis. To do so one only needs

�i� CI coefficients of singly, doubly, and triply excited
configurations, from CISDT, CCSD�T� or HCCI wave
functions,

�ii� one diagonal matrix element between the Slater deter-
minants for each configuration involved together with

corresponding one- and two-electron integrals, and
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�iii� the configurational coefficients calculated from the
predictor equations, Eq. �25� and similar ones.

A sequence of calculations with increasing basis set size
can be used to yield increasingly small �EOBI values �in
magnitude� which may be extrapolated.

C. Impact on other methods and outlook

In order to formulate a theoretical model88 one must
settle for

�a� accuracy with respect to the Breit-Dirac-Schrödinger
theory or experiment,

�b� precision with respect to the model itself �truncation
and residual errors for energies, and sensitivity tests for
all properties, in general�, and

�c� the method to be used, for example, CISDTQQnSx, or
any of the suggestions below.

Selected CI is too general to constitute a theoretical
model on its own, however, it can be used to formulate new
theoretical models or to improve upon existing ones.

Brown’s formula, Eq. �10�, used in conjunction with the
predictor equations for CI coefficients of higher than double
excitations, can smoothly replace perturbation theory in all
so called PT2 methods89,90 since it is more accurate and
about as efficient, thanks to Eq. �11�. In principle, it can also
be applied beyond PT2. The same may be said about the
selection process in CI methods based on the symmetry-
adapted-cluster expansion, generically called SAC/SAC-CI
methods.9–11,91

Multireference CI �Refs. 92–96� continues to be actively
developed.97 In carrying the transition to SCI, MRCI can first
be supplemented with the truncation energy error �Eaf

dis, Eq.
�33�, and with connected configurations,79 given the case.
Next, the configuration generator in MRCI can be extended
from MRCI-SD to MRCI-SDTQ. If Qn and Sx excitations
are considered only at the level of evaluation of truncation
energy errors, the corresponding effort �which increases lin-
early with the number of configurations� is a small fraction
of the one required for a selected CISDTQ calculation. In
any case, introduction of leading selected quintuples and sex-
tuples into the wave function is straightforward.

General incorporation of higher than sextuply excited
SCI is not a good idea, in general, although septuples and
octuples are feasible in atoms.54 In molecules, variational
expansion coefficients cijk. . .

abc. . . can be used to obtain accurate
tijk. . .
abc. . . amplitudes, which in turn can be fed into a CC ansatz,7

hopefully improving the energy and the efficiency of CC
methods in a single step without need of CC iterations. Per-
haps more interesting, accurate CI wave functions may be
used to tailor CCSD.98

The density matrix renormalization group method,29 and
the growing family of iterative CI methods23–25,99,100 can be
used with the largest possible bases to estimate the energy
errors due to truncations beyond quadruples, thus enhancing
SCI capabilities.

By advancing reliable CISDTQQnSx, the present SCI

method considerably extends the scope of accurate atomic
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and molecular ab initio electronic structure applications. If
the orbital bases are well chosen101,102 or well developed �for
example, through energy optimization79,103�, one may envi-
sion unprecedented accuracy for problems tractable by CIS-
DTQQnSx or by the SCI-improved methods mentioned
above.

Needless to emphasize, SCI applies mutatis mutandis to
the Dirac-Schrödinger equation,104 and also to the Breit-
Dirac-Schrödinger equation,105 provided only positive-
energy orbitals are used, viz., within the no-pair Hamiltonian
approximation.106 In fact, the computer program ATMOL

54

has precisely that capability for general atomic states.
After what has been said, there remains the input/output

bottleneck107 inherent to large-scale applications of David-
son’s eigensolver85 when applied to CI matrices expressed in
terms of CSFs. In the following paper,55 this bottleneck is
overcome by a select-divide-and-conquer variational proce-
dure based on the present configuration selection scheme.
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