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Additional compact formulas for vibrational dynamic dipole polarizabilities
and hyperpolarizabilities

David M. Bishop
Department of Chemistry, University of Ottawa, Ottawa K1N 6N5, Canada
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Compact expressions, complete through second order in electrical and/or mechanical anharmonicity,
are given for the dynamic dipole vibrational polarizability and dynamic first and second vibrational
hyperpolarizabilities. Certain contributions not previously formulated are now included. ©1998
American Institute of Physics.@S0021-9606~98!02324-1#
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The past decade has seen an increasing number of
culations of vibrational polarizabilities and hyperpolarizab
ties. At this time, some hundred-odd papers have touche
this subject, and it has recently been reviewed in detail
one of us.1 For some systems and processes these vibrati
properties are even more important than the correspon
electronic ones. Together both contributions govern non
ear optical~NLO! behavior. A large number of the vibra
tional calculations have been based on one or both of
approximations:~a! the vibrations are assumed to be ha
monic, and the electronic properties are assumed to be li
in the normal coordinates—this is the double-harmon
oscillator approximation;2 and~b! the optical frequencies ar
taken to be infinite2—this is the enhanced, or infinite fre
quency approximation.3,4 These approximations have bee
analyzed by Bishop and Dalskov.5 The only rigorous treat-
ment of the dynamic vibrational~hyper!polarizabilities is
that given by Bishop and Kirtman6 in the early nineties. The
purpose here is to extend their general formulas so that
are complete through second order of perturbation theor
mechanical and/or electrical anharmonicity. All vibration
effects are included except for zero-point vibrational aver
ing of the electronic~hyper!polarizability.

We write the vibrational polarizability (av) and the first
and second vibrational hyperpolarizability (bv andgv! as a
sum of terms derived from the sum-over-states express
for the total~hyper!polarizability, which are given in terms
of vibronic energies and dipole moment matrix eleme
over the vibronic wave functions,7

av~2vs ;v1!5@m2#, ~1!

bv~2vs ;v1 ,v2!5@ma#1@m3#, ~2!

gv~2vs ;v1 ,v2 ,v3!5@a2#1@mb#1@m2a#1@m4#.
~3!

Here, the optical frequencies (v1 ,v2 ,v3) define a particular
NLO process andvs5( iv i . The square-bracket terms6 are
sums over vibrational states of a quotient in which the

a!Permanent address: Institute of Computational Chemistry and Depart
of Chemistry, University of Girona, 17017 Girona, Catalonia, Spain.
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merator introduces vibrational transition matrix elements
the electronic properties~m,a,b! and the denominator in
volves the vibrational and optical frequencies. For examp

@ma#5
1

2\ ( Pabg(
k

8~ma!0k~abg!k0@~vk1vs!21

1~vk2vs!21#, ~4!

where (ma)0k5^0umauk&; uk& is the kth vibrational wave
function with energy\vk ;ma is the a component of the
dipole moment (a,b,g5Cartesian coordinatesx,y,z!;
(Pabg indicates a sum over the simultaneous permutati
of frequencies and subscripts (2vs ,a), (v1 ,b), and
(v2 ,g) ~an alternative equivalent notation is(P2s,1,2!; and
the prime on the second summation denotes exclusion of
vibrational ground state.

The electronic properties are, next, expanded in the n
mal coordinates (Qa ,Qb , . . . ), e.g.,

ma>ma
01(

a
S ]m

]Qa
DQa1

1

2 (
a,b

S ]2m

]Qa]Qb
DQaQb

1
1

6 (
a,b,c

S ]3m

]Qa]Qb]Qc
DQaQbQc . ~5!

Here the quadratic term is considered to be first order
electrical anharmonicity and the cubic term is considered
be second order. Thus, it is sufficient for our purposes
truncate the expansion as above after the third derivati
The vibrational potential,V, is expanded in a similar man
ner,

V>V01
1

2 (
a

va
2Qa

21
1

6 (
a,b,c

FabcQaQbQc

1
1

24 (
a,b,c,d

FabcdQaQbQcQd , ~6!nt
3 © 1998 American Institute of Physics
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TABLE I. Formulas for the contributions to dynamic vibrational polarizabilities and hyperpolarizabilitiesa

