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Abstract 

In this paper we present view-dependent information 
theory quality measures for  pixel sampling and scene dis- 
cretization injatland. The measures are based on a dejini- 
tion for  the mutual information of a line, and have a purely 
geometrical basis. Several algorithms exploiting them are 
presented and compare well with an existing one based on 
depth diTerences. 

1. Introduction 

Recently from the image based rendering and interactive 
rendering fields the need to measure the pixel quality or the 
triangle quality out of a mesh has appeared. 

In [6] ,  several images were blended to get the new one 
corresponding to the virtual camera. The color of a pixel 
of each image to be blended was weighted with a quality 
factor, which included the cosines of the angle between the 
normal to the surface and the viewing direction. 

Darsa [3] uses an adaptive sampling strategy based on a 
priority schema that takes two factors into consideration, the 
difference in color between adjacent samples and the size of 
cells. The Gouraud-shaded constant color cells are triangles 
constructed using a Voronoi diagram or Delaunay triangu- 
lation, where each Voronoi edge corresponds to a pair of 
adjacent samples. In [4] they introduce into the sampling 
strategy the inverse of the depth, this is, they say “the mesh 
should approximate the object edges, and its sampling den- 
sity should be inversely proportional to the depth”. 

In [ 1 1 J a spherical Delaunay triangular mesh was created 
according to a priority schema. The priority was an estimate 
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on how well a Gouraud-shaded triangle approximates the 
corresponding portion of the sample environment relative to 
the current view. The priority value was computed weight- 
ing two measures: a contrast measure for colour differences 
and a depth value based on depth differences relative to the 
current view. This scheme was used to select the next pixels 
to sample. 

We will try to give here a unifying approach to deal with 
both pixel quality and priority schema sampling, based on  
. information theory. Our approach is based on the defini- 
tion for the mutual information of a line in flatland. For the 
moment being our approach covers only the geometry mea- 
sure, but we are working on an extension to colour. We will 
show how the mutual information based measures are a nat- 
ural representation for the quality of a pixel or a mesh, and 
that previous measures can be considered as approximating 
steps. 

The organization of this paper is as follows: In section 
2 we present our previous work about information theory 
measures in a 2D scene. In section 3 we introduce a view- 
dependent discretization algorithm. This algorithm can also 
work as a priority schema. In section 4 two methods are 
presented in order to obtain which pixel should be sampled 
next based on the quality measure for a pixel. In section 5 
we present our conclusions and future work. 

2. Previous work 

In our previous work [5,  8, 9, 71, we introduced discrete 
and continuous information theory measures [ I ,  21 of the 
visibility complexity in a scene. Next, we review the differ- 
ent definitions and results needed in this paper. 
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Discrete mutual information in flatland is defined by 

(1) 
Fij I,d(S) = liFZj log - 

ZES j € S  4 

where S is the set of patches of the scene (IS1 = n p ) ,  Fij is 
the form factor between the patches i and j ,  and ti = 5 is 
the relative length of patch i (Li  is the length of patch i and 
LT is the total length of the scene or the sum of segment 
lengths). 

Continuous mutual information in flatland is defined by 

F(x '  ' )  log(LTF(x,  y))dL,dL, (2)  
I: = Jl,vEc LT 

where C is the set of segments that forms the environment, 
x and y are points on segments of the environment and 
F ( x ,  y )  is the differential form factor between x and y. This 
integral can be solved by Monte Carlo integration [5] and 
the computation can be done efficiently by casting global 
lines uniformly distributed upon segments [ 101 (see figure 
1). Thus, continuous mutual information can be approxi- 
mated by 

where OZk and e,, are the angles which the normals at X k  

and yk form with the segment joining xk and yk, d ( x k ,  yk) 

is the distance between xk and yk, N is the total number 
of pairs of points considered, which is equal to the total 
number of intersections divided by two, and the value of 
F ( x ,  y) is 2 d ( z , y )  for mutually visible points and zero 
otherwise. 

