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Abstract

Shape complexity has recently received attention from
different fields, such as computer vision and psychology. In
this paper, integral geometry and information theory tools
are applied to quantify the shape complexity from two differ-
ent perspectives: from the inside of the object, we evaluate
its degree of structure or correlation between its surfaces
(inner complexity), and from the outside, we compute its de-
gree of interaction with the circumscribing sphere (outer
complexity). Our shape complexity measures are based on
the following two facts: uniformly distributed global lines
crossing an object define a continuous information chan-
nel and the continuous mutual information of this channel
is independent of the object discretisation and invariant to
translations, rotations, and changes of scale. The measures
introduced in this paper can be potentially used as shape
descriptors for object recognition, image retrieval, object
localisation, tumour analysis, and protein docking, among
others.

1. Introduction

In the last years, the shape complexity has been anal-
ysed from different areas, such as computer vision [13] and
psychology [7]. The benefits of a shape complexity theory
(with its corresponding measures) would range from ob-
ject classification for further database retrieval to improve-
ments in cognitive science. The approach taken so far has
been to consider the information (measured by Shannon en-
tropy [4]) contained in the curvature of an object. Either an
a priori distribution for the curvature is given and the ex-
trema of the function are shown to contain more informa-
tion, or the entropy of histogram of rotated angles (or of
angle excess) [13] at the meshed contour or surface of the
object is taken as the measure of the complexity of an ob-
ject. The first approach depends on the discretisation of the
curve or surface, and the second is not suitable to compute
the whole complexity.

In this paper, we propose two shape complexity mea-
sures of an object which are independent of the discretisa-
tion and appropriate to compute the partial or global com-
plexity of any object. Between the information theoretic
measures, one that fulfils this requirement is the continu-
ous mutual information (MI), which measures the informa-
tion shared between two probability distributions.

Shape complexity will be analysed from two different
perspectives. First, from the inside of the object, its degree
of structure (interdependence between its parts) is evalu-
ated. We consider the information shared by the interior
contour (or surface) from the object with itself. A differ-
ential of contour (or surface) will be related to another dif-
ferential of inner contour (or surface) by the uniformly dis-
tributed global lines [15] that join them, this is, make them
directly visible. Second, from the outside of the object, the
degree of interaction between the object and its circum-
scribing sphere (”environment“) is calculated. These com-
plexity measures could be used as shape descriptors in fields
such as object recognition and classification.

This paper is organised as follows. In Section 2 we re-
view the generation of uniformly distributed global lines
and also the MI definition. In Section 3 we present a com-
plexity measure which quantifies the degree of (internal)
structure of an object. In Section 4, a different approach is
introduced in order to evaluate the external complexity of
an object. And finally, in Section 5, we present our conclu-
sions.

2. Fundamentals

In this section, the two basic tools used in this paper are
reviewed: generation of uniformly distributed global lines
and mutual information definition.

2.1. Global lines

From integral geometry [14], a uniform density of lines
that is homogeneous and isotropic (invariant under transla-
tions and rotations) is defined. An easy way to sample this
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line density is to take random pairs of points on the sur-
face of a sphere enclosing an object [16]. These lines are
called global lines [15]. Other ways of generating lines are
described in [2]. Interestingly, this uniform density genera-
tion does not have a counterpart in 2D. That is, taking pairs
of points uniformly distributed on a circumference does not
provide a uniform density within the circumference. In 2D,
a way to get a random chord consists in choosing uniformly
at random a direction on the circle and then uniformly at
random a point on the corresponding radius: the chord is
the line segment whose endpoints are located on the circle
and perpendicular to the radius [16, 3].

The density of uniform lines crossing two differential ar-
eas dx, dy, centred at inner points x and y, is given by
dG = F (x, y)dxdy, where F (x, y) is the point-to-point
form factor and equal to cos θx cos θy

πr2
xy

for mutually visible

points, or zero otherwise, where θx and θy are the angles
which the normals at x and y form with the segment join-
ing them, and rxy is the distance between x and y (Fig. 1).

Global lines intersect an object forming random chords,
that can be used to measure the visibility within a body
(Fig. 1). Visibility directions must be homogeneous and
isotropic over the body, a quality fulfilled by the uniform
line density. Thus, it can be considered that the form fac-
tor measures this visibility. In Feixas et al. [5], a scene visi-
bility complexity is defined using this property.

Interestingly, the global line density is related to the cur-
vature function through an integral relation [14]. For an ob-
ject K , ∫

K∩G �=∅
(

n∑
i=1

κi)dG = Cc, (1)

where κi is the curvature (2D) or Gauss curvature (3D) at
the ith intersection point (out of n) of a line G and the ob-
ject K , and for a planar object C = 2 and for a 3D-object
C = π, being c total curvature.

2.2. Complexity and mutual information

The study of complexity has multiple directions and
objectives, and also many fields of application (automata,
computer science, physics, biology, etc.) [1], which reflect
the great activity in this area. But, what is complexity? Ac-
cording to W. Li, “the meaning of this quantity should be
very close to certain measures of difficulty concerning the
object or the system in question: the difficulty in construct-
ing an object, the difficulty in describing a system, the dif-
ficulty in reaching a goal, the difficulty in performing a
task, and so on” [10]. Many definitions of complexity, cor-
responding to the different ways of quantifying these diffi-
culties, can be found. In the two last decades, diverse com-
plexity measures, as for instance the mutual information,
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Figure 1. Geometry of one global line (x0, y0)
that generates five random chords in a 3D-
shape: (x0, x1), (x1, y1), (y1, x2), (x2, y2), and
(y2, y0).

have been proposed to quantify the degree of structure, de-
pendence, or correlation of a system [9, 10, 6].

The most basic measures of information theory are the
Shannon entropy which quantifies the information content
of a random variable, and the mutual information, which
expresses the shared information in a communication chan-
nel.

Given two discrete random variables, X and Y , with val-
ues in the sets X = {x1, . . . , xn} and Y = {y1, . . . , ym},
respectively, the mutual information [4] between X and Y
is defined as

I(X, Y ) =
n∑

i=1

m∑
j=1

pij log
pij

piqj
, (2)

where n = |X |, m = |Y|, pi = Pr[X = xi] and
qj = Pr[Y = yj] are the marginal probabilities, and
pij = Pr[X = xi, Y = yj] is the joint probability. I(X, Y )
is a measure of the shared information or correlation be-
tween X and Y . If the logarithms are taken in base 2, mu-
tual information and entropy are expressed in bits.

For continuous sources X and Y , the continuous MI is
defined as

Ic(X, Y ) =
∫

S

∫
S

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (3)

where values are taken from a continuous set S, p(x) and
p(y) are the marginal probability functions associated with
X and Y , and p(x, y) is the joint density function.

If we divide the range of the continuous random vari-
able X into n bins of length ∆, and we consider its dis-
cretised version X∆ (see [4]), the MI between two contin-
uous random variables X and Y is the limit of the MI be-
tween their discretised versions. Thus, when the size of bins
tends to zero, lim∆→0 I(X∆, Y ∆) = Ic(X, Y ).
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3. Inner shape complexity

In this section, the shape complexity of an object is anal-
ysed from its interior. In [5], continuous mutual information
was introduced as a complexity measure in order to evalu-
ate the difficulty of discretising a scene and to obtain a re-
finement criterion for hierarchical radiosity. In this paper,
continuous mutual information is proposed to measure the
shape complexity.

3.1. Complexity measure

The approaches taken by Page [13] and Feldman [7] con-
sider the information or entropy contained in the curvature
of an object. In [13], the quantity measured depends on both
the size and positioning of the (regular) discretisation of the
curve or surface. A discretisation that misses some corner
would give an incorrect measurement. Moreover, the en-
tropy is a function that diverges with the number of discreti-
sation bins. On the other hand, in [7], the curvature distri-
bution is a generic distribution that is apt for a generic study
of local complexity of a region of the curve but not to com-
pute the whole complexity of the object.

We need a measure able to compute the shape complex-
ity of an object independently of the discretisation. In the in-
formation theory field, continuous mutual information ful-
fils this requirement.

The basic idea of our approach is that a distribution of
global lines crossing an object defines a continuous infor-
mation channel X → Y , where X and Y represent the set
of contour or surface points. Consequently, the continuous
mutual information between the internal points of the ob-
ject can be calculated.

To apply (3), we need to define joint p(x, y) and
marginal p(x), p(y) distributions. We take as joint distribu-
tion p(x, y)= F (x,y)

LK
(or p(x, y)= F (x,y)

AK
), and marginal dis-

tributions result in p(x)=p(y)= 1
LK

(or p(x)=p(y)= 1
AK

),
where LK and AK are respectively the contour length
and the surface area. Remember from Section 2.1 that
p(x, y) is the global line density between differential ele-
ments dx and dy.

Thus, mutual information Ic between two continuous
random variables X and Y is given by

Ic =
∫

∂K

∫
∂K

F (x, y)
µ(∂K)

log(µ(∂K)F (x, y))dxdy, (4)

where ∂K represents the contour (2D) or the surface (3D)
and µ(∂K) is the measure of the boundary of K (LK and
AK for 2D and 3D objects respectively).

We can also easily study the complexity of a given re-
gion R ∈ ∂K . It will be given by

Ic =
∫

R

∫
∂K

F (x, y)
µ(∂K)

log(µ(∂K)F (x, y))dxdy. (5)

Regions corresponding to extrema will have higher com-
plexity than smooth regions, due to the angular dependency
of F (x, y). And regions with minima (concave regions) will
have in general higher complexity than regions with max-
ima (convex regions), as suggested in [7].

3.2. Monte Carlo computation of MI

For 3D-objects, inner 3D-shape complexity is defined by

Ic =
∫

S

∫
S

F (x, y)
AK

log(AKF (x, y))dxdy, (6)

where S stands for the internal surfaces of the object.
This continuous MI can be efficiently computed with

Monte Carlo integration by sampling global lines, as
global lines crossing dx and dy are distributed accord-
ing to F (x, y)dxdy. Thus, the density p(x, y) = F (x,y)

AK
,

that will be used in the Monte Carlo integration of (6), is
sampled by intersecting global lines with the object. We ob-
tain

Ic ≈ 1
N

N∑
k=1

log(AKF (xk, yk(xk, ωxk
))

=
1
N

N∑
k=1

log
(AK cos θxk

cos θyk

πr2
xkyk

)
, (7)

where N stands for the total number of segments of the
global lines or the number of pairs of points considered,
which is the total number of intersections divided by two
(see Fig. 1). The term of the sumatory is the contribution of
each chord to the complexity and we call it chord complex-
ity.

Continuous MI is invariant to translations, rotations and
a change of scale. As we have seen in Sec. 2.1, point-to-
point form factor gives the density of uniformly distributed
lines crossing differential areas with centre at these points,
and by definition this density is invariant under translations
and rotations. In addition, scale invariance is easily seen
from formula (7), where a scaling of the distances is com-
pensated by the corresponding scaling of the total area.

Observe that chord complexity is bigger for small chord
lengths and for angles near to zero. Thus, regions corre-
sponding to corners or narrow spaces will contribute more
to MI (shape complexity). For the interior of an empty
sphere, since any pair (x, y) fulfils F (x, y) = 1

AK
, the re-

sult obtained is, as intuitively expected, Ic = 0.
Note also, that from chord complexities we could ob-

tain a shape complexity distribution of the object to be ap-
plied in object recognition, classification, clustering, and re-
trieval, analogous to [11, 17, 12].
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Figure Object MI dMI

Sphere 0 � ∃
2(a) Tetrahedron 2.626 1.800
2(b) Hexahedron 1.610 3.650
2(c) Octahedron 1.262 3.165
2(d) Dodecahedron 0.813 6.161
2(e) Icosahedron 0.545 5.412
2(f) In-Hexaedron 7.438 2.952
2(g) Out-Hexaedron 0.571 5.599
2(h) Out-Icosahedron 5.914 3.198
2(i) Torus 2.859 4.154
2(j) Plate-I 5.601 1.523
2(k) Cylinder-I 1.027 5.337
2(l) Cone-I 1.648 3.164

2(m) Pencil-I 2.104 0.730
2(n) Glass-I 11.392 3.397
2(o) Plate-II 6.482 1.222
2(p) Cylinder-II 1.125 3.508
2(q) Cone-II 1.475 1.985
2(r) Pencil-II 2.908 0.377
2(s) Glass-II 11.344 2.518

Table 1. MI and dMI for the objects in Fig. 2.

3.3. Inner 3D-shape complexity results

In this section, we show the inner shape complexity (col-
umn MI of Table 1) of of a set of 3D objects (Fig. 2). The
Monte Carlo integral (7) has been solved by casting 105

global lines. As we have seen, the sphere has the minimum
complexity (Ic = 0), and among the platonic solids, the
minimum and maximum complexity correspond, respec-
tively, to icosahedron and tetrahedron, since at the corners
of a tetrahedron the dependence between the parts is greater
than at the corners of an icosahedron. As expected, the poly-
hedra that are nearer to the sphere are less complex, i.e.,
they have less correlation. In fact, it can be considered that
MI measures how “distant” is any object from the sphere.
Observe also that the complexity of in-stellated hexahedron
is bigger than the one of the out-stellated icosahedron be-
cause the hexahedron has folded faces that leave very nar-
row space between them.

On the other hand, in Fig. 2 we have a collection of com-
mon objects with some modifications. Thus, similar shapes
have MI values in a similar range (cylinders, cones, pen-
cils, etc.). Observe that MI ranges from a minimal value
for the Cylinder-I (Fig. 2(k)), to a maximum value for the
Glass-I (Fig. 2(n)). The case of the Plate objects (Figs. 2(j)
and 2(o)) is an apparent counter-example, as they are very
simple objects but have high MI values. These values are ex-

Scene exact value MC

Circle log π
e � 0.209 0.209

Hexagon log e
√

3−4324(7+4
√

3)

168+97
√

3
� 0.475 0.475

Tetragon log 8(1+
√

2)

e1+
√

2 � 0.789 0.788
Trigon log 18

e2 � 1.285 1.284

Table 2. Exact Ic values for a circle and three
regular polygons compared with results ob-
tained by Monte Carlo simulation (MC).

plained from the fact that two very near surfaces contribute
with high values to the computation of its MI. Also, Plate-II
has a higher MI value that Plate-I because it is a proportion-
ally thinner object. Note that the same kind of behaviour can
be observed for both Pencil objects (Figs. 2(m) and 2(r)).

3.4. Inner 2D-shape complexity results

Similarly to (6), the continuous MI in flatland is defined
by

Ic =
∫

L

∫
L

F (x, y)
LK

log(LKF (x, y))dxdy, (8)

where L is the set of segments that form the environ-
ment, LK is the total length of the contour, and F (x, y) =
cos θx cos θy

2rxy
V (x, y) is the point-to-point form factor be-

tween x and y. As in (7), this integral can be solved
by Monte Carlo integration and the computation can be
done efficiently by casting uniformly distributed global
lines upon segments [3]. Hence, continuous MI can be ap-
proximated by

Ic ≈ 1
N

N∑
k=1

log(
LKcosθxk

cosθyk

2rxkyk

), (9)

where N is the total number of pairs of points considered,
which is the total number of intersections divided by two.

The closed-form solution of the continuous MI integral
for the circle and some regular polygons (hexagon, square,
and equilateral triangle) is shown in Table 2. The Monte
Carlo integral has also been solved by casting 105 global
lines.