Term Formula

@m2#0,0 1
2 SPabSa(]ma /]Qa)(]mb /]Qa)la

6s

@m2#2,0 (\/8)SPabSa,b@(]2ma /]Qa]Qb)(]2mb /]Qa]Qb)(va
21

1vb
21)lab

6s1(]3ma /]Qa
2]Qb)(]mb /]Qb)va

21lb
6s

1(]ma /]Qb)(]3mb /]Qa
2]Qb)va

21lb
6s#

@m2#1,1 2(\/4)SPabSa,b,c@Fabc(]
2ma /]Qa]Qb)(]mb /]Qc)

3(va
211vb

21)lab
1slc

6s1Fbcc(]
2ma /]Qa]Qb)

3(]mb /]Qa)vb
22vc

21la
6s#

@m2#0,2 2(\/8)SPabSa,b,cva
21@Faabc(]ma /]Qb)

3(]mb /]Qc)lb
6slc

6s2Sd$FaabFbcd(]ma /]Qc)
3(]mb /]Qd)vb

22lc
6sld

6s12FabcFabd(]ma /]Qc)
3(]mb /]Qd)lab

6slc
6sld

6s%#

@m3#1,0 1
2 SPabgSa,b(]ma /]Qa)(]2mb /]Qa]Qb)

3(]mg /]Qb)la
6slb

62

@m3#0,1
2

1
6 SPabgSa,b,cFabc(]ma /]Qa)(]mb /]Qb)
3(]mg /]Qc)la

6slb
61lc

62

@m2a#1,0 1
4 SPabgdSa,b@(]ma /]Qa)(]2abg /]Qa]Qb)

3(]md /]Qb)la
6slb

6312(]ma /]Qa)(]2mb /]Qa]Qb)
3(]agd /]Qb)la

6slb
623#

@m2a#0,1 2
1
4 SPabgdSa,b,cFabc(]ma /]Qa)(]mb /]Qb)
3(]agd /]Qc)la

6slb
61lc

623

@m4#2,0 1
6 SPabgdSa,b,c@3(]ma /]Qa)(]2mb /]Qa]Qb)

3(]2mg /]Qb]Qc)(]md /]Qc)la
6slb

623lc
63

1(]3ma /]Qa]Qb]Qc)(]mb /]Qa)(]mg /]Qb)
3(]md /]Qc)la

61lb
62lc

63#

@m4#1,1 2
1
2 SPabgdSa,b,c,dFabc(]ma /]Qa)(]mb /]Qb)
3(]2mg /]Qc]Qd)(]md /]Qd)la

6slb
61lc

623ld
63

@m4#0,2 2
1

24 SPabgdSa,b,c,d@Fabcd(]ma /]Qa)(]mb /]Qb)
3(]mg /]Qc)(]md /]Qd)la

6slb
61lc

62ld
63

23SeFabcFcde(]ma /]Qa)(]mb /]Qb)(]mg /]Qd)
3(]md /]Qe)la

6slb
61lc

623ld
62le

63#

aAbbreviations:
~i! For the @m2# terms,vs5v1 ; for the @m3# and @m2a# terms,vs5v11v2 ; for the @m4# terms,vs

5v11v21v3 .
~ii ! SPab indicates the sum-over-terms generated by the permutation of the pairs of optical frequenci

indices: (2vs ,a) and (v1 ,b); SPabg indicates the permutations of (2vs ,a), (v1 ,b), and (v2 ,g);
SPabgd indicates the permutations of (2vs ,a), (v1 ,b), (v2 ,g), and (v3 ,d).

~iii ! lx
6 i5(vx

22v i
2)21; lxy

6 i5@(vx1vy)
22v i

2#21; lx
6 i j 5@vx

22(v i1v j )
2#21.
r i
ft

s,

io

a
las

The
t-
but, in this case, the cubic term is taken to be first orde
mechanical anharmonicity and the series is terminated a
the~second-order! term involving the quartic force constant
Fabcd, which are fourth derivatives ofV. Treating the elec-
trical and mechanical anharmonicity by double perturbat
theory and substituting into Eqs.~1!–~3! leads to

av~2vs ;v1!5@m2#01@m2# II , ~7!

bv~2vs ;v1 ,v2!5@ma#01@m3# I1@ma# II , ~8!

gv~2vs ;v1 ,v2 ,v3!5@a2#01@mb#01@m2a# I1@a2# II

1@mb# II1@m4# II , ~9!
 to 84.88.138.106. Redistribution subject to AIP licens
n
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where we have used the abbreviations@ #05@ #0,0, @ # I

5@ #1,01@ #0,1, and@ # II5@ #2,01@ #1,11@ #0,2. The notation
@ #n,m indicates the order of electrical anharmonicity (n) and
the order of mechanical anharmonicity (m).

