JOURNAL OF CHEMICAL PHYSICS VOLUME 108, NUMBER 24 22 JUNE 1998

Additional compact formulas for vibrational dynamic dipole polarizabilities
and hyperpolarizabilities
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Compact expressions, complete through second order in electrical and/or mechanical anharmonicity,
are given for the dynamic dipole vibrational polarizability and dynamic first and second vibrational
hyperpolarizabilities. Certain contributions not previously formulated are now included.998
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The past decade has seen an increasing number of catherator introduces vibrational transition matrix elements of
culations of vibrational polarizabilities and hyperpolarizabili- the electronic propertie$u,«,8) and the denominator in-
ties. At this time, some hundred-odd papers have touched ovolves the vibrational and optical frequencies. For example,
this subject, and it has recently been reviewed in detail by
one of ust For some systems and processes these vibrational 1
properties are even more important _tha_n the correspond_mg [pal=— > PaByE’(Ma)Ok(aﬁy)kO[(wk"i_ w,) L
electronic ones. Together both contributions govern nonlin- 2h k
ear optical(NLO) behavior. A large number of the vibra-
tional calculations have been based on one or both of two
approximations:(a) the vibrations are assumed to be har-
monic, and the electronic properties are assumed to be lineathere (u,)o=(0|u.|k); |k) is the kth vibrational wave
in the normal coordinates—this is the double-harmonicfunction with energyf w,;u, is the « component of the
oscillator approximatiod;and (b) the optical frequencies are dipole moment &,3,y=Cartesian coordinatesx,y,z);
taken to be infinitt—this is the enhanced, or infinite fre- 2P,p, indicates a sum over the simultaneous permutations
quency approximatio”r? These approximations have beenof frequencies and subscripts—f,,a), (w1,8), and
analyzed by Bishop and DalskdvThe only rigorous treat- (w,,) (an alternative equivalent notation¥P_, , ,); and
ment of the dynamic vibrationalhypeppolarizabilities is  the prime on the second summation denotes exclusion of the
that given by Bishop and Kirtm4rin the early nineties. The vibrational ground state.
purpose here is to extend their general formulas so that they The electronic properties are, next, expanded in the nor-
are complete through second order of perturbation theory imal coordinates@,,Qy, . ..), €.d.,
mechanical and/or electrical anharmonicity. All vibrational
effects are included except for zero-point vibrational averag-
ing of the electronidhypenpolarizability. 0 I ‘u

We write the vibrational polarizability¢”) and the first '““:’““Jr; a_Qa Qat 2 ;) dQ40Qy QaQo
and second vibrational hyperpolarizabilitg{ and y*) as a .
sum of terms derived from the sum-over-states expressions 1= ( I )Q 0,0 )
for the total (hypeppolarizability, which are given in terms 6 &5 | 9Q,0QpdQ,) 2 <P =C
of vibronic energies and dipole moment matrix elements
over the vibronic wave functions,

+(wk_ (1)0.)71], (4)

[

Here the quadratic term is considered to be first order in

a'(~ 0, 01) =1, (1) electrical anharmonicity and the cubic term is considered to
; ) _ 3 2 be second order. Thus, it is sufficient for our purposes to

B~ o 01,0p) =[pal+ 7], @ truncate the expansion as above after the third derivatives.

y”(—w(,;w1,wz,w3)=[a2]+[ﬂg]+[ﬂ2a]+[ﬂ4]_(3) 'rll'g;a vibrational potentialy, is expanded in a similar man-

Here, the optical frequencies(,w,,w3) define a particular
NLO process an@,=>,w;. The square-bracket terfhare 0 o 1
sums over vibrational states of a quotient in which the nu- V=V 2 ; ©aQat 6 a%C FabcQaQuQc

1
dpermanent address: Institute of Computational Chemistry and Department + — 2 FabcdaQpQ:Qy., (6)
of Chemistry, University of Girona, 17017 Girona, Catalonia, Spain. 24 ,b,c,d
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TABLE I. Formulas for the contributions to dynamic vibrational polarizabilities and hyperpolarizabflities.

Term

Formula

(w10

[#2]2,0

3 SPusS (0101 9Qa) (915 IQINLT

(hI8)XP s34, b[(azua/aoaabeaZM/r?QaaQb)(w;

+op YA +(a%/&Qade)(auB/de)wa Ay
+(aua/«9Qb)(03uB/aQaaQb)w N 7]

[”2]1,1

- (ﬁ/‘l)2 Paﬁza,b,C[FabC((92/La /ﬁQaaQb)(ﬁMﬁ /&QC)

X (@a "+ 0 INagNe 7 Fooe 40 19QadQp)
X (dppgldQq) wy “wg Ay 7]

[MZJO,Z

—(hI8)% Paﬁza,b,cw;l[Faabc(aﬂa 19Qyp)

X (‘7/“,6 lan))\E”}‘gﬂ_Ed{Faabecd(ﬁﬂ'a 19Q.)

X (gl Qg wp, “\

;:a)\ga_'_ 2F spFabd(dpa 19Qc)

X (Appl Q)N ap e Ng 7}

[#3] 1,0

3 SPoupyS an(0tta19Q0) (%1 9Qq0Qp)

X (9pty 19Qp)N5 TNy 2

[M3]0,1

— & 3PS ancFand Ia0Qa) (951 0Qp)

X (95 1Qe)N7 “Np NG

[n?a]*® 7 5P usysSanl (I 9Q0) (9P g, 13Qa0Qp)
X (Ipral IQuING Np >+ 2(0p e 19Qa) (975 9QadQp)
X (darys! IQp)N; “Np 2]

[MZD‘]OJ — 2 Epaﬂyﬁzabc+abc£‘9/’va/‘7Qa)(‘9MB/‘9Qb)
X (dayslIQIN; Ng N2

[M4]2,0

6 EPaByéza b c[s(dﬂa/aQa)((?zl'Lﬂ/aQa(?Qb)

X (0 1y 1 3Qu0Q0) (Ipr | IQNS NG 2N
+ (8%/aQaaQb&Qc)(au,;/aQa)(auy/aQb)
X (sl IQINZ Ny 2N

[M4]1,1

= 3 3Py ap o aFabe e 9Qa) (91 g1 9Q)

X (0 1y 19QcdQa) (It QNG N NG NG

[#4]0,2

— 33 3PS abcd Faved dtta | 9Qa) (91 3Qp)

X(9p,19Qc) (9 5/9Q)N 5 Ny NG NG
-33 eFabcFcad It o lﬁQa)(&ﬂ'ﬁ /0Qb)(&:u'y/f;Qd)
X (Il QNG N NG NGNS

@Abbreviations:
(i) For the[u?] terms, w,
=w;twytw;z.

=wy; for the [u3] and[u2a] terms, o,

=w;+w,; for the [u*] terms, w,,

(i) %P,z indicates the sum-over-terms generated by the permutation of the pairs of optical frequencies and

indices: (—w,,a) and (©1,8); 2P,

indicates the permutations of-(w,,a), (w;,8), and (,,7);

3P ,z,s indicates the permutatlons of-(w,,@), (w1,B), (w,,7), and (a)3 5).

(iit) A =(w2-0w?) 1}

[(wx-‘rwy)z—w] LS =[w?

—(w; +wJ) 1

but, in this case, the cubic term is taken to be first order irvhere we have used the abbreviationg®=[ 1°° [ ]'

mechanical anharmonicity and the series is terminated aftes[ 1%%+[ 1°% and[ ]"

=[ 12°+[ J*™[ 1%2 The notation

the (second-orderterm involving the quartic force constants, [ ]™™ indicates the order of electrical anharmonicity) @nd

Fabcq: Which are fourth derivatives of. Treating the elec-

trical and mechanical anharmonicity by double perturbation

theory and substituting into Eq6l)—(3) leads to
a’(—wq;01)=[p?1%+[p?]", (7
B (— g 01,00) = pal®+[1®]'+[pal", 8

Y (—wgi01,00,03)=[@®]°+[uB]°+ [ pla]'+[a?]"
Bl + ", 9

the order of mechanical anharmonicity).

As stated in our earlier workwe previously neglected
the cubic term in Eq(5) and all of the[ ]%2 contributions in

[ 1". We now include these and, in order that there be a
single source of information, we give the complete formulas
in Tables | and II.

With the exception of that part of tHg.*]%? term which
contains two cubic force constants . andF.4), Our re-
sults were achieved by arduous algebraic manipulation. The
“F2” part of [ «*]1%? was found by using a sequential pat-
tern, as discussed in Ref. 1, together with the kn®tatic
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TABLE II. Conversion of formulas fof 1] to those fo ua], [ %], and[uB].

Electronic property

Initial Permutation sum change Final
term Multiply by change and frequency change term
[#2]0,0 1 Pus—Pasy Mp—ag, [,ua]o,o
1
(w2100 i Pas—Papys Ka=>Qap fp 2 Ayo [a?]°
Aa "= A
[’uz]o,o % PaﬁH PaBy& MB*}B[;’}/S [,U«B]O'O
[#2]2,0 1 Pas—Pasy Mp—ag, [,ua]Z,o
[’uz]z,o % PaﬁH PaBy& Mo Qgp U™ Ays [0(2]2'0
Nay = Nan o hp TN
[’uz]z,o % PaﬁH PaBy& MBHIBﬁya [/’«,3]2'0
[t 1 Pas—Pasy Each term is replaced by two: [a]*t
2 in the firstug— ag, and in the
secondu,— ag, and pg— i,
[w?] % Pap—Papys Mo Qg hp— Ays [a®]"
Y
[t 1 Pusg—Pagys Each term is replaced by two: in the [eB]*t
first ug— Bg,s and in the second
Maﬂﬁﬁw and ”’,B*)/'La
[u?1%2 1 Pap— Papy g apy [nal®?
[#2]0,2 %1 Poz‘B_> Paﬂyﬁ Mo Qo hp— Qys [a2]0,2
)\;:b(r")\aibza1)\;:”4’)\[?231)\30%)\;:23
)\iu'*))\tz?:
[’uz]o,z % PaﬁH PaBy& MB"/B,B)/& [M,B]O'z
expression fof ©*1%2 To be more precise, with the abbre- In deriving the general expressions it has been very help-
viations in the footnote to Table | and changing indicesful to compare with the static limft:° This led us to dis-
where appropriate, the essential form[pf*]?° is cover that the diatomic formulas of Ref. 9 are only approxi-

2 2 mate because the anharmonic terms in Eg. of that
(91a19Qa) (9" 11 9Qa0Qe) (9151 QcdQu) reference were not carried through in deriving E44.b) and

X (sl IQgIN; AT NG 3, (110. These terms were included subsequently in the corre-
sponding treatment of polyatomit$However, in the latter

491,15+ 5
whereas fof w™]™" it is case the fact that the field-dependent harmonic force constant

Fabd 9tto!9Qa) (I3l 9Qp)(° 1,1 9QcIQq) matrix contains off-diagonal elements, when expressed in
oy +1e +23 +3 terms of field-free normal coordinates, was ignored. One can
X(IpslIQu)Ng "Np Ne “hg . determine the effect of these off-diagonal matrix elements on

It is apparent that increasing the mechanical anharmonicit§he field-dependent harmonic vibrational frequencies, which
and decreasing the electrical anharmonicity simultaneousl@'e the quantities of interest, by carrying out an appropriate
by one order introduces; *; changes the second derivative Perturbation treatment. Thus, we write

of u, (associated withw;) with respect toQ, and Q. to a o

singlﬂe derivative with respect tQ@,, (note the recurrence of TIRKPT(F)=w*(F), (10
b); and introduces the cubic force constémt,.. Repeating  whereK (F) is the field-dependent harmonic force constant
this step in a consistent way we ha¥Q.dQq— Qe and,  matrix, w(F) is the diagonal matrix of field-dependent har-

the4nb i2ntroducing>\§2 andF g, gives the essential form of monic frequencies, an@i(F) is a unitary transformation,
[n"]""as

FeaeFabd dma/dQa) (gl dQp) (I, 3Qe)
X (951 9QaN “Np g PhgNe .

TPT(F)=1. (11)

All quantities are, then, expanded as a power seriésviith

K (0) being diagonal and@ (0)= 1. After some simplification
With the known numerical factor for the static quantity andit can be shown that the resulting formulas agree exactly
with some rearrangement of the indices, the formula for thevith those given in Tables | and Il when the static limit is
“F2" part of [ «*]%2 given in Table | was obtained. taken(see the Appendix for an exampl&hus, the equiva-
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lence between the perturbation théband finite field® ap- J.M.L. was supported by the Generalitat de Catalunya
proaches to static vibrational hyperpolarizabilities demonthrough the CIRIT Project No. FI/95-5101.
strated in Ref. 8 is now extended to polyatomic molecules. A
similar extension can be made for the infinite frequencyAppENDlx
limit. If the vibrational potential is expanded in terms of field-
To conclude, we have presented gendédginamio ex- free normal coordinate®Q, then the off-diagonal quadratic
pressions, complete through second order in perturbatioforce constants will no longer vanish when an external field
theory, for the vibrational polarizabilitya’), and the first is present. The effect of these force constants on the har-
and second vibrational hyperpolarizabilitg{ and y*). The  monic vibrational frequencies and, hence, on the linear and
only additional contributions from the effects of vibration to nonlinear vibrational polarizabilities, can be evaluated
this order arise from zero-point vibrational averaging. through a perturbation treatment of Eq$0) and (11). The
purpose of this Appendix is to illustrate how this can be
accomplished using the linear polarizability as an example.
Following the procedure of Ref. 10, the field-dependent
D.M.B. acknowledges financial support from the Naturalquadratic force constant matrix for small vibrations about the
Sciences and Engineering Research Council of Canadéield-dependent equilibrium geometifgz, may be written as
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X.Y,z 3N-6 X,Y,Z 3N-6 3N-6
K (F)=2a} 5|,+E 2al;"— 62 alltqX a+; 2all;*F — 62 alkqk*f— egl allk-aqkp
3N-6 3N—-6 3N-6
t122 algdrtay+6 X abazar’(az) -9 2 adsasdi"al (az) t|FuFat (A1)
[
where 3N-6
il [wf]*=K{=2a5;"~ eg aseay (A5)
1 (d™™V(Qy,... Qan-6,Fx.Fy.Fy) and
" nim! dQi++dQ; dFj ---dF; Q:O,F:O, [wiz]“5=K?B+[T“TKB]” +[K“Tﬁ]“+[T“TK(O)TB]“
(A2) +2T2PK;(0). (AB)
oy “=api'f2ay and gy *f=apyfi2az, . In deriving Egs.(A4)—(A6) we have used the fact thit is

The term linear irF is considered to be first order; the term Hermitian; K(0) is diagonal; and T(F)=1+XT“F,
quadratic inF is second order; and so forth. Through second* =T*F,F g+ is unitary. Thus,
order the harmonic vibrational frequencies from EtB) are

given by, Ti=0, TH=K{[K;;(0)—K;(0)]™" (j#i) (A7)
2 2 27« 27ap and
wi<F>swi<0>+2[wi]Fa+2ﬂ[wi] F.Fs.  (A3)
with Teh=-= 2 ToTE. (A8)
0?(0)=K;(0)=2aj, (Ad)  From Egs.(A6)—(A8) one obtains
|
3N—-6 3N—-6 3N—-6 3N—-6
[wf]*#=2a5""~6 2 aghah*’~ 62 aj) “q’ﬁ+122 ajal B+62 azhabs“qi’(aly
=
3N—-6 3N—-6 3N—-6
9 2 asaarar’(al) -4 2 alitalf(Ad)ir24 > alitandi (AL
3N—-6
~36 E | Aoadar ar’(Ad) (A9)
j#ik

whereAl;=2(\/aby+ vVaby)?.
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The second-order correction to the static linear polarizafiliy, [ ?]" in Eq. (7) of the main text withw, = w;=0] may
be found° by taking the second derivative of the harmonic vibrational energy,

1 s Poi(F)] 1 356 1 a%?(ﬂ) 1 (awf(F)) (awf(F)) A0
24 |0FFgl._, 4 T wi(0)|\dF.0Fg) _, 207(0) | oF, | _\ dFg | __,|
which (after changing signis equal toA o??VA+[ 1?]". Using w?(F) from Egs.(A4), (A5), and(A9) in Eq. (A10) and
3N-6 3N-6
Aaff"=— 3 (2a3) " ez =3 3 a%qlz'“ﬁ} (A1)
the result is
1 3N—-6 3N—-6 3N-6 3N-6
[17]"=7 2 Pag 2 (Zago)_l’z[6 > aggf-12 X afalqit-6 X asjalitqif(aly
=1 i=1 k=1 k=1

3N-6 3N-6 3N-6
iij Akl Koyl By Al )~ 1 i, aqii B Al —1 i cnijk kB Alj \—1

+ 9J_ IZJ_ L azhakoay “ay(aly) T+ 4 ]2_:1 ai“aif(Ady) - 24j ; 1 ai“ads a1’ (Ad)
3N-6

+36 >, alsadayar’(Al Y. (A12)
A

A comparison with the surfu?]?%+[ w2 M+ [ u?]%? taken  5D. M. Bishop and E. K. Dalskov, J. Chem. Phy€14, 1004 (1996.

from Table | reveals that the two expressions are identical. °D. M. Bishop and B. Kirtman, J. Chem. Phy25, 2646(1991); 97, 5255
(1992.
1D. M. Bishop, Adv. Chem. Physto be publishey ’D. M. Bishop, B. Kirtman, and B. Champagne, J. Chem. Pfg3, 1501

2See Ref. 1 and B. Kirtman, J. M. Luis, and D. M. Bishop, J. Chem. Phys. (1997.

108, 10008(1998, preceding paper. 8J. Marfiand D. M. Bishop, J. Chem. Phy89, 3860(1993.
3D. S. Elliott and J. F. Ward, Mol. Phy&1, 45 (1984. 9J. M. Luis, J. Mart) M. Duran, and J. L. Andis J. Chem. Phy4.02, 7573
4D. M. Bishop, M. Hasan, and B. Kirtman, J. Chem. Phy83 4157 (1995.

(1995. 103, M. Luis, M. Duran, and J. L. Andsg J. Chem. Phy<.07, 1501(1997.

Downloaded 30 Nov 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



