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The computational approach to the Hirshfeld �Theor. Chim. Acta 44, 129 �1977�� atom in a
molecule is critically investigated, and several difficulties are highlighted. It is shown that these
difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure.
The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper
information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates
arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The
resulting “Hirshfeld-I charges” correlate well with electrostatic potential derived atomic charges.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2715563�

INTRODUCTION

Although it lacks a true basis in quantum mechanics, few
ideas have been as successful in chemistry as the view that
molecules consist of atoms held together by chemical bonds.
As a direct consequence, a lot of work has been devoted to
the concept of the atoms in molecules �AIM�. We stress that
AIM are not restricted to Bader’s,1,2 approach, which is
henceforth referred to as the quantum chemical topology
�QCT� approach. The common purpose of all AIM descrip-
tions has always been to be able to understand issues such as
molecular similarity, transferability, etc., between molecules.
A logical step further is the realization of the functional
group, considered a main determining concept for molecular
properties. As the AIM is not an observable, there is no
unique way to define it and many different approaches have
been developed, sometimes giving quite divergent results. As
stated by Parr et al. the AIM is a noumenon,3 meaning that it
is a construction of the mind or the intellect and so, despite
its utility, the AIM cannot be directly observed by experi-
ment, nor can one measure enough properties of an AIM to
define it unambiguously.

Within the large set of different definitions of the AIM,
two main groups of methods can be discerned. The first one
describes an atomic density based on the atom centered basis
functions. The most famous among these Hilbert space ap-
proaches is, without doubt, the Mulliken technique4–7 where
a projection operator is used to obtain atomic densities. This
projection operator for an atom A is given by8

�A = �
��A

�
�

S��
�−1������� , �1�

where � and � are the atom centered basis functions used in
the molecular calculation. S is the overlap matrix of the basis
functions with elements S�� and S��

�−1� refers to an element of
the inverse of the matrix S. An atomic density is then ob-
tained from the self-consistent-field �SCF� density via
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where now D is the charge and bond order matrix. Despite
some computational shortcomings,9 the Mulliken approach is
still among the most popular approaches to the AIM. The
Mulliken projection operator is just one example of a more
general class of projection based AIM approaches, as was
discussed by Clark and Davidson.10

A different approach identifies AIM by dissecting the
Cartesian space in so-called atomic basins. Based on the to-
pology of the electron distribution, Bader’s QCT theory,1,2

yields the mutually exclusive atomic basins �A, and using a
weighting function wA�r� the AIM density becomes

�A�r� = wA�r���r� = ��r � �A���r� , �3�

where the notion ��r�RA� is a so-called logical Dirac
notation,11–13 meaning that it results in 1 if the point r lies in
the atomic basin �A of the atom A and 0 otherwise. Clearly,a�Fax: 	�32� 926-449-83; electronic mail: patrick.bultinck@ugent.be
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Bader’s QCT approach is a binary approach; either all den-
sity in a point is attributed to the atom A or none of it is. An
alternative method in Cartesian space, reminiscent of proce-
dures used in x-ray crystallography, was suggested by
Hirshfeld.14 The idea there is that AIM do not have sharp
boundaries. Instead, the electron density in each point is dis-
tributed among all atoms. The weighting function wA�r� is
now computed from a so-called promolecular density,

wA�r� =
�A

0�r�
�mol

0 �r�
=

�A
0�r�

�
A

�A
0�r�

. �4�

�A
0�r� is the electron density computed for the isolated atom

A, and the promolecular density �mol
0 �r� is the density of the

superposition of all �A
0�r� with all atoms A positioned as in

the real molecule. The true molecular density is denoted
�mol�r�. The AIM densities are then obtained via

�A�r� = wA�r���r� =
�A

0�r�
�mol

0 �r�
�mol�r� . �5�

This so-called Hirshfeld scheme is particularly popular
within so-called conceptual density functional theory15,16

�DFT� and the weighting function, which allows identifying
the AIM as that which is most similar to the isolated atom,17

has been shown to be directly derivable from information
entropy.3,18–22 It is clear that the Hirshfeld approach results in
overlapping atoms. As such, it is also reminiscent of other
techniques such as the Voronoi approach of Baerends and
co-workers,23,24 the fuzzy atoms of Mayer and Salvador,25 or
Becke’s scheme.26

Although AIM allow much more information to be ob-
tained for every atom, the AIM density functions are most
used as a source of atomic populations through straightfor-
ward integration. Despite the fact that the Hirshfeld AIM is
quite popular, the present paper will show some shortcom-
ings of the model. Subsequently, it will be shown that these
shortcomings can be alleviated by a new scheme that we
have implemented and tested for a wide range of molecules.