As stated in our earlier work,6 we previously neglected
the cubic term in Eq.~5! and all of the@ #0,2 contributions in
@ # II . We now include these and, in order that there be
single source of information, we give the complete formu
in Tables I and II.

With the exception of that part of the@m4#0,2 term which
contains two cubic force constants (Fabc andFcde!, our re-
sults were achieved by arduous algebraic manipulation.
‘‘ F2’’ part of @m4#0,2 was found by using a sequential pa
tern, as discussed in Ref. 1, together with the knownstatic
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Conversion of formulas for@m2# to those for@ma#, @a2#, and@mb#.

Initial
term Multiply by

Permutation sum
change

Electronic property
change

and frequency change
Final
term

@m2#0,0 1 Pab→Pabg mb→abg @ma#0,0

@m2#0,0 1
4 Pab→Pabgd ma→aab ,mb→agd

la
6s→la

623
@a2#0,0

@m2#0,0 1
3

Pab→Pabgd mb→bbgd @mb#0,0

@m2#2,0 1 Pab→Pabg mb→abg @ma#2,0

@m2#2,0 1
4

Pab→Pabgd ma→aab ,mb→agd

lab
6s→lab

623 ,lb
6s→lb

623
@a2#2,0

@m2#2,0 1
3

Pab→Pabgd mb→bbgd @mb#2,0

@m2#1,1 1
2

Pab→Pabg Each term is replaced by two:
in the firstmb→abg and in the
secondma→abg andmb→ma

@ma#1,1

@m2#1,1 1
4

Pab→Pabgd ma→aab ,mb→agd

lab
6s→lab

623 ,la
6s→la

623 ,lc
6s→lc

623
@a2#1,1

@m2#1,1 1
6

Pab→Pabgd Each term is replaced by two: in the
first mb→bbgd and in the second

ma→bbgd andmb→ma

@mb#1,1

@m2#0,2 1 Pab→Pabg mb→abg @ma#0,2

@m2#0,2 1
4

Pab→Pabgd ma→aab ,mb→agd

lab
6s→lab

623 ,lb
6s→lb

623 ,lc
6s→lc

623

la
6s→la

623

@a2#0,2

@m2#0,2 1
3

Pab→Pabgd mb→bbgd @mb#0,2
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expression for@m4#0,2. To be more precise, with the abbr
viations in the footnote to Table I and changing indic
where appropriate, the essential form of@m4#2,0 is

~]ma /]Qa!~]2mb /]Qa]Qc!~]2mg /]Qc]Qd!

3~]md /]Qd!la
6slc

623ld
63,

whereas for@m4#1,1 it is

Fabc~]ma /]Qa!~]mb /]Qb!~]2mg /]Qc]Qd!

3~]md /]Qd!la
6slb

61lc
623ld

63.

It is apparent that increasing the mechanical anharmon
and decreasing the electrical anharmonicity simultaneo
by one order introduceslb

61; changes the second derivativ
of mb ~associated withv1! with respect toQa and Qc to a
single derivative with respect toQb ~note the recurrence o
b!; and introduces the cubic force constantFabc . Repeating
this step in a consistent way we have]Qc]Qd→]Qe and,
then, introducingle

62 and Fcde gives the essential form o
@m4#0,2 as

FcdeFabc~]ma /]Qa!~]mb /]Qb!~]mg /]Qe!

3~]md /]Qd!la
6slb

61lc
623ld

63le
62.

With the known numerical factor for the static quantity a
with some rearrangement of the indices, the formula for
‘‘ F2’’ part of @m4#0,2 given in Table I was obtained.
 to 84.88.138.106. Redistribution subject to AIP licens
ty
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In deriving the general expressions it has been very h
ful to compare with the static limit.8–10 This led us to dis-
cover that the diatomic formulas of Ref. 9 are only appro
mate because the anharmonic terms in Eq.~5! of that
reference were not carried through in deriving Eqs.~11b! and
~11c!. These terms were included subsequently in the co
sponding treatment of polyatomics.10 However, in the latter
case the fact that the field-dependent harmonic force cons
matrix contains off-diagonal elements, when expressed
terms of field-free normal coordinates, was ignored. One
determine the effect of these off-diagonal matrix elements
the field-dependent harmonic vibrational frequencies, wh
are the quantities of interest, by carrying out an appropr
perturbation treatment. Thus, we write

T†~F!K ~F!T~F!5v2~F!, ~10!

whereK ~F! is the field-dependent harmonic force consta
matrix, v~F! is the diagonal matrix of field-dependent ha
monic frequencies, andT~F! is a unitary transformation,

T†~F!T~F!51. ~11!

