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ABSTRACT 

In  this papcr, iui inhrmation theoretic framework for im- 
age segmentation is presented. This approach is bascd 0 1 1  

the inlormation chatinel that goes from Ihc image Intensity 
histogram LO the regions of the partitioned image. It allows 
us to dcfinc a new I'Jmily of scgmentation methods which 
maximize the mutual u~formation of thc chaonel. Firstly, a 
greedy top-down algorithm which partitions PI image into 
homogeneous regions is uitroduced. Secondly, a histogram 
quantization algorithm which clusters color bins Ui a greedy 
bottom-up way is defiiied. Finally, the resulting regions U i  

rhc partitioning algorithm c m  optionally he merged using 
the quantized histogram. 

1. INTRODUCTION 

In image processing, grouping parts of an image into units 
that are homogeneous with respect to one or more character- 
istics (or features) results in a segmented image. Thus, we 
expect that segmentation subdivides an image on its con- 
stituent regions or objects. Segmentation of non trivial im- 
ages is one of the most difficult tasks in image processing. 
Image segmentation algorithms m generally hased on one 
of two basic properties of intensity values: discontinuity 
and similarity. In the first category, the approach is to parti- 
tion the image based on abrupt changes in intensity, such as 
edges in an image. The principal approaches in the second 
category are based on partitioning an image into regions that 
are similar according to a'set of predefined criteria. Thresh- 
olding, region growing, and region splitting and merging are 
examples of methods of this category [ 1,2]. 

In this paper, we iutroduce a new information theoretic 
framework for image segmentation, built on the information 
channeI between the two most basic pixel characteristics: 
its intensity and its spatial position into the image. Using 
this channel, we present two algorithms based on the maxi- 
mization of the mutual information (MI). The first algorithm 
partitions an image into relatively homogeneous regions us- 
ing a binary space partition (BSP). The second segments an 
image from the clustering of the histogram bins. The result- 
ing rcgions in the first algorithm can be merged using the 
quantized histogram obtained in the second one. 

2. INFORMATION TllEORY TOOLS 

'The following information theoretic definitions and incqual- 
i l i a  [?I arc fuidamcntA to  develop the mcxt hasic ideas of 
this paper. 

The ~/l01717011 e n l m p  H(S) oT a discrete ratldom vari- 
able S with values in the set X = ( ~ 1 , .  . . , : I : , , }  is defined 
as 

where 71. = jX( aiid pi = P r ( S  = xi]. The logarithms 
are taken ill  base 2 and entropy is expressed in bits. 11- we 
consider another random variable Y with values in the set 
Y = {g~, . . . , yYm} and qj = Pi[Y = gj], the condifionnl 
entropy is defined as 

nl n 

H(XlY) = - P j  Pilj log P,(j (2) 
j -1 i = l  

where m = lyl and pili = Pr(S  = zi(Y = ? / j ]  is the 
conditional probability. H ( S I Y )  corresponds to the uncer- 
tainty in the inforimtion channel input X from the point of 
view of receiver Y ,  and vice versa for H ( Y I S ) .  

The nirttirnl ir$orrimfion between S and Y is defined as 

wherepij = P r [ S  = zi,Y = yi] is the jointprobability. It 
can also he expressed by I ( X , Y )  = H ( S )  - H ( X I Y )  = 
H(Y) - N(Y1.X) and is a measure of the slimed infoniia- 
tion between S and Y .  

Datu processing ineqrrality. If X + Y 4 Z is a Markov 
chain, i.e., p(z,y, z )  = p(z)p(ylz)p(zly), then 

Next, we give two basic inequalities: 

I ( X , Y )  2 I ( X , Z ) .  (4) 

This result demonstrates that no processing of Y .  detenuin- 
istic or random, can increase the information that Y con- 
tains about S. 
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Fig. 1. Input and output distributions for the informntioil 
channel. 

Fig. 2. Two partitions ofthe Letlo image (512x512). over 
lumuimce channel obtained with the given M I H ,  
values. The number 01. regions R is (0) 1553 and (6) 
15316. RMSE and PSNR values are respectively (a) 
(16.232, 22.681) and (6) (9.710, 27.490). 

Fano's ineqimlity. Suppose we have two correlated random 
variables S and Y and we wish to measure the probability 
of error in guessing S from the knowledge of Y .  Fano's 
inequality gives us a tight lower bound on this error proha- 
bility in terms of the conditional entropy H(X'1Y). From Y 
we calculate a function g(Y) = 2 which is an estimate of 
X. Thepmbability of error is defined by P, = P r [ 2  # S] 
and the Fano's inequality is given by H(XIY) 5 H(P,) + 
P, log(n - 1) or, equivalently, by 

I ( S , Y )  2 H ( X )  - H(P,) - P,log(n - l),  (5) 

where H(P,) is the binary entropy from {Pe ,  l-Pe}, Thus, 
Fano's hequality bounds the probability that 2 # S. 

3. IMAGE PARTITION 

Given an image with N pixels and an intensity histogram 
with ni pixels in bin i, we defuie a discrete information 
channel where input X represents the bins of the histugram, 
with probability distribution { p i }  = {%}, output Y the 
pixel-to-pixel image partition, with distribution {yj} = {k) 
over the N pixels, and the conditional probability distrihu- 
tion {pjli} is the transition probability fmm bin i of the his- 
togram to pixel j of the image. This injonnntion channel 

can be represented by 

In this chi", it can be seen that, given a pixel, there 
is no uncertainty about the corresponduig bin ol' the his- 
togram (consequently, I ( S , Y )  = I I ( S ) ) .  Prom the data 
processing inequality (4). we !mow that any clustering or 
quantization over S or Y will reduce the shared inl'ormn- 
tion I ( S ,  Y). The information channel S - Y can be 
defincd for each color component of an image. Thus, dl 
the algorithms presented i n  this paper can be applied to any 
component of a color system. 

In this section, we present a greedy algorithm which par- 
titions an image in quasi-homogeneous regions. The opti- 
mal partitioning algorithm is NPi.omplctc. Tu do this par- 
tition, a natural approach could consider the above channel 
(6)  as the staning point lor the image partitioning, dcsign- 
ing a pixel clustering algorithm which minimizes the loss 
of MI. This pocess c y  he described by a Markov chain, 
A' i Y - Y, where Y = f ( Y )  reprcscno a clustering of 
Y. 

However, due to the computational cost of this algo- 
rithm, a completely opposite strategy has been adopted: a 
top-down splitting algorithm takes thc full image as the uni- 
que initial partition and progressively subdivides it with ver- 
tical or horizontal lines (BSP) chosen according to the max- 
imum MI gain for each partitioning step. Notc that othcr 
types of lines could he used, obtaining a varied polygonal 
subdivision. Our splitting process is represented over the 
channel (see Fig. 1) - 

s -t Y.  (7) 

The channel varies at each partition step because the num- 
her of regions is kicreased and, consequenfly, the margin$ 
probabilities of Y and the conditional probabilities of Y 
over S also change. This process can he interpreted in the 
following way: the choice of the partition which maximizes 
the MI increases the chances of guessing the intensity of a 
pixel chosen randomly from the knowledge of the region it 
pertains to. Similar algorithms were introduced in the cun- 
text of pattern recognition [4J, learning [51, DNA segmen- 
tation [6], and document clustering [71. 

Our partitioning algorithm can be represented by a hi- 
nary tree where each node corresponds to an image region. 
At each partitioning step, the tree acquires information from 
the original image such that each internal node i contains the 
mutual information gained with its corresponding split- 
ting. The total I ( S ,  Y) captured by the tree 141 can he ob- 
tained adding up the MI available at the internal nodes of 
the tree weighted by the relative area yi = % of the region 
i ,  i.e., the relative number of pixels corresponding to each 
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node. Thus, the total MI acquired in the process is given by 

where I' is the number of intemal nodes. It is important ti) 
stress that this prnccss of extracting information enables us 
to decide locally which is the best panition. 

This partitioning procedure can be stopped using differ- 
cnt criteria: 

Give11 the error probability P, allowed in  partition- 
ing, Fano's iricquality (5) prnvides us with 3 lower 
bound for the gain 01 MI. Taking the equality in (3, 
we ohlain thc minimum value of MI nccdcd in the 
partilioniiig algorithm: 

/,j,in(,~, Y) = r r ( x )  - l f ( t7e) - tJe  I ~ ~ ( B - I ) ,  (9) 

where H i s  Ihc number of Elis of the histogram. The 
prncess stops when I ( S .  Y )  2 Irni , ,(S,Y).  Note 
that I,,,;,, (S, I") is calculated h m  the initial channel 
(6). 

The ratio MIR,  = is greater thm a given 
threshold. From it we can also determine the error 
probability in partitioning using (9). and vice versa. 

A predefined nuniber of regions II. 

This prncess can also be visualized from equation N(X) 
= I ( X , ? )  + H(Slp), where the acquisition of informa- 
tion increases I ( S , p )  and decreases H ( X I 8 ) ,  producing 
a reduction of uncertainty due to the fact that the regions be- 
come more a id  more homogeneous. Observe that the max- 
imum MI that can he achieved is H ( X ) .  

Two panitions of the Lena image over luminance chan- 
ne1 Y& in Fig. 2 illustrate the behavior of the partitioning 
algorithm. They have beeii obtained using the MIR, crite- 
rion. Number of regions R, root mean square error (RMSE), 
and peak signal-to-noise ratio (PSNR) are given. The re- 
gions in the partitioned images are shown with their avenge 
intensity. 

4. HISTOGRAM QUANTIZATION 

In this section, a greedy bottom-up segmentation algorithm 
based on the minimization of the loss of MI is introduced. 
This algorithm produces a clustering of the histogram bins. 

Now, the reverse of the channel (7) is the starting point 
for the histogram quantization. Thus, the histogram cluster- 
ing is carried out from a given panition of an image,-mis 
process-can also be described by a Markov chain, Y + 

S + X, where S = f(X) represents a clustering of the 

(0)  MIRY = 0.45 (b) MIR,, = 0.65 

Fig. 3. Two segmentations of the Len0 image over lumi- 
naice channel Y,oo, obtained frnm the panilinned image of 
Fig. 2.(0) using thc histogram quiuilization algorithm with 
the given AlIR ,  values. The nuuihcr of colors C is (ti) 

3 and (b) 6. RMSE and PSNR values arc respectively (a) 
(19.068.22.212) and (b) (10.683.27.245). 

(a) C = 6 (b) C = 6 

Fig. 4. Two Contour segmentations of the Lena image, over 
luminance channel obtained by merging the regions 
of the corresponding partitioned images of Fig. 2 from the 
quantized histogram of six colors of Fig. 3.(b). RMSE and 
PSNR values are respectively (0) (18.961, 22.261) and (0) 
(14.297, 24.714). 

histogram. The optimal quantization algorithm is also NP- 
complete. 

The basic idea underlying our segmentation process is 
to preserve the maximum information of the image with the 
minimum number of colors (histogram bins). The cluster- 
ing of the histogram is obtained efficiently by merging two 
neighbor bins such that the loss of MI is minimum. The 
stopping criterion is given, as in the previous section, by 

r(P,P) an error probability P, or a MI ratio M I R ,  = m. 
Optionally, a predefined number of colors'C can also he 
given. An altemative to this algorithm would he to take a 
top-down approach, like the partitioning algorithm of the 
previous section. Thus, we could stan from the full his- 
togram and successively apply the binary partition which 
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(c)  B (d) RGB 

Fig. 5. Subfigures (a-c) show the segmentations of the Pep- 
pers image over the RGB Components with MIR, = 0.6.5 
from the respective partitioned images with MIR, = 0.3. 
Four colors have been obtained for each component. (d) 
shows the result of merging (a-c). RMSE and PSNR values 
in ( d )  are 19.407 and 21.606, respectively. 

maximizes the MI. However, this algorithm is less accurnte 
and more costly than the clustering one. Our clustering pro- 
cess is represented over the channel 

- P-X. (10) - 
Observe that one particular case of this channel is Y + X. 
Note also that (10) changes at each clustering step because 
thc number of bins is reduced. The choice of the clustering 
of the histogram which minimizes theloss of.MI increases 
the chances of guessing the region of a randomly chosen 
pixel from the knowledge of its intensity. At t hezncof  the 
quantization process, the MI of the channel is I ( X ,  Y), and 
the following inequality is fulfilled: I(X, Y )  2 I(X, k?) 2 

The behavior of our histogram quantization algorithm 
is shown in Figures 3-5. In Fig. 3, two segmentations of 
the Lena image over luminaice channel l’709 a’e shown. 
They have been obtained using the channel Y + X with the 
MfR,  criterion. Number of colors C ,  RMSE, and PSNR 
are given. In Fig. 4, the regions obtained in the partitions 
of Fig. 2 are merged using a quantized histogram of six col- 
ors. Finally, Figures 5.(a-c) illustrate the result of quantiz- 
ing the three color components of the Peppers image. For 

I(2,F). 

each component, four colors have been obtained. Fig. 5. (d)  
shows the result of mergiug Figum 5.(0-c). 

5. CONCLUSIONS ANI) FUTURE WORK 

We have presented an inlionnation theoretic framework for 
image segmentation, based on the information channel he- 
tween the image intensity histogram and the regions of the 
partitioned image. Two greedy algorithms, which respec- 
tively split the image into homogeneous regions and cluster 
the bins of the histogram, have bccn introduced. Mutual 
information drives rcspcctively the image panitioning [his- 
togram quaitizatioti] so that the next image splitting [his- 
togram clustcringl is chosen to maximize [minimize] the 
gain [loss1 in mutual inlionnation. Our appmach has bcen 
validated with scvcral experiments on standard tcst imagcs. 
In our luturc work, we will study the compl)sitional corn- 
plcxiiy o1- at] image following the segmenration liramcwork 
presented in this pnpcr, as well as thc applicability to image 
compression, 

6. REFERENCKS 

(11 Dana H. Ballard aid Christopher M. Brown. Cornprrter 
Prentice Hall, Etiglewood Cliffs (NJ), USA, Vision, 

1982. 

[21 Rafael C. Gonzalez and Richard E. Woods, Digital 
hirage Processing, Prentice Hall, Upper Saddlc River 
(NJ), USA, 2002. 

[31 Thomas M. Cover and Joy A. Thomas, Elements of 
Infonncrtion Theory, Wiley Series in Telecommunica- 
tions, 1991. 

[41 Ishwar K. Sethi and G.P.R. Sarvarayudu, “Hiemchi- 
cal classifier design using mutual information,” IEEE 
Transactions on Pattern Analysis and Machine Intelli- 
gence, vol. 4, no. 4, pp. 4 4 4 5 ,  July 1982. 

151 Sanjeev R. Kulkami, Gibor Lugosi, aid Santosh S. 
Venkatesh, “Leaming pattern classification - a survey:’ 
IEEE Transactions on Infonnation Theory, vol. 44, no. 
6, pp. 2178-2206.1998, 

[61 Pedro Bemaola, JOSE L. Oliver, and Ram611 R o m h ,  
“Decomposition of DNA sequence complexity,” Physi- 
cal Review Leners, vol. 83, no. 16, pp. 3336-3339, Oc- 
tober 1999. 

[71 N o m  Slonim and Naftali Tishby, “Document cluster- 
ing using word clusters via the information bottleneck 
method,” in Proceedings of the 23rd Annual Interna- 
iionul ACM SIGIR Conference on Research and Devel- 
opment in Infonnation Retrieval. 2003, pp. 208-215, 
ACM Press, Held in Athens, Greece. 

1196 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 07:18:12 UTC from IEEE Xplore.  Restrictions apply. 