ANALYSIS OF THE HIRSHFELD AIM

In order to show the shortcomings of Hirshfeld’s AIM, a
diatomic molecule A-B will be used as a typical example.
The focus will lie mainly on atomic charges or populations.
Four major shortcomings will be discussed. Not all of these
shortcomings pertain to the deeper context of previous theo-
retical work on the Hirshfeld idea, but all are relevant to the
way these charges are currently obtained computationally
and used, for example, in reactivity studies. As will be
shown, meaningful charges can be obtained from the present,
newly derived algorithm.

�1� Hirshfeld atomic charges tend to be virtually zero. It
can be argued that because there is no unique charge
definition, the exact charges of AIM are unknown.
However, nearly all other charge schemes give signifi-
cantly larger atomic charges than the Hirshfeld scheme
and there appears to be a consensus that Hirshfeld
charges are too small. This observation was first dis-

cussed in detail by Davidson and Chakravorty, who
also discussed the arbitrariness of the Hirshfeld
method.27 This discussion, as will be shown below, in
fact, agrees with the presently developed new ap-
proach. The reason why Hirshfeld charges are so small
can be related to the work by Ayers who has shown that
the Hirshfeld weighting factor is such that it makes the
AIM as similar as possible to the isolated atom.17,28 It is
therefore not surprising that also the atomic properties
of the AIM are as similar as possible to that of the
isolated atom. One of these properties is the atomic
population.
It will prove important to define atomic charges as

qA = ZA − NA, �6�

where NA is the atomic electronic population obtained
from integration over all space of the AIM density and
ZA is the atomic number. The reason to keep strictly
this unique definition is that originally in Hirshfeld’s
paper: the atomic charge was considered equal to

qA� =� �A
0�r�dr −� �A�r�dr =� ��A

0�r� − �A�r��dr ,

�7�

where �A
0�r� is the isolated atom density of atom A. The

essence of the new Hirshfeld procedure described in the
present study is precisely that with definition �7�, qA�
should be zero always and for all atoms. This naturally
does not mean that qA is zero in definition �6�. The fact
that the aforementioned atomic similarity17 results in
Hirshfeld populations where NA�NA

0 , giving atoms
with nearly zero qA, is due to the use of atomic densi-
ties from neutral atoms �ZA=NA

0� �Ref. 14� to construct
the promolecular density. Both definitions �6� and �7�
are naturally only equivalent when ZA=NA

0 and it is this
condition which is lifted in the present study.

�2� The Hirshfeld AIM populations depend on the choice of
the promolecular density. As has been mentioned
above, the promolecular density is usually that obtained
from the superposition of atomic densities computed
for neutral atoms. However, this choice has no strict
theoretical basis; this convention is adopted merely for
computational convenience. The resulting atomic Hir-
shfeld charges are thus determined not only by the mo-
lecular electron density, but also on an expedient, but
arbitrary, choice for the promolecular density. A clear
illustration of the quite strong dependence of AIM
charges on the promolecular density is a molecule with
important ionic character such as LiF. If one uses as
promolecule the combination of Li0 and F0 densities,
spatially organized as in the molecule itself, the atomic
charges are calculated to have an absolute value of
0.57. However, it is chemically reasonable to consider a
promolecule consisting of Li+ and F−. One would hope
that the same charges will be obtained, but this is not
the case; now the charges have an absolute value of
0.98. Using the “chemically unreasonable” combina-
tion Li− and F+, still other charges are obtained; this
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time the charges have magnitude 0.30 although, inter-
estingly, the Li AIM remains positive. This sensitivity
to the choice of promolecular reference is clearly unde-
sirable.

�3� Hirshfeld charges are only available for neutral mol-
ecules. This point is a corollary of the previous discus-
sion. When a charged molecule is considered, the am-
biguity on how to choose the promolecular density is
exacerbated. In practical applications, the neutral pro-
molecular densities are usually retained, but then

� �mol�r�dr �� �mol
0 �r�dr . �8�

one is venturing on a quite dangerous path when con-
necting Hirshfeld charges to information entropy, as
will be discussed below. As expressed by Davidson and
Chakravorty, the choice of referencing all density dif-
ferences to neutral atoms is an arbitrary choice.27

�4� Care needs to be taken in connecting Hirshfeld charges
to information entropy. This point was the subject of
the recent paper by Parr et al. with the thought-
provoking title “What is an Atom in a Molecule ?”3 The
weighting function for the Hirshfeld AIM has been
shown to be related to information entropy as the func-
tion minimizing the information loss during the forma-
tion of the molecule,3,18–21

I =� �A�r�ln�A�r�
�A

0�r��dr +� �B�r�ln�B�r�
�B

0�r��dr . �9�

As Parr et al. mentioned, there is a very basic require-
ment in this information theory connection. Information
entropy29 as expressed through this Kullback-Liebler
measure30 explicitly requires that for every atom

NA =� �A�r�dr =� �A
0�r�dr = NA

0 . �10�

That is, the AIM needs to have the same electronic popu-
lation as the promolecular atom. Failure to meet this condi-
tion somewhat complicates the exact connection between the
Hirshfeld approach and information theory. When choosing
as promolecular density the superposition of neutral atoms,
requirement �10� is not fulfilled, although the difference is
not very big. Yet, as will be shown below, even this small
difference has an important impact on the final results. A
solution for this problem was presented by Parr et al. and
will be discussed in some detail below.

THE ITERATIVE SOLUTION

The problem at hand is how to solve the above problems
and still retain the elegance of Hirshfeld’s idea, as well as to
implement it properly so the Hirshfeld approach can con-
tinue to be used in applications.

Returning to the fourth problem discussed above, it is
worth noting that Parr et al.3 recently discussed an elegant
solution to the problem of nonfulfillment of requirement
�10�. This solution relies on using the shape function ��r�.31

It has been shown on several occasions that the shape func-

tion bears the same information as the density function and
can, e.g., even be used in variational SCF procedure.32–36

The shape function �A�r� for atom A is given as

�A�r� =
�A�r�

NA
, �11�

with an analogous expression for �A
0�r�.

The idea of Parr et al. is to rewrite Eq. �9� using these
shape functions. This gives

I = NA� �A�r�ln�A�r�
�A

0�r��dr + NB� �B�r�ln�B�r�
�B

0�r��dr

+ NA lnNA

NA
0 � + NB lnNB

NB
0 � . �12�

The fact that by definition one has

� �A�r�dr =� �A
0�r�dr = 1 �13�

means that the sum of the integrals in Eq. �12� is fully in
accordance with information entropy. The extra term that
appears is the so-called mixing entropy, which was recently
examined in detail.22 This term reflects the charge transfer
occurring during the formation of the molecule. It also re-
flects the nonadherence to requirement �10�. Depending on
the promolecule chosen, one obtains a different mixing en-
tropy term. This results in different charges for the AIM de-
pending on the promolecule chosen. Conceptually, one could
regard the formation of a molecule out of the set of isolated
atoms as a process where first all atoms retain their own
population and then gradually exchange electrons. Naturally,
what one is interested in for the computation of AIM prop-
erties is the situation when no net charge transfer between
the AIM’s occurs anymore. That is, ideally the AIM are de-
termined from the molecular density function and are inde-
pendent of the choice for the electron density of the promol-
ecule. This demands considering the situation when the
mixing entropy is zero and the loss of information measure
�12� is only related to the deformation of the atomic densi-
ties.

It is only after requirement �10� is fulfilled that the loss
of information is given by the Parr-Nalewajski form �Eq. �9��
for the information entropy, although the definition of the
AIM itself is not affected. Nonadherence to requirement �10�
does, however, affect the value of the information. Including
Eq. �10� in Eq. �12� gives

I = NA� �A�r�ln1
�A�r�
�A

0�r��dr

+ NB� �B�r�ln1
�B�r�
�B

0�r��dr

= NA� �A�r�lnNA

NA
0

�A�r�
�A

0�r��dr

+ NB� �B�r�lnNB

NB
0

�B�r�
�B

0�r��dr
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=� �A�r�ln�A�r�
�A

0�r��dr +� �B�r�ln�B�r�
�B

0�r��dr . �14�

Once condition �10� is required, Eq. �14� no longer suffers
the weakness of different normalizations of �A�r� and �A

0�r�.
There is another interesting point that can be mentioned

with respect to the recent study by Ayers.22 It can be shown
that the individual atomic contributions to the information
measure �12� are always positive when only deformation of
atomic densities is present. In order to show this, it is worth
noting that the contribution IA from atom A to the informa-
tion loss measure in Eq. �12�,

IA = NA� �A�r�ln�A�r�
�A

0�r��dr + NA lnNA

NA
0 � , �15�

is not always positive. So, ironically, an atom can gain infor-
mation upon the formation of the molecule. This follows
from the fact that the mixing entropy contribution can be
either positive or negative. However, after all net charge
transfer has stopped, one has

IA = NA� �A�r�ln�A�r�
�A

0�r��dr

=� �A�r�ln�A�r�
�A

0�r��dr


� �A�r�dr −� �A
0�r�dr 
 0, �16�

which shows that after charge transfer has taken place, the
deformation contributions are always positive meaning al-
ways a loss of information. Note also that the information/
entropy of an atom is only an extensive function of the num-
ber of electrons when the net charge transfer is zero.

In order to obtain true AIM properties from a molecule
with no net charge transfer between the atoms anymore, one
needs to perform the Hirshfeld calculations in such a way
that requirement �10� is satisfied not only for the entire pro-
molecule, but also for every reference atom that contributes
to the promolecule. To our knowledge, no algorithm for this
has been developed and discussed in detail, although David-
son and Chakravorty suggested the idea of a self-consistent
set of Hirshfeld charges to avoid the arbitrariness of the
procedure.27 The goal of the present paper is thus to find the
proper way to implement a Hirshfeld scheme that takes away
the arbitrary character of the method and at the same time
resolves all the problems discussed above. This means that
we need to find a way to have the molecular electron density
determine its own promolecule, rather than imposing it from
the start.

The algorithm described here is essentially an iterative
refinement scheme for the Hirshfeld promolecular reference.
Starting from some freely chosen promolecule with popula-
tions �NA

0�, the Hirshfeld populations �NA
1� are computed.

These populations will normally differ from the normaliza-
tion of the isolated atom densities that constituted the pro-
molecule �NA

1 �NA
0�. One then computes isolated atomic den-

sities that normalize to �NA
1� and uses the promolecule

constructed from the latter densities in the next iteration. In
general, the weighing function for atom A in iteration i is
given by

wA
i �r� =

�A
i−1�r�

�mol
i−1 �r�

. �17�

Defining �A
i as the absolute value of the difference be-

tween the AIM population for an atom A �NA
i � after the ith

iteration and the isolated atomic density normalization �NA
i−1�

that was used in the promolecule for this iteration,

�A
i = abs�NA

i − NA
i−1� , �18�

one tries to find the converged solution where for all atoms
�A

conv=0. In other words, one seeks the set of �NA
conv� for

which the mixing entropy term has become zero. In the new
scheme, the classically computed Hirshfeld charges are the
result of the first iteration �provided one starts from �NA

0

=ZA�� and the subsequent iterations reduce the gap between
the normalization of the reference atomic density and the
AIM density.

Of course, the atomic populations are usually fractional
numbers. This requires a method for computing the corre-
sponding densities. Two ways have been derived, leading to
the same expression. First, the atom condensed Fukui func-
tion is used. Using the notations lint�x� to express the integer
part of x, uint�x� as the higher integer number or uint�x�
=lint�x�+1 and mentioning explicitly the population in the
atomic densities, one has

�A
NA�r� = �A

lint�NA��r� + fA
lint�NA�,+�r��NA − lint�NA��

=�A
lint�NA��r� + ��A

lint�NA�+1�r� − �A
lint�NA��r���NA − lint�NA��

=�A
lint�NA��r��uint�NA� − NA� + �A

uint�NA��r��NA − lint�NA�� ,

�19�

where a finite difference approach for the Fukui function was
used. Naturally all the densities �A

lint�NA� and �A
uint�NA� need to

be obtained from atomic calculations. It is very gratifying to
note that this approach gives exactly the same density as the
second method, namely, the one obtained from ensemble
theory expressions given by Perdew et al.37 and discussed in
detail by Yang et al.38 and Ayers.39

APPLICATION OF THE HIRSHFELD-I SCHEME

In order to test the new Hirshfeld approach, henceforth
referred to as the Hirshfeld-I method40 and to see whether it
effectively solves the problems discussed above, atomic
charges were computed using several methods. As a test set,
168 molecules have been chosen containing C, H, N, O, F,
and Cl atoms. The test set is available as supplementary
material41 and comprises the entire set previously used in
electronegativity equalization studies by Bultinck et al.42,43

This set contains sufficiently diverse molecules with typical
functional groups to allow the study of the performance of
the new method. In total 2122 atoms are present in the test
set, with 1082 H, 712 C, 125 N, 110 O, 65 F, and 28 Cl
atoms.
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COMPUTATIONAL DETAILS

For all molecules, optimized B3LYP/6-31G* geometries
were used. In order to implement the Hirshfeld-I scheme,
formulas �5�, �6�, �18�, and �19� were implemented in the
STOCK program.44 Atomic densities for fractional populations
were computed as described above. The densities for integer
population atomic densities from �A

ZA−2 to �A
ZA+2 for all ele-

ments encountered in the molecular set were obtained using
ROHF/6-311+ +G** calculations with the ATOMSCF program
by Roos et al.45 Atoms are considered in the ground elec-
tronic state. Molecular electronic structure calculations were
performed using the same basis set and using RHF calcula-
tions. In principle, it could be argued that one should take
care with intramolecular basis set superposition error �BSSE�
effects. Accounting for such effects could be done by, e.g.,
doing the atomic calculations in the full molecular basis set.
As the basis set used in the present study is already quite
large, it is assumed that BSSE will not have a dramatic effect
on the resulting atomic populations. All molecular calcula-
tions were performed using GAUSSIAN 03.46 For all molecules
Mulliken populations were computed along with natural
atomic populations.47 Electrostatic potential �ESP� derived
atomic populations were obtained using the CHELPG �Refs.
48 and 49� and Merz-Kollman-Singh50 �MKS� methods.

Convergence of the Hirshfeld-I iterative scheme, imple-
mented in STOCK, is considered obtained when �A

conv

�0.0005 for all atoms.

RESULTS AND DISCUSSION

Atomic charges

For most molecules, convergence in atomic charges was
obtained within 25 iterations. In order to assess the effect of
the iterative scheme, for the first iteration in the Hirshfeld-I
scheme, the values for �NA

0� are chosen as �ZA�. As a conse-
quence, the solution of the first iteration gives the classical
Hirshfeld populations. It is found that these original Hirsh-
feld populations �NA

1� differ only slightly from �ZA�, in agree-
ment with the similarity proof given by Ayers.17 Neverthe-
less, these small ��A

1� can easily give rise to changes in
atomic populations of several tenths, which is substantial and
therefore gives quite drastic changes in atomic charges as
well. To illustrate this, Fig. 1 shows how the atomic charges
�qA

i � from Eq. �6� and ��A
i � change upon continuing the itera-

tive process for formaldehyde.
The figures clearly reveal how the Hirshfeld-I charges

differ significantly from the original Hirshfeld charges �cor-
responding to the first iteration� and how much the charges
can change despite a seemingly small ��A

i � in the first itera-
tions. Figure 1 also clearly shows that convergence obtains
quite rapidly.

All Hirshfeld-I charges are contained within the interval
�−2, +2� for the present molecular set. Charges below −1 are
quite rare. High positive charges do appear, especially for
carbon atoms. Analysis of the data reveals that these cases
almost exclusively concern carbon atoms with several elec-

FIG. 1. Hirshfeld-I charge �qA
i � �a� and “delta” ��A

i � �b�
as a function of the number of iterations for the sym-
metry unique atoms in formaldehyde.
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tronegative neighboring atoms. A typical case is the carbon
sp2 atom in the COO moiety. Such highly positive charges
are not so uncommon, since they also appear in different
other population analysis techniques, especially in electro-
static potential derived charges. The most negatively charged
atoms are, somewhat surprisingly, nitrogen atoms, mostly
connected to the COO moiety. The nitrogen atom there ac-
cumulates a lot of density and compensates in this way for
the large loss in density of the above mentioned carbon at-
oms. Interestingly, this is very reminiscent also of the case of
Bader’s QCT charges for the same kind of molecules.51

There, nitrogen atoms were also found to occasionally bear
very negative charges, even larger than oxygen atoms. The
same is also true for electrostatic potential derived charges.
Hydrogen atoms almost exclusively bear positive charges
with only very few exceptions. Moreover, these negatively
charged hydrogen atoms never bear a charge more negative
than −0.04. Charges on O, F, and Cl are in line with chemical
intuition throughout.

Correlation analysis

Although atomic charges are not observables and differ-
ent schemes may produce diverging results, a correlation
analysis between different charge sets is interesting. Table I
shows the correlation coefficients �R2� between atomic
charges obtained using the Mulliken approach, natural popu-
lation analysis �NPA�, electrostatic potential derived charges
using the CHELPG algorithm, and the MKS approach on the
one hand and the Hirshfeld and Hirshfeld-I charge sets on the
other.

As was reported previously, the small Hirshfeld charges
do not correlate very well with other charges.43 Moreover,
they are found to underestimate charges.27 For a more in
depth analysis of different charge schemes for the present
molecular set, excluding the Hirshfeld-I scheme, the reader is

referred to Ref. 43. Introduction of the iterative scheme gives
Hirshfeld-I charges that do show a relevant linear correlation
with the CHELPG charges and to slightly lesser extent with
NPA and MKS. This is a quite unexpected feature since these
ESP derived charges, in fact, do not result in a direct way
from atomic densities, but are fitted to reproduce the ESP
computed on a molecular surface. More importantly, as will
be shown below, the slope of the regression line is quite
close to 1. It is worth mentioning that the Hirshfeld-I charges
correlate significantly better with ESP derived charges and
NPA than the Hirshfeld charges; the correlation of Hirshfeld
and Hirshfeld-I with Mulliken charges is comparable, but
very poor. The manifest lack of correlation with Mulliken
charges may be due to the basis set used, which included
diffuse functions on both heavy atoms and hydrogen atoms.
These are known to pose computational problems for the
Mulliken analysis.9 Excluding the Mulliken charges, the
Hirshfeld-I charges correlate less with the Hirshfeld charges
than any of the other charge schemes. The NPA analysis also
correlates favorably with the Hirshfeld-I charges. Again, the
slope is relatively close to one �0.93� with zero intercept. In
fact, except for the Mulliken scheme, all non-Hirshfeld re-
lated schemes correlate better with Hirshfeld-I charges than
Hirshfeld charges.

In order to get a better insight into the correlation be-
tween CHELPG and Hirshfeld-I charges, Table II presents
separate regressions between for the different elements
present in the molecular set.

Since all molecules have zero charge, the regression line
over all atoms automatically goes through the origin. Inter-
estingly, the slope is nearly 1. Figure 2 shows the correlation

TABLE II. Regression equations between CHELPG �x� and Hirshfeld-I
charges �y� and correlation coefficients �R2 in %� for different elements and
all elements together.

Element Regression equation R2

H y=0.81x+0.04 86
C y=0.99x−0.03 84
N y=0.92x−0.02 80
O y=0.97x−0.06 79
F y=0.25x−0.21 9
Cl y=0.85x+0.01 80
All atoms y=0.98x 90

TABLE I. Correlation coefficients �R2 in %� between different charge sets for the neutral molecules.

CHELPG MKS NPA Mulliken Hirshfeld Hirshfeld-I

CHELPG 100 95 76 12 76 90
MKS 95 100 79 18 72 87
NPA 76 79 100 31 79 88
Mulliken 12 18 31 100 19 17
Hirshfeld 76 72 79 19 100 82
Hirshfeld-I 90 87 88 17 82 100

FIG. 2. Correlation between Hirshfeld-I and CHELPG charges.

144111-6 Bultinck et al. J. Chem. Phys. 126, 144111 �2007�

Downloaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



obtained between the Hirshfeld-I and CHELPG charges for
all atoms.

It could be argued that the atoms of the different ele-
ments form small islands that behave each as a dispersed
point, thereby giving an artificially high correlation. The re-
sults for the separate elements show that there is not a very
wide spread in correlation coefficients and that within each
island the correlation remains noteworthy. This is also mani-
fested in Fig. 2.

The set of fluorine charges is clearly an exception con-
cerning the correlation. This highly electronegative and hard
element, however, shows a very small spread in charges, so
the regression line in that case bears little relevance. Further-
more, the charges differ on average only 0.03 a.u. with the
Hirshfeld-I charges in most cases slightly less negative than
the CHELPG based ones. It is worth noting that the
Hirshfeld-I charges are significantly more negative than the
Hirshfeld ones for fluorine.

Performance of the Hirshfeld-I scheme versus the
original scheme

The aim of the present paper was to establish whether
the Hirshfeld-I algorithm indeed solves the problems en-
countered with the original Hirshfeld scheme.

As has been shown above, the Hirshfeld-I scheme in-
deed produces charges that are substantially larger than the
original Hirshfeld charges. The relevant regression equation
between both procedures is

q
Hirshfeld−I = 3.09q

Hirshfeld. �20�

In some cases, most notably when the COO group is present,
charges can even grow unexpectedly large. In that sense they
are reminiscent of previous observations with Bader’s QCT
charges.51 Note also that the correlation for the regression
�Eq. �20�� �see Table I� is not particularly good �82%�.

Secondly, within the iterative scheme the charges are
independent of the initial choice for the promolecular den-
sity. To demonstrate this, we repeated the Hirshfeld-I algo-
rithm for all 168 molecules, starting from three separate sets
of initial atomic populations, and confirmed that the same
results were always obtained. Specifically, after considering
the classical Hirshfeld choice �NA

0 =ZA� as described above,
the iterative procedure was also initiated from Mulliken
populations. Since these populations correlate quite poorly
with the Hirshfeld-I charges obtained from �NA

0 =ZA�, this can
be used as a test to see whether multiple solutions could exist
for the Hirshfeld-I charges. The calculations revealed that for
all molecules the same atomic charges are obtained irrespec-
tive of the starting promolecular density. As a second test, the
iterative process was started from a set of populations where
the Hirshfeld-I populations were reversed with respect to the
�ZA�. In other words, the iterative process started from popu-
lations given by �NA

0 =2ZA−NA
conv�. This is a very thorough

test, since the internal polarization of the molecule is com-
pletely reversed. Again, the procedure converged to the same
set of charges as the one produced from the other starting
populations. This is very gratifying as this means that the
molecular electron density determines the populations in the

AIM and that this is a unique solution. Another example is
LiF. As was shown above, the charges in LiF in the Hirshfeld
scheme depend quite strongly on the promolecule chosen. In
the Hirshfeld-I scheme, LiF always results with a charge of
0.93 in absolute value, irrespective of the promolecular den-
sity used. Davidson and Chakravorty pointed out the arbi-
trary nature of the Hirshfeld approach. One of the arbitrary
choices was the fact that all density differences refer to neu-
tral atoms. They tested the robustness of the method by com-
puting a set of atomic charges for N2 but changing the ref-
erence atomic densities. When using N+1N−1 as a reference
promolecule charges of 0.54 were found �0.53 in the present
level of calculation�, illustrating the arbitrariness of the
choice of the promolecule. The more classical N0N0 promol-
ecule calculations gave zero Hirshfeld charges. When start-
ing N2 charge calculations from N+1N−1 as a reference pro-
molecule the Hirshfeld-I algorithm quickly converges to zero
charges, as chemically expected. The fact that there appears
to be a unique minimum for the Hirshfeld-I charges is due to
the fact that the information loss per atom for the Hirshfeld
AIM is a strictly convex functional52 and minimization of a
strictly convex functional with respect to a set of linear con-
straints always yields a unique minimum. These linear con-
straints mentioned of course reflect the requirement that the
AIM density normalizes to the same as the isolated atom
density.

The Hirshfeld-I charges for charged molecules do not
violate the requirement that the molecular electron density
normalization is equal to the normalization of the promo-
lecular density. As an illustration, Table III reports charges
obtained for �LiNH3�+. The molecule was optimized in the
C3v geometry on the RHF/6-311+ +G** level. Charges were
obtained using �ZA� as starting points, so the first iteration
gives the Hirshfeld charges. Convergence of the Hirshfeld-I
charges was obtained after 20 iterations.

Again it is found that the charges are quite different be-
tween both schemes. It is clear how in the original Hirshfeld
scheme, the charges are much smaller, in agreement with
what is expected based on Ayers’ maximal similarity
argument.17 Also it is found again that the Hirshfeld-I
charges are in better agreement with CHELPG charges. Fur-
thermore, the same charges result for the Hirshfeld-I scheme
when starting from different atomic populations. The quite
negative charge on the nitrogen atom is certainly surprising
in a cationic complex. This could possibly signal an impor-
tant negative Fukui function on the nitrogen atom and may
indicate a local reduction of an atom under a global oxida-
tion process, the counterpart of the local oxidation under
reduction predicted by Ayers.53 The study of such effects via
Hirshfeld-I will be reported elsewhere.

TABLE III. Hirshfeld, Hirshfeld-I, and CHELPG charges for the symmetry
unique atoms in �LiNH3�+.

Hirshfeld Hirshfeld-I CHELPG

Li 0.751 1.009 0.939
N −0.203 −1.278 −1.278
H 0.151 0.423 0.446
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As an extra test of the performance of the Hirshfeld-I
scheme for the calculation of atomic charges in charged sys-
tems, we also performed Hirshfeld-I calculations for the
positive and negative ions derived from all molecules in the
test set. For each of the 168 molecules the anion and cation
were computed in the doublet spin state restraining the ge-
ometry to the same as the one used for the neutral molecule.
As a first test to examine the applicability of the Hirshfeld-I
scheme for such a large set of molecular ions, it was inves-
tigated whether still the same set of atomic charges is ob-
tained when starting the iterations from different starting
points. A first set of atomic starting populations was obtained
using the regular Hirshfeld starting point. This means that for
each atom NA

0 is chosen in such a way that �NA
0 =ZA�. Note

that, although this is a viable mathematical approach, the
populations do not sum to the number of electrons in the
molecule, which again hampers the link to information
theory. On the other hand, already after the first iteration, the
populations automatically sum the correct number of elec-
trons. In a second set, populations were chosen as obtained
from a Mulliken population analysis of the ionic density
functions.

For the cations, as in the case of the neutral atoms, the
two different starting points were found to result in the same
set of atomic populations after convergence. This again illus-
trates that a unique set of atomic charges is obtained, al-
though the number of iterations required from either starting
point is higher than for the neutral molecules �roughly 40
iterations compared to 20�.

For several molecular anions the SCF procedure was
found to be quite problematic. Where it succeeded, in many
cases the presence of diffuse basis functions caused the Mul-
liken analysis to yield completely awkward results, including
extremely large charges. This is a well-known fact.9 It was
found that the CHELPG charges also were out of line with
chemical experience, showing, for example, carbon atoms
with atomic charges of +4 and beyond. Therefore, all SCF
calculations were repeated using the 6-311G** basis set
which solved most of these problems. Only four molecules
did not iterate to convergence in the SCF procedure and as a
consequence were deleted from the test set leaving
164 molecules for further analysis. As for the Hirshfeld-I
analysis, different starting points for the iterative procedure
yielded exactly the same final set of atomic populations. This
again shows the uniqueness of the iterative solution.

It is worth noting how the atomic charges from the
Hirshfeld-I scheme for the cations do not correlate very well
with those obtained from the classical Hirshfeld approach.
The correlation coefficient amounts to only 70%. On the
other hand, the correlation between the Hirshfeld-I charges
for the cations correlates quite well with those obtained from
the CHELPG algorithm. The correlation coefficient amounts
to 88%. Moreover, the regression line has as equation
HIRSHFELD-I=1.05*CHELPG−0.00. The regression has a
nearly unit slope and a very small intercept, reminiscent of
the case of the neutral systems, as was shown in Table II. For
the case of the anions, there is less good agreement. The
correlation coefficient R2 has dropped to 67% and the regres-
sion line is now HIRSHFELD-I=0.69*CHELPG−0.02. The

range of charges in CHELPG is bigger than in the
Hirshfeld-I case, with positive charges up to 1.69 and nega-
tive charges as negative as −1.43 whereas the Hirshfeld-I
charges are contained in the interval �−1.23,1.28�. It is not
clear exactly why the correlation with the electrostatic de-
rived charges is remarkably poorer for the anions. The ques-
tion can, however, be raised to what extent the surface used
to compute the electrostatic potential on for fitting the elec-
trostatic charges should be dependent on the total charge of
the system. As the anions are quite diffuse, it might be that
using the same surface for the anions compared to the neutral
and cationic systems is not fully appropriate. Again there is a
poor correlation with the original Hirshfeld charges with
R2=68%. Somewhat surprisingly, a good correlation is found
with Mulliken atomic charges. The correlation coefficient
amounts to 84%. However, as the correlation coefficient with
the neutral molecules is so extremely poor, it is not allowed
to draw a general conclusion from this finding.

The results of the above tests very clearly show how not
only the Hirshfeld-I scheme can be applied to ionic systems
as well, they are also applicable to non-closed-shell mol-
ecules.

Finally, from the standpoint of information entropy, the
Hirshfeld-I atomic fragments are truly those that are most
similar to the fractionally occupied isolated atomic densities.
In the Hirshfeld-I treatment, there is only deformation of the
atomic densities �the entropy of mixing term is zero� and the
entropy of the atoms is always positive and is an extensive
function of the number of electrons in the atom. This means
that all of the mathematical prerequisites for Eq. �9� to be an
information measure are strictly fulfilled. If one wishes to
dissect a molecule in AIM, information entropy tells us that
the Hirshfeld-I weighting functions are the ones that make
the AIM as similar as possible to the isolated atoms provided
that both have the same electronic population. In this sense
the Hirshfeld-type AIM are the AIM that minimize the infor-
mation lost relative to the separated-atom limit. It is also
worth noting that the properties of Hirshfeld-I AIM exhibit
maximum transferability from the fractionally charged
atomic reference states �just as the properties of Hirshfeld
AIM exhibit maximum transferability from the neutral at-
oms�.

Just as in the original Hirshfeld scheme, in principle one
should consider all possible atomic states in Eq. �19�. This
requires lengthy evaluations of the information entropy and
the best set of states is then to be associated with the one that
makes the information distance minimal. This is scarcely
feasible, but it is worth noting that the effect of using differ-
ent states in the original Hirshfeld scheme was shown to
have a little effect on the final result.44

CONCLUSIONS

A new Hirshfeld scheme, denoted Hirshfeld-I, has been
proposed and implemented. This procedure uses an iterative
approach to identify atoms in molecules. The Hirshfeld-I
scheme allows calculations of atomic populations, adhering
strictly to information theory. Furthermore, several other
problems associated with the original Hirshfeld scheme are
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solved. The Hirshfeld-I charges are much larger than the re-
sults from the original Hirshfeld scheme. In addition, the
Hirshfeld-I charges correlate well with CHELPG electro-
static potential derived charges. The iterative scheme elimi-
nates arbitrariness in the choice of the promolecule, so the
atomic populations are determined solely by the molecular
electronic density. Charged molecules are also tractable now.
Open shell species can also be treated without problem. In
agreement with Parr et al.,3 once the reference states for the
atoms have been chosen, the present computational scheme
provides a universal definition of AIM free of all atomic and
molecular parameters other than density functions.

The present study has shown that in order to compute
AIM properties, no net charge transfer should be taking place
anymore in the molecule. It is only at that stage one can
compute completely trustworthy, nonarbitrary, AIM proper-
ties.
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