All quantities are, then, expanded as a power series inF with
K ~0! being diagonal andT(0)51. After some simplification
it can be shown that the resulting formulas agree exa
with those given in Tables I and II when the static limit
taken~see the Appendix for an example!. Thus, the equiva-
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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lence between the perturbation theory6 and finite field10 ap-
proaches to static vibrational hyperpolarizabilities dem
strated in Ref. 8 is now extended to polyatomic molecules
similar extension can be made for the infinite frequen
limit.

To conclude, we have presented general~dynamic! ex-
pressions, complete through second order in perturba
theory, for the vibrational polarizability (av), and the first
and second vibrational hyperpolarizability (bv andgv!. The
only additional contributions from the effects of vibration
this order arise from zero-point vibrational averaging.

ACKNOWLEDGMENTS

D.M.B. acknowledges financial support from the Natu
Sciences and Engineering Research Council of Can
m
n

loaded 30 Nov 2010 to 84.88.138.106. Redistribution subject to AIP licens
-
A
y

n

l
a.

J.M.L. was supported by the Generalitat de Catalun
through the CIRIT Project No. FI/95-5101.

APPENDIX

If the vibrational potential is expanded in terms of fiel
free normal coordinates,Q, then the off-diagonal quadrati
force constants will no longer vanish when an external fi
is present. The effect of these force constants on the
monic vibrational frequencies and, hence, on the linear
nonlinear vibrational polarizabilities, can be evaluat
through a perturbation treatment of Eqs.~10! and ~11!. The
purpose of this Appendix is to illustrate how this can
accomplished using the linear polarizability as an examp

Following the procedure of Ref. 10, the field-depende
quadratic force constant matrix for small vibrations about
field-dependent equilibrium geometry,RF, may be written as
Ki j ~F!52a20
i i d i j 1 (

a

x,y,z F2a21
i j ,a26 (

k51

3N26

a30
i jkq1

k,aGFa1 (
a,b

x,y,z F2a22
i j ,ab26 (

k51

3N26

a30
i jkq2

k,ab26 (
k51

3N26

a31
i jk ,aq1

k,b

112 (
k,l 51

3N26

a40
i jkl q1

k,aq1
l ,b16 (

k,l 51

3N26

a30
i jka21

kl,aq1
l ,b~a20

kk!2129 (
k,l ,m51

3N26

a30
i jka30

klmq1
l ,aq1

m,b~a20
kk!21GFaFb1¯ , ~A1!
where

anm
i 1¯ i n , j 1¯ j m

5
1

n!m! S ]~n1m!V~Q1 ,...,Q3N26 ,Fx ,Fy ,Fz!

]Qi 1
¯]Qi n

]F j 1
¯]F j m

D
Q50,F50

,

~A2!

q1
l,a5a11

l,a/2a20
ll and q2

l,ab5a12
l,ab/2a20

ll .

The term linear inF is considered to be first order; the ter
quadratic inF is second order; and so forth. Through seco
order the harmonic vibrational frequencies from Eq.~13! are
given by,

v i
2~F !>v i

2~0!1(
a

@v i
2#aFa1(

a,b
@v i

2#abFaFb , ~A3!

with

v i
2~0!5Kii ~0!52a20

i i , ~A4!
d

@v i
2#a5Kii

a52a21
i i ,a26 (

k51

3N26

a30
i ikq1

k,a , ~A5!

and

@v i
2#ab5Kii

ab1@Ta†
Kb# i i 1@KaTb# i i 1@Ta†

K ~0!Tb# i i

12Tii
abKii ~0!. ~A6!

In deriving Eqs.~A4!–~A6! we have used the fact thatK is
Hermitian; K ~0! is diagonal; and T(F)511(TaFa

1(TabFaFb1¯ is unitary. Thus,

Tii
a50, Ti j

a 5Ki j
a @K j j ~0!2Kii ~0!#21 ~ j Þ i ! ~A7!

and

Tii
ab52

1

2 (
j Þ i

Tji
a Tji

b . ~A8!