Both measures, discrete and continuous mutual informa- 
tion, express the average information transfer in a scene. 
In [5, 81 continuous scene visibility mutual information has 
been proposed as an absolute measure of the complexity of 
scene visibility and discrete mutual information as a com- 
plexity measure of visibility of a discretized scene. 

We define next discrete and continuous mutual informa- 
t ionjeld at a point in flatland [7] which is related to the 
increase of complexity when an object is inserted at this 
point (see [9]). Note that we deal with the interior points 
of a 2D scene, which belong to the region strictly contained 
between the enclosure and the objects included in this one. 

The contribution of patch i E S to the discrete mutual 
informationjeld at point x is 

cose,cose, 

(4) 

Figure 1. Global lines are used to compute I,". 
Lines are generated using a random point on 
a random diameter. 

where 

F p ( x , i )  = & ( x , i )  (5) 

represents the fraction of random lines that exiting from 
point x hit patch i or the normalized visible angle &(x, i) 
subtended by patch i [7]. Thus, given a discretization S ,  the 
discrete mutual informationjeld at point x is given by 

I,"(x, S )  = I,"(x, i) (6 )  
i€.S 

The contribution of patch i E S to the continuous mutual 
information3eld at point x is 

q x ,  2) = LEC* FP(X, Y )  log(LTFp(x:l Yl))dL, (7) 

where F p ( z ,  y)  represents the fraction of random lines that 
exiting from point x hit differential dL, or the relative visi- 
ble differential angle subtended by differential dL, [7 ] .  

I;(x,  i) can be computed approximately by casting ran- 
dom lines from x in all directions (similar to rays from a 
point light source, see figure 2): 

where N is the total number of lines cast and N ( i )  is the 
number of lines that hit patch i. 

Thus, given any discretization S of a scene, continuous 
visibility mutual information field at point x is given by 

I,"(.) = IpC(x, i) (9) 
i € S  

Note that I: is independent of any discretization and can be 
computed by the above method: 
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where N is the number of lines that hit the scene and N = 
C i E S W ) .  

Figure 2. Random lines cast from a point z. 

3. View-dependent discretization 

In this section we present a proposition that allows us to 
derive a subdivision algorithm based on the mutual informa- 
tion field at a point (6,9). This algorithm will be applied at 
different points of two different 2D scenes in order to show 
the feasibility of our approach. 

3.1. Continuous versus discrete mutual information 
at point x 

In [SI we showed that when a patch is refined into n sub- 
patches, discrete mutual information of a scene increases or 
remains the same, and continuous mutual information is the 
least upper bound to discrete mutual information: I," 5 I,". 
The optimal discretization corresponds with the one with 
minimal loss of information, or vice versa, the one with the 
highest mutual information. 

Now, from the complexity measures at a point, we 
present a similar proposition: 

Proposition 1 When a patch i E S is refined into n sub- 
patches, the discrete mutual information at point z in- 
creases or remains the same. 

This proof is shown in appendix A. 

Corollary 1 For any discretization S of a scene, the con- 
tinuous mutual information at point z is the least upper 
bound to discrete mutual information at point z: I:(%, S) 5 
I,C(x). 

Proof: From the above proposition and as 

we have that I;(.) is the least upper bound to I:(z, S). 

3.2. Subdivision algorithm 

From the results in the previous section, we propose a 
subdivision algorithm from a viewpoint (interior point of a 
scene). 

As the difference I;"() - I,d(z, S) represents the loss of 
information due to the discretization and our goal is to ob- 
tain the maximum information with the minimum number 
of patches, we choose to subdivide the patch i that has the 
maximum loss of information, that is, the maximum poten- 
tial information gain ( I i ( z ,  i) - I,d(z, 2 ) ) .  

We define the gradient over patch i by 

A(z , i )  = Ii(z,i) - It(Z,Z) (1 1) 

and the global gradient of the scene by 

A(z ,S )  = C A ( z , i )  
i E S  

We also introduce the discretization accuracy as the quo- 
tient 

which takes values from 0 to 1. 
In the following subdivision algorithm the patches are 

successively divided into two equal parts. The discretiza- 
tion process will finish when a given discretization accuracy 
is reached. Also it could be possible to end the algorithm 
when a given number of patches is achieved. 

1. Input set of scene patches S 

2. Input point of view z 

3.  Input accuracy E 

4. I ,d(z,S) t 0 

5. I ; (z)  t 0 

6. For each i E S, do 

(a) Compute Fp(z7 i) from ( 5 )  

(b) Compute I:(z, i) from (4) 
(c) Compute I i ( z ,  i) from (8) 

(d) A(z,  i) t IpC(x, i) - I,d(z, i) from (1 1) 

(e) I,d(z, S) t I,d(x, S )  + I,d(z, i) from (6) 
(f) I,"(.) t I,"(.) + I,C(z, i) from (9) 

7. 6 t '";$ from (13) 

8. While 6 < E ,  do 
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9. Output new set of scene patches S 

3.3. Results 

The behaviour of this algorithm is shown in figures 3, 
4 and 5, and table 1. These figures represent different dis- 
cretizations from different viewpoints. As we can observe, 
the discretization is finer in the discontinuity regions and 
also on the patches which are not well oriented with respect 
to the point. Over these patches we obtain (1 I )  a higher gra- 
dient A, basically due to the difference of distances between 
the viewpoint and the points on a patch. 

I scene I lines cast 1 1  np I I," I 1; I 1006 J 
I 3(a) I 104 II 120 I 1.6105 I 1.6122 1 99.90 1 

Table 1. Final values obtained by the subdivi- 
sion algorithm for the scenes of figures 3 and 
4. np is the final number of patches, Ipd and 1; 
are the discrete and continuous mutual infor- 
mation field at a point respectively, and 1006 
is the accuracy achieved. 

In figure 5(a) and 5(b) we show the convergence of I t  to- 
wards I; for the scenes of figures 3 and 4 respectively. Table 
1 shows the values corresponding to the final discretization 
obtained. In figure 5 ,  the points marked represent the num- 
ber of patches in which 6 = 0.99 is obtained. Note that, 
in the examples presented, a good discretization is achieved 
first from the most complex viewpoints. To compute the 
subdivision of figures 3 and 4 we cast lo4 and lo5  random 
lines respectively. 

4. Pixel sampling 

In this section we define the quality of a pixel and give 
two heuristics based on this definition. These are applied 
to pixel sampling and compared with a heuristic based on 
depth difference [ 1 11. 

4.1. Pixel quality measures 

We consider here pixels defined on a circle instead of a 
line, although there is practically no difference in the final 
results. First we define continuous mutual information for a 
pixel. 

Pixel continuous mutual information or pixel quality is 
defined by 

q x ,  Pi) 
= I;b1 S(Z1Pi)) 

= / y € S ( z , P * )  
F p ( z ,  !/I log(LTFp(z, !/))dLy (14) 

where pi is a pixel and S ( z , p i )  is the set of patches visible 
through pixel pi from point z. 

In a similar way we have shown in the previous work, 
pixel quality can be computed casting random lines from 
viewpoint z to the scene through pixel p i :  

where N is the total number of lines cast, N ( x , p i )  is the 
number of random lines through pixel pi from point 5, and 
N = ci N ( X , P i ) .  

Pixel line quality is given by 

where k E { l . . N ( x , p i ) } ,  and represents the contribution 
of each line to the pixel quality. 

4.2. Sampling heuristics 

We present two different heuristics which will be evalu- 
ated in comparison to a depth heuristic defined in [ 1 I ]  as 

(17) 

where Dmin and DmaX are respectively the minimum and 
maximum distances from viewpoint z to the scene through 
pixel pi. 

This heuristic was used to drive a priority schema for 
pixel sampling purposes. It was the geometrical part of a 
combined color and depth difference measure. 

Dmin 
Dmax 

r(z,pi) = 1 - - 
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Figure 3. Three different discretizations of the same scene from different viewpoints (represented by 
a little circle) obtained by casting lo4 lines. The final values are shown in table 1. 
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rI 

Figure 4. Two different discretizations of the same scene from different viewpoints (represented by 
a little circle) obtained by casting lo5 lines. The final values are shown in table 1. 