The circle requires special attention. Observe that its
complexity is different from zero: Ic = log π

e . Since a
sphere has zero complexity (Ic = 0), we could expect the
same for a circle. But null complexity for the sphere is due
to the fact that a global line can be generated by selecting
two random points on its surface. However, in the case of
a circle, selecting pairs of random points on its perimeter
will not yield a uniform density [3]. In flatland, we can not
imagine a scene with less complexity than a circle. In this
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r) (s)

Figure 2. Collection of test objects of Table 1: platonic solids and other geometrical shapes.

sense, there is a significant difference between the 3D and
2D worlds.

We have also computed the complexity of a sequence
representing the formation of a 12-pointed star and the Von
Koch fractal. If we start with a polygon of 24 edges, with a
complexity very similar to the one of a circle, and we con-
tinue closing the edges as shown in Fig. 3(i), the complex-
ity increases noticeably, due to the growth of the interaction
within the edges. In the Von Koch fractal (Fig. 3(ii)), a sim-
ilar thing happens: by increasing the number of corners, the
correlation increases.

(i.a) 0.232 (i.b) 1.966 (i.c) 5.236 (i.d) 6.915

(ii.a) 1.910 (ii.b) 2.950 (ii.c) 4.258 (ii.d) 5.726

Figure 3. (i) Ic value for a 24-sided regular
polygon and three 12-pointed stars and (ii)
for Von Koch fractals.

4. Outer shape complexity

In addition to the MI of an object, we introduce a sec-
ondary shape complexity measure given by the MI between
the object and its minimum circumscribing sphere (Fig. 4).
We call the MI of this “new” object (dual-object) dual-MI
(dMI). This value can be seen as the increase in MI induced
by the introduction of the object within an spherical envi-
ronment. The choice of this environment is coherent with
the fact that the MI of a sphere is zero.

The sphere of smallest radius that contains an object ex-
ists and is unique. Following Gärtner [8], we compute this in
linear time with respect to the number of vertices of the ob-
ject. The dMI, similarly to MI, is also computed from a set
of global lines. Note that the same set of global lines can be
used to compute both shape complexities. The chords that
contribute to the dMI are the complementaries of the ones
that are used for MI computation. Note that the sphere vs
sphere chords do not contribute to the outer shape complex-
ity, since the term within the logarithm in (7) is equal to 1.
If the object is an sphere, a singularity is obtained.

From Table 1, we can analyse the behaviour of our sec-
ondary descriptor dMI. We can see that the bigger the dMI
the more the interaction between the object and the cir-
cumscribing sphere. For instance, we observe that, some-
how against intuition, hexahedron and dodecahedron in-
terchange their ordering with octahedron and icosahedron
when considering dMI. This is so because the relative vol-
ume within the circumscribing sphere is higher for the hex-
ahedron and dodecahedron than for the octahedron and
icosahedron, respectively, and consequently the interaction
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Figure 4. The dual-object is formed by the
space between the object and its circum-
scribing sphere.

within the dual object becomes stronger. Also, for two sim-
ilar objects, the more complex is the contour of an object
(concavities, rugosities) the higher the dMI value.

It can be seen that the dMI clearly discriminates be-
tween the Cone-I (dMI = 3.164) and the Cone-II (dMI =
1.985). The same happens for Cylinder-I and II with dMI
values of 5.337 and 3.508, respectively. Maybe, the most
remarkable example are the objects Glass-I and Glass-II
(Figs. 2(n) and 2(s), respectively). With very similar MI
value, the dMI clearly separates both objects.

5. Conclusions and Future Work

In this paper, integral geometry and information theory
tools have been applied to quantify the shape complexity
from two different perspectives. First, from the inside of the
object, correlation between its surfaces (inner complexity)
is considered. Second, from the outside of the object, its
degree of interaction with the circumscribing sphere (outer
complexity) is evaluated. Our measures are robust and can
be efficiently computed using global lines crossing an ob-
ject and assigning a complexity value to each chord. The
measures are independent of the discretisation and invari-
ant to a change of scale, and can be used as shape descrip-
tors for different applications.

In our future work, we will study the application of these
complexity measures as shape descriptors. We will also
analyse the distribution of chord complexities applied to
shape analysis and object recognition.
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