From Eqs.~A6!–~A8! one obtains
@v i
2#ab52a22

i i ,ab26 (
j 51

3N26

a30
i i j q2

j ,ab26 (
j 51

3N26

a31
i i j ,aq1

j ,b112 (
j ,k51

3N26

a40
i i jk q1

j ,aq1
k,b16 (

j ,k51

3N26

a30
i i j a21

jk,aq1
k,b~a20

j j !21

29 (
j ,k,l 51

3N26

a30
i i j a30

jklq1
k,aq1

l ,b~a20
j j !2124 (

j Þ i 51

3N26

a21
i j ,aa21

i j ,b~A20
i j !21124 (

j Þ i ,k51

3N26

a21
i j ,aa30

i jkq1
k,b~A20

i j !21

236 (
j Þ i ,k,l 51

3N26

a30
i jka30

i j l q1
k,aq1

k,b~A20
i j !21, ~A9!

whereA20
i j 52(Aa20

i 1Aa20
j )2.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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The second-order correction to the static linear polarizability@i.e., @m2# II in Eq. ~7! of the main text withvs5v150# may
be found8,10 by taking the second derivative of the harmonic vibrational energy,

1

2 (
i

F ]2v i~F!

]Fa]Fb
G

F50

5
1

4 (
i

3N26
1

v i~0! F S ]2v i
2~F!

]Fa]Fb
D

F50

2
1

2v i
2~0!

S ]v i
2~F!

]Fa
D

F50
S ]v i

2~F!

]Fb
D

F50
G , ~A10!

which ~after changing sign! is equal toDaZPVA1@m2# II . Usingv i
2(F) from Eqs.~A4!, ~A5!, and~A9! in Eq. ~A10! and

Daab
ZPVA52 (

i 51

3N26

~2a20
i i !21/2Fa22

i i ,ab23 (
j 51

3N26

a30
i i j q2

j ,abG , ~A11!

the result is

@m2# II5
1

4 ( Pab (
i 51

3N26

~2a20
i i !21/2F6 (

j 51

3N26

a31
i i j ,aq1

j ,b212 (
j ,k51

3N26

a40
i i jk q1

j ,aq1
k,b26 (

j ,k51

3N26

a30
i i j a21

jk,aq1
k,b~a20

j j !21

19 (
j ,k,l 51

3N26

a30
i i j a30

jklq1
k,aq1

l ,b~a20
j j !2114 (

j 51

3N26

a21
i j ,aa21

i j ,b~A20
i j !21224 (

j ,k51

3N26

a21
i j ,aa30

i jkq1
k,b~A20

i j !21

136 (
j ,k,l 51

3N26

a30
i jka30

i j l q1
k,aq1

l ,b~A20
i j !21G . ~A12!
al

ys
A comparison with the sum@m2#2,01@m2#1,11@m2#0,2 taken
from Table I reveals that the two expressions are identic

1D. M. Bishop, Adv. Chem. Phys.~to be published!.
2See Ref. 1 and B. Kirtman, J. M. Luis, and D. M. Bishop, J. Chem. Ph
108, 10008~1998!, preceding paper.

3D. S. Elliott and J. F. Ward, Mol. Phys.51, 45 ~1984!.
4D. M. Bishop, M. Hasan, and B. Kirtman, J. Chem. Phys.103, 4157
~1995!.
loaded 30 Nov 2010 to 84.88.138.106. Redistribution subject to AIP licens
.

.

5D. M. Bishop and E. K. Dalskov, J. Chem. Phys.104, 1004~1996!.
6D. M. Bishop and B. Kirtman, J. Chem. Phys.95, 2646~1991!; 97, 5255
~1992!.

7D. M. Bishop, B. Kirtman, and B. Champagne, J. Chem. Phys.107, 1501
~1997!.

8J. Martı́ and D. M. Bishop, J. Chem. Phys.99, 3860~1993!.
9J. M. Luis, J. Martı´, M. Duran, and J. L. Andre´s, J. Chem. Phys.102, 7573
~1995!.

10J. M. Luis, M. Duran, and J. L. Andre´s, J. Chem. Phys.107, 1501~1997!.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions


