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Fukui functions have been calculated for large numbers of organic molecules, and were found to
always be positive. Numeric and algebraic considerations allowed the identification of several
boundary conditions for negative values for Fukui functions. Negative Fukui functions are found to
be very unlikely, except when very short interatomic distances are present. Recent hypotheses
concerning the occurrence of negative Fukui functions are strongly supported by the present
approach. ©2003 American Institute of Physic§DOI: 10.1063/1.1542875

I. INTRODUCTION These condensed Fukui functions are, according to Ayers
., i ) , et al. in the context of a variational approach to chemical
In Fukuf's Frontier Molecular Orbital Theory; chemi- reactivity*~® even more instructive indicators of molecular

cal reactivity toward nucleophiles or electrophiles is inter-gjie reactivity than the actual Fukui function, as introduced in
preted in terms of the HOMO or LUMO electron density. For Eq. (1). Atom condensed Fukui functions were first intro-

an electrophilic reaction, the reaction will take place there g ceq by Yanget al,’ using the Mulliken population analy-
where the HOMO electron density is the largest in the mo"sis(MPA). The FukLli function on an ator is then calcu-

ecule. Likewise, for a nucleophilic reaction, the LUMO in- |4teq as the change of the atomic MPA charge with respect to

dicates the preferred site in the molecule. a change in the total number of electrons in the molecule,
Within the context of density functional theoFT),

so-called Fukui functions are introducgayhich are advo- _ (%Y @

cated as reactivity descriptors in order to identify the most | 9N, v

ext

reactive sites for electrophilic or nucleophilic reactions
within a molecule. The most common expression for theThese condensed Fukui functions are usually evaluated using

Fukui functions i8 a finite difference(FD) methodology considering discrete
numbers of electrons. One thus performs calculations for the
f( ):<‘9P(r)) (1) neutral molecule and for the cationic and anionic species
INe /|, with the same molecular geometry. In FD calculations, three

ext

types of Fukui functions are introduced, depending on the

They reflect the change in electron density at a powith  gpecies involved, so the following forms are defined:
respect to a change in the number of electrblas under

constant external potentisl,;. The latter requirement often fZ:qu_quJrANei
simply translates in freezing the molecular geometry. Often, B
one prefers to associate molecular properties like chemical fa = AN-aN, T AN, ©)

reactivity with atomic entities in the molecule and not with a 0_1 B
certain point in space. This means one needs to somehow o= 2 (Ong-an, qu+ANe)'

identify an atom in the molecule. Since there has not Ye{yich correspond to approximations to the actual derivative,
been defined an operator, which, acting on the wave functiofom the left and the right, respectively. The Fukui functions
or electron density, performs such a division of space int+ gnqf - describe the ability of an atom to accommodate

atomic basins, there is no unique definition of an atom in &y extra electron or to cope with the loss of an electffris
molecule. Despite this fundamental problem, Fukui functionghe considered as an indicator for radical reactivity. In the

are often condensed to atomic resolution. above-mentioned calculational scheme, many different errors
may be introduced, possibly having an important impact on

3Electronic mail: Patrick.Bultinck@rug.ac.be; fax32/9/264.49.83. the resulting values. Among these errors one has in the first
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place the mathematical problem of using the finite differenceand many other conceptual DFT quantities can be obtained
approximation withAN.=1 in Eq.(3). This is quite a crude from EEM. Atom condensed Fukui functions are then given
approximation for the calculation of the derivative. It is by
claimed that within DFT nonintegral numbers of electrons |f>=<E_1)‘1E‘1|1> ©)
may be considered. This introduces a number of extra ques- 0 0 '
tions of a philosophical nature, like considering obsolete thavhere|1) is the unity vectof? a column vector containinty
indivisibility of particles intervening in chemical phenom- elements equal to 1.
ena. Next to these problems, another crude assumption is that It must be noted here that only one Fukui function is
the method used for the neutral molecule is equally well fitcalculated, instead of the three that arise in finite difference
for the cationic and anionic species. The DFT functional andapproximations. Unfortunately, the effective hardness and
basis set should be equally accurate for the neutral moleculelectronegativity parameters cannot be obtained directly.
which is often a singlet state, as for charged moleculesThey are atoms-in-molecules properties, and were obtained
which often are doublet states. One further needs to addregseviously from calibration against a large set of molecules
the way how atoms were defined within the molecule. Usutepresenting a wide range of medicinal chemisti? Once
ally this directs the problem toward the method used forthese parameters are available, Fukui functions can be calcu-
population analysis. lated directly from Eq(6) at the very high speed of several

Several methods have been devised to calculate Fukumillions of molecules/hour on an average PC.
functions without using the finite difference approximation. One of the often-cited “problems” with Fukui functions,
Such approaches include methods based on the calculationafd their atom condensed versions, is that of negative
derivatives of the MO coefficients with respect to the numbewalues>~2® A negative Fukui function value means that
of electron§ and a variational approach proposed bywhen adding an electron to the molecule, in some spots the
Chattarajet al® and implemented by De Praét all°usinga  electron density is reduced, alternatively when removing an
simple approximation for the hardness kernels. In the presemectron from the molecule, in some spots the electron den-
study, the electronegativity equalization meth®EM), as  sity grows larger. This is counterintuitive. Whether such be-
introduced by Mortieret al,'*? is used to calculate atom havior is physically correct is not easily shown, and the only
condensed Fukui functions. In EEM, conceptual DFT quan{irm requirement consists in that they should sum to one, that
tities, like atom condensed Fukui functions, may be calcuis, Fukui functions have to be normaliz&dror atom con-
lated employing separate systems of matrix equations as irdensed Fukui functions, this last property means that
troduced by Baekelandit all® and by Bultincket all* An N
alternative method exists in using algebraic relations be- <|f>>=z £ =1 7)
tween these quantities and the molecular hardness nfatrix. a=1

A complete discussion of EEM is well outside the scopeﬁl

of the present article, and the reader is referred to the wor uentealbaet al. have given a number of interesting argu-
. k ) ents concerning the non-negativity property, but they also
by Mortier et al!*!? and subsequent work by Bultinck d gativity property. y

t al4-18 |y short. EEM all th lculati f atomi admit the impossibility to truly exclude negative Fukui
etal n short, allows the caiculation of alomiC ,,,ns?526 O the other hand, there are numerical indica-

charges from the hardness matrix. This hardness matm{ions that the Hirshfeld charge scheffehased on a stock-
within Mortiers EEM, is given for arN-atom molecule by holder idea, yields only positive Fukui functiofisd:23:2428

Negative values in other studies are then usually attributed to

0=

-1 -1
2] T T the characteristics of the population analysis partition
-1 295 - . scheme used. As was shown previously by Bultietlal 6

r r
= ™ (4)  for general hardness kernel matrices, even infinite atom con-
densed Fukui functions are possible when the diagonal domi-
i g 0 273 nance of the hardness kernel matrix is lost.
Our previous studies have shown that Fukui functions
The symbol»} refers to the so-called effective hardness ofderived explicitly through EEM via the matrix equatidfsr
atomi. r;; refers to the interatomic distance between atoms using the algebraically derived equatidisare never nega-
and j. The elements of this hardness matrix are, withintive. These tests involved several hundreds of molecules,
Mortiers EEM, in fact, the hardness kernglk.was shown  representing a wide range of medicinal chemistry represen-
by Bultinck et al. that atomic charges can be calculated fromtative molecular structures. In the present study, the possibil-
this hardness matrix &5 ity of negative Fukui functions from EEM will be investi-
gated. Starting from the hardness matrix, as given in(&q.
la)=[(Eg 1) MEg 10Es H)— Eg Ml Ix) + Q(Es V) 'E, Y1).  numerical tests are performed to observe when Fukui func-
5 tions are negative, and algebraic derivations will be pre-
sented to identify when, for a general polyatomic molecule,
In this equationQ denotes the total molecular charge, andnegative or even infinite Fukui functions may arise. Also
|x) is a column vector holding the effective electronegativi-addressed is the question of whether negative Fukui func-
ties for all elements. The notatic(rEgl) in Eq. (5), as intro-  tions are the consequence of using MPA or natural popula-
duced by Carbdorca et al,’®=?! refers to the sum of all tion analysi&® (NPA). A recent and interesting study by
elements of the hardness matrix inverse. Fukui functionsfyers et al® provides the hypothesis stating that diagonal
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dominance of the hardness matrix is sufficient to obtain posi- 1 \
tive Fukui functions. A general proof of this hypothesis was i

presented previously by Bultinaét al® In Mortier’s EEM, 0.8 - ¥
the hardness kernelg, g,y are equal tdgﬁl, and so the 06 -
diagonal dominance character of the hardness matrix can be ’
manipulated by changing the molecular structure. This al- 04 -
lows us to test numerically the importance of diagonal domi-
nance to obtain positive Fukui functions, and to derive new

algebraic expressions to identify when Fukui functions are
unlikely to be physically meaningful.

=]
hd
1

Fukui Function
=

Il. RESULTS AND DISCUSSION

First, several examples and worked-out matrix equations
will be presented, whereas in the second section, a set of -0.6 4
general, algebraic derivations will be developed, illustrating

in a general context when Fukui functions may get negative. 8-

As will be shown, negative Fukui functions are not the only 1 _

counterintuitive events that may occur. Even more counter- C-0 distance

Int.UItlve is the pOSSIbIlIty of infinite FUKUI functions that FIG. 1. (Colon Behavior of Fukui functions in CO as a function of C-O
arises as a result of the same theoretical development. i ieratomic distancéin A).

A. Numerical examples and matrix considerations
for negative and infinite Fukui functions

— -1I\-1-1
in small molecules H=EHED
In this section several examples will be presented, illus- _ 2951,
- : : e ; =[2(p¥+ 795 —rH] 7t . (11)
trating the presence of possible discontinuities in the Fukui M2 e 27 —fill

functions. The first example involves a simple diatomic mol-

ecule; the second addresses triatomic molecules. In botRonsider as a special case any homonuclear diatomic mol-
cases the EEM matrix equations are worked out explicitly€cule, that isyT = 75 . In this case the Fukui functions will
and those situations where discontinuities are found are eXe independent of the interatomic distance, and the solution
amined. In the numerical examples effective hardness parantll always bef,=f,=3, as easily predicted from symmetry
eters are taken from Bultinclet all”® These are based considerations. A more interesting case is found when study-
on calibrations from MPA. It should, however, be stressednd heteronuclear diatomic molecules. In this case, a discon-
that other population analysis methods, such as R4  tinuity is expected when

Hirshfeld charge§?. produce the same conclusions. Further- (9% + % _rl—zl)zo_ (12)
more, the algebraic developments do not make any assump-

tion on the method used to obtain these parameters. Taking as an example the CO molecule, and using the cali-
brated values for the effective hardness for C and'8ijt is

1. Diatomic molecules easily predicted that a discontinuity should arise near 0.60 A.

Diatomic molecules are the most tractable case for thé0ing the EEM calculations using the algebraic expressions

study of Fukui function behavior. The hardness matrix in thisgiven previously, this discontinuity is indeed found. Also, the
case, is given by the following formula: negative Fukui functions for C and O are both found near

this discontinuity. It is interesting to note that Fig. 1 shows
that this discontinuity and the area where negative Fukui
functions are found, occurs at quite small interatomic dis-
tances. As the further algebraic development will show, these
interatomic distance limits can be obtained from the hardness
matrix in a general way. For all distance ranges chemically
|f>=<E*1>*1E*1|1>= 277ME71|1>, 9 more common, only positive Fukui functions are found. This
fact agrees well with the tests performed by Bultiretkal.

whereny, is the global molecular hardness. It is seen that fo_rfor a large set of medicinal molecules, where no negative

the Fukui function evaluation, the hardness inverse matrix IS kui functions were found employing EEM contrary to

required. For simple molecules it remains tractable to do thi§he many instances where negative Fukui functions have

in an explicit way: been found when employing finite difference DFT calcula-
tions. In none of the molecules in that study, nor in any of the
(Sl o el oo | (10 138 molecules used in the calibrations of EEM parameters,
21 72 21 K negative Fukui functions have been found. None of these
where A denotes the determinant of the hardness matrixmolecules contained any extraordinarily short interatomic
Equation(9) becomes distances either.

297 T
fai 273
From previous algebraic resultsit was found that the Fukui
function vector is given by

E= . (8)

—17-1 -1
— 27 T _i 273 I
A
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It is interesting to note that Fig. 1 is in fine agreement P
with the hypothesis by Ayeretal® and the proof by
Bultinck et al1® that diagonal dominance in the hardness ma- 1.5 4

trix yields positive Fukui functions. It is easily checked that 1
diagonal dominance in the present EEM scheme, only occurs |

starting from C—O distances of 0.8 A. The fact that there is 05 ‘

=
(=)
also the possibility of positive Fukui functions below this §
=]

limit is a consequence of numerical aspects, but they should = 0 T T \‘1 . T T J
be regarded with skepticism. In those regions the hardnesss - g 5 ph # & = S
matrix has also lost its positive definite nature, and it is not 2™~ s = = = x
easy predicting the behavior of the Fukui functions, in gen- -

eral, for a polyatomic molecule below the limit of diagonal —_—
dominance. It is worth noting that the Fukui function re- -1.5 ol
mains defined within EEM for all distances, but that a dis-

continuity may arise at some point. Fukui functions remain -2 - c-0 distance

single valued, and normalization is considered explicitly by
including the normalization requirement in the previouslyFIG. 2. (Colon Fukui functions in CQ as a function of C-O distance
derived algebraic relatior!s. (in A).

2. Triatomic molecules Again discontinuities will arise if the denominator in Eq.

. . . . . (14) becomes zero. This yields a quadratic equation in terms
Triatomic molecules are slightly more involved to derive : . o
of the distance 15, and in the specific case of GQone of

direct formulas, and, for example, applications; only a num- : L e .
. . . i ) the discontinuities is expected near a C—O distance of ap-
ber of special cases will be considered in detail. The hard- ~ * o .
e proximately 0.76 A. This is also found numerically, as shown
ness matrix is given by in Fig. 2
29% b rg The negative Fukui functions are found near the discon-
E=| st 245 13t 13 tinuities only, cases where it is also impossible to obtain
B 2_11 i]i = Fukui functions with good precision. Note that again the dis-
rai s 273 continuity arises as a consequence of a geometry, where the

Calculating the inverse explicitly is a straightforward but te-nteratomic distances between carbon and oxygen are signifi-

dious task. The formulas obtained in the general triatomi€@ntly smaller tha; the equilibrium distance, which is ap-
case are also relatively little instructive, except in a few Sim_prox!mately _1-17 . Again, from thE_: moment that d|agona|_
plified cases. dominance is recovered, the Fukui functions become posi-

. . . . 6
The first of such cases is a simple equilateral triangulaf’Ve: Which agrees with th{% hypothesis of Ayessal.” and
molecular geometry, as in cyclopropane with hydrogen atthe proof of Bultincket al™ The last special case that is

oms omitted. ThiD s, structure has the special features con-€2Sily considered with e:(p”CLt forznulas is found for tri-
sisting in thaty* = 73 = 7% andri,=rys=rq3. Intuitively, ~ &tomic molecules whereyy =5 # 7, , andr,=r,3; and
all atoms should have an equal value for the Fukui functionth® @nglel—2-3 difers from 180°. A typical example is a
and since Fukui functions sum up to one, the Fukui function&2v ABA structure like HO. Denoting the ABA valence
should possess values equal to one-third. Working out ERN9€ asa, one has

.(13) for this special case, one indeed finds thi; result. l_v!ore, r13=r10 /2(1_ cos(a_))zarlz. (15)
in general, for all molecules under the special conditions . ) )
7t =n%=---=n% and all interatomic distances equal, one '€ Fukui functions then are given by

finds that Fukui functions are equal and have values equal to |f>=<E*1>*1E*1|1>
1/N, independent of the interatomic distances.
Now consider CQ as a typical linear triatomic mol- =871 75 +(271)? =429  +p3a o
ecule. This has the special features consistingybf= 73 +(4al-a 2Rt
# 7% using an atom numbering as ©C,—0;, and that the 12

following distance relationships hold;,=r ,3= 31 5. In this Ant s —(2nt+2nilayrita
case the Fukui functions are found to be given by x| 2p)2—antrtr(2al-a 22 |. (16)
Ify=(E"HE"11) Anims—2nt+2pilayrt+ta it
— (87 4 (295 )2— 2(An* + p¥)r iy Lpo2)-1 Then one can solve this equation for different O—H bond
(Bnimz+(2n1) = 2(4ni+7m2)lz + %211) lengths and angles. Experimental and calculated data for
Ank gk —(2n% + i)+ Ar 2 H,O give bond distances around 0.97 A and the HOH va-
*12 -1, 3.-2 lence angle around 105°. Investigating the behavior of the
X (297)" =471 113 + 4117 : (14 Fykui function as a function of the O—H distance under the

Ag¥ s —2nr+ i)+ i fixed anglea=105°, a discontinuity is found at very small
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2 - there are discontinuities where Fukui functions may become
' infinite. In the following section derivations concerning such
15 J behavior will be presented. These derivations are somewhat
similar to the proof of the diagonal dominance
requirement® but are specifically aimed at Mortier’s
L i EEM 1112
E 05 I The hardness matrix in EEM is defined as follows:
s
E E=D+R, a7
!"3_- 0 T T T T T T T with
2 ¢ 8|88 8 glls 8
205 = < & &|& = D=Diag{2 7 }OR={8(1 #J)r;34, (19)
{27} being the effective hardness elemedd,+ J) a logi-
A _ cal Kronecker deltd*°~3%andr ;! the inverses of the inter-
atomic distances. Let us first consider the case of a N atom
15 4 0 molecule, with hardness matri,, given explicitly by Eq.
H (4). When adding an extra atom, the hardness matrix may be
written as
-2 4 Valence angle
E r
FIG. 3. (Color Fukui functions as a function of thé—O—H valence angle E= 0 | *> : (19
(in degreesin H,0. rl 27841

Ir) is the column vector holding the elememﬁﬂ)(i
, A i =1,...N), representing the reciprocals of the distance be-
dence under a fixed O-H bond length of 0.97 A, interesty oo the N atoms on the one hand and the added atom on

ingly enough no discontinuities were found, except for thethe other handz?,., , is the effective hardness of the added
trivial one neare=0°. Over the entire, chemically reasonable *

range of valence angles the Fukui functions are always posi- Fleui functions for the N atom molecule are given alge-

tive, With only minor variation. It is_thus found_ that for ge- braically by Eq.(6). For theN-+1 molecule one then has
ometries that are chemically meaningful, that is, when there

1) 1)

1 1

H—0 bond length40.52 A). When looking at thex depen-

are no atoms very close to each other, Fukui functions as
obtained through EEM are positive. Fog®, discontinuities
can, however, also appear again in uncommon molecular ge-

ometries. As an example, Fig. 3 shows the Fukui functionsWhere 7w IS the global molecular hardness. Thus, the hard-

. : ness matrix is a matrix with positive definite elements and

and molecular hardness as a functionagffor a fixed O—H . o .

: . . . __the molecular hardness is a positive scalar as well. The Fukui
distance of 0.5 A. In such heavily distorted geometries

Fukui functions can hardly be obtained accurately, and Iarg‘éunctlon vector has to fulfill the additional property consist-

regions exist where they are negative. Such geometries ated in that the sum of its elements shall be equal to one, that
very unlikely to be present in most molecules, since they cat”
probably only be realized at a very high energetic cost. From N+1
three-dimensional plots of the Fukui functions against the (|f))= >, f/=1. (21
O-H distance anti—O—H valence angle, it was found that =1
all discontinuities and negative Fukui functions are found inThen, it is not an out of context conjecture to suppose that
areas that unlikely represent structural features that may o¢he Fukui function vector elements, also become positive
cur in actual ground state molecular structures. definite, once the systef@0) is solved. Numerical tests over

The examples presented up to now indicate that Fukua large set of molecules behave according to this positive
functions may show negative values or even infinite valuesgefinite trend for the elements of the Fukui function veéfor.
but that within chemically meaningful geometries, no suchOn the other hand, unfortunately, nothing proves that the
situations are likely to occur. They also indicate that when-above conjecture is always fulfilled. There also seems to be
ever the hardness matrix shows diagonal dominance, theo clues about the possibility of knowing when any Fukui
Fukui functions are positive. Working out the actual bound-function element becomes zero or negative. This is so, be-
aries for a general polyatomic molecule is, however, a veryause from the direct solution of E(R0) there is no indica-
tedious job, so it is well worth seeking a general, algebraidion that can provide a proof for this property, as the solved
derivation allowing us to identify possible problems with equation by means of the inverse of the hardness matrix,
Fukui function discontinuities. E-1={E{; M}, only proves that the Fukui function vector
elements can be, in general, expressed as sums of the hard-
ness inverse matrix elements,

N+1

. As the examples qbove have shown, there are not only f,=27y 2 E,(jl), (22)
instances where Fukui functions may be negative, but also =1

|f>=<E-1>-1E-1[

}=2nME‘1 : (20

B. General algebraic considerations for negative
and infinite Fukui functions
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and, from this algorithm, nothing can tell that the Fukui Using the previously derived algebraic relations for the

function values are positive definite in any case, as the inFukui functions'® one can also readily write

verse hardness elements can be negative and the sum could 1)

perhaps add up to a negative as well. |f>=2»,’ME1[ !
Suppose now that Eq6) has been previously solved,

and thusE, * is known. Also suppose that the Fukui func- where,, is the global molecular hardness. Shifting the mo-

tions of this system are all positive. One can then considefecular hardness to the left side of the equation, one can

when the discontinuities will arise after adding the extraequally consider the softness vector, defined as

atom. It is clear that to solve for the Fukui functions in the

N+1 atom molecule, the inverse of the hardness matrix has |9=E! 1)

to be found in the same way that the previous inverse has to 1

be known to solve Eq(20). The inverse of the symmetric | ot ys now investigate when discontinuities will occur in the

: (39

: (36)

matrix E in Eq. (19) may be written by means of Fukui functions or in the local softnesses. Using B#) in
Eo r) |7t Eqg. (35), one finds
E = * , (23 . — -1 -1
(rl 279841 (aBq —Eq [rXrlEg D[ +Eqr)
— -1
which, given the symmetric nature & may be written as f)=2mua rIES 1)1
r|EgH 1) —
LB e o (37)
(=] elm ) Discontinuities will now arise when the following condition
In order to obtain the inverse, one needs to solve IS met.
_ -1 _ * —
ECU | Y[E, ) 1o 10 a=(r[Eg"|r)=2n3:1=0, (39
@1 (| 29nea Tl 1) (29 which identifies the point of the discontinuity as
where|0) and (0| are N-dimensional column and row zero (rlEgYry=2m%1, (39

vectors. The inverse columfg 1) and row (d 1| are
N-dimensional vectors, related by transpositien.! is sim-
ply a scalar. Note the important difference betwegf ! % % L 1o

andE, *, which, respectively, are theN(x N) matrix block “ = Fne 1 B0 Mo+ =271 (40

in the partitioned matrix, Eq(24), and the inverse of the

hardness matrif,. Working out Eq.(25), the following four ~ Near this point, Fukui functions are very unlikely to be ob-

or, working out the matrix products,

equations are obtained: tained with good precision, and negative values may arise. If

[-1] el we consider as an example again the case of CO, the behav-

Ey YEo+|e M) (r[=1o, (26)  jor as in the worked-out example, given above, is repro-
1 * EPEN duced. Formuld40) is, however, a general equation, allow-

EE’ ]|r>+21;N+1|e[ h=lo), @7 ing also identifying those cases where in any polyatomic

(d=Y|Ey+el~1(r|=(0], (2g)  molecule, discontinuities and negative Fukui functions are

likely to arise.
(d-Hry+el"H278, =1, (29 Further support for Eq(40) as a criterion for disconti-

nuities in Fukui functions is found by Cholesky

Equation(28) is readily worked out, and introducing decompositiof? of the hardness matricés, andE. Suppose

a=(r|[ExYry =278, 1, (30  that the hardness matrix is positive definite in the usual ma-
one finds by substitution in E¢29), trix algebra sense:
> ; >0.
R 31) E>0-V|x)#0:(x|E[x)>0 (41

This result, back-substituted in E(®8), gives an expression Tha_tl the definitti10r(41) holds f%r the rr:ardness mfatrr:x ca k_)e
for (d 1], easily seen, when one considers the nature of the mRtrix
entering definition(17), as constructed in Eq18). Indeed,
(U =a Xr|E;% (32)  inverse distances behave as cositié§ and cosines can be
considered just as normalized scalar products. Thus, the
hardness matrix can be considered, in full, as representing a
positive definite metric, provided that the distance gart

An application of these results in E(6) provides an algo-
rithm to compute the inverse elemesf

ELU=E51- o~ NEFYr)(r|EY. (33  corresponds to reasonable interatomic distance values. Of
_ _ _ . course, this situation can be distorted, and such a deviation
Finally, one finds for the inverse matrix™, will be discussed next and used to examine the nature of the
) i o - EYr(r|EgY EgYr Fukui fur_1c_t|on vector. _ N
E~l=41 1 ) (34) Admitting, as a suitable work hypothesis, the positive
(r|Eg -1 definite nature of the hardness matExthen any partition of
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the matrix, like in Eq.(19) provides a positive definite sub- which indicates again the same condition for the discontinu-
matrix: Eo. Then there exists the following Cholesky trian- ity, namely(r|Eq *|r)— 27, ,=0. For not too heavily dis-
gular decompositior® torted geometries, one may conclude from the present test
E—TIT 42) cases and present and previ’t?uglgebraic findings tha_t as
0~ 7070 long as the molecular geometries are not too heavily dis-
Ty being the so-called Cholesky decomposition matrix,torted, only positive Fukui functions are found. This again
which is defined as an upper triangular matrix, whose non€an be connected with the recent results by Ayetrsil®
null elements can be computed in terms of those of the origiThese authors found, independently of the present study, that
nal matrix Ey, being T the lower triangular transpose of a requirement for obtaining positive Fukui functions consists
To,. The hardness submatrix is in this manner nonsingulain that the hardness matrix should be diagonally dominant.
and the inverse is readily computed as Now consider Eq(4) or (19), in the present EEM context
1 T such positive dominance is always ensured as long as no
Bo™=To To - (43 interatomic distances grow too small. Also, when diagonal
Moreover, the inverse of a given triangular matrix is alsodominance is present, then such a fact only emphasizes that
computed by a simple algorithm. Both processes, the trianthe eigenvalues of the hardness matrix will become positive
gular matrix decomposition and inversion, are related by #lefinite, and this is only a proof in turn of the matrix becom-
recursive algorithm tod” which can be applied to the aug- ing positive definite too, and in this way avoiding disconti-
mented row hardness matrix. That is, one can write nuities and, so, negative values are finally avoided as well.
These findings are also supported by a more general proof of

E=TTT_T= To [t) (44) the necessity for diagonal dominance of the hardness
o 7/ matrix.*®
and a similar structure can be specified for the inverse Aye_rset al.alsp point out the role of using th_e_l—_hrshfeld
process population analysis, based on a stockholder division of the

electron density. The fact that, when using the Hirshfeld
Tgl [ty population analysis, no negative Fukui functions are found,
©o ) (49 has been confirmed on several occasforfé281t is worth
noting that, despite the negative results reported several
with the easily deducible definitions times concerning the use of Mulliken or NPA charges for the
1=T57|r), calculation of finite difference Fukui functions, when using
the present EEM scheme one always finds positive Fukui
=271~ () =2m%, .~ (r|Eo 'Ir),

functions for not too heavily distorted geometries. This was
. i . found to be independent of the kind of charges used for the
for the Cholesky decomposition matrix and the following . jinration of the effective electronegativity and hardness pa-
algorithm: rameters. In using the finite difference approach, many
|t<*1>>=—7*1T51|t>, (47 sources of problems may arise, such as relaxation or the
o ] ~accuracy of the functional and basis set used for singlet and
giving the inverse element to be computed. In the deductioyq pjet spin multiplicities, as it was commented on before.
of the above expressions it is supposed that the Choleskyore research is obviously needed to examine whether it is
decomposition and its inverse are already known for the preygiified to state that one of the sources of negative Fukui
vious recursive step involving the hardness submaigx functions obtained by finite difference approaches is really
After this, and taking into account the initial hardnessihe nature of the population analysis used. An exception is
matrix partition, the following expression for the full hard- MPA, for which it has been described that, employing ana-

ElZTlTTﬁle(

(46)

ness inverse can be found: lytical considerations, nothing can be predicted about the
Egl+ [t D)t =D sign of the MPA Fukui function8?
—-1__

so, it is a matter of algebraic manipulation to construct the!l- CONCLUSION
Fukui vector in terms of the hardness inverse matrix, as €x-  The occurrence of negative values for Fukui functions

pressed above: was studied through the electronegativity equalization

(Eg S [t DY D) D)y + 7 Yt D) method. Using algebraic relations between Fukui functions

|f>:277M( YD) 472 ) (49 and different other conceptual DFT quantities on the one
hand and the hardness matrix on the other hand, expressions

fne1=2nu7 (YD + 7). (500  were obtained for Fukui functions for several archetypical

small molecules. It was found that not only negative Fukui
functions are possible, but even that discontinuities may
arise. However, both counterintuitive cases are found only in
f=2pua 1((r|Ex*1)—1) quite uncommon molecular structures, where atoms tend to
come very close to each other. Based on EEM calculations

=27u((r|E 1D~ D(rEg ) =275, (51 for large molecular sets, no negative Fukui functions were

Using Egs.(46) and (47), the Fukui function for atormN
+1 is also given by the equation
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