Our first approach calculates for each pixel the sum of 
differences between successive pixel line qualities which 
can be expressed by 

This measure can be interpreted as representing the orog- 
raphy of the region seen through the pixel and will be used 
to obtain the proportion of lines cast for each pixel. 

The second approach takes only into account the differ- 
ence between maximum and minimum line quality for each 

pixel and is expressed by 

This is an analogous to the depth difference measure and 
can be interpreted as representing the gradient of the region 
seen through the pixel. As in the first approach, the number 
of lines cast for each pixel is proportional to this value. 

While the distance heuristic only considers the distance 
between the viewpoint and the segment, in our approaches, 
pixel line complexity conveys two kinds of information: 
distance and orientation. So, our two heuristics discrimi- 
nate discontinuities and also orientation changes (vertices). 
To see this, pixel line quality can be split in the following 
way 
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5. Plots (a) and (b) correspond to figures 3 and 4 respectively. In (a), dot, continuous, 
and dashed lines correspond to scenes 3(a,b,c), and an accuracy 6 = 0.99 is achieved with np = 
(60,63,50) respectively. In (b), dashed, and continuous lines correspond to scenes 4(a,b), and the 
same accuracy is achieved with np = (198,163) respectively. 

where the first term in (20) represents the patch orientation 
contribution and the second represents the distance contri- 
bution. In this way our approach can be seen as the combi- 
nation of the ones based on orientation and depth, respec- 
tively. 

based on the definition for the mutual information of a line. 
Results show that they are very promising and compare well 
with depth measures. Although this is a purely geometrical 
approach we plan in our future work to extend it to deal 
also with color. The extension to 3D scenes, although not 
yet implemented, is straightforward. 

6. Acknowledgements 
4.3. Results 

In figures 6 and 7 we show the results of applying the 
above three heuristics. Figures (a), (b), and (c) are obtained 
respectively from the depth (r), sum of differences (A), and 
gradient (Y) heuristics. 

In the images that correspond to the depth heuristic (fig- 
ures 6(a) and 7(a)) we observe that some edges remain un- 
sampled as, contrary to ours, the depth heuristic does not 
capture a change in orientation from edge to edge. Com- 
pare for instance the corners in the bedroom in figures 7(ii). 
In general our heuristics behave better by obtaining a finer 
sampling where it is more needed. On the other hand a 
possible drawback in our approaches can appear when the 
distance factor is balanced with the orientation factor. This 
happens for instance at the L corner in figures 6(i). We are 
currently considering a solution to this problem by taking 
separately the two components of the measure (20). 

5. Conclusions and future work 

We have presented in this paper several view-dependent 
information theory based quality measures for pixel sam- 
pling and scene discretization in flatland. The measures are 

This project has been funded in part with grant numbers 
TIC-98-586-CO3 and TIC-98-973-CO3 of the Spanish Gov- 
ernment and with a Spanish-Austrian joint action number 
HU- 1998-0015 of the Ministerio de Educucidn y Culturu. 

A Proof of the proposition 

Let us imagine a point x in a discretized scene where 
IS1 = np and discrete mutual information field at point z is 
Ipd(z, S). If any patch i is divided into n > 0 subpatches 
Si = { i k l l c  E {l..n}}, wehavetoshowthatdiscretemutual 
information at point z of the new discretization S' = ( S  - 
{i}) U Si (where 1S'J = np + n - 1) fulfills Ipd(x,S) 5 

First, we show that Ipd(z,i) I Ipd(x,Si). From the 
following equalities F p ( z ,  i) = E!=, Fp(x, ik) and l i  = 
E;==, tik we obtain 

Ipd(2, S') .  

k = l  La 
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(a.i) (b.i) (c.i) 
I 

\ I I \ 
(a.ii) (b.ii) (c.ii) 

Figure 6. The same scene with six different pixel samplings. Viewpoint is represented by a little 
circle. Field of view has 110" and 100" for figures (i) and (ii) respectively, 150 lines have been cast 
and 30 pixels are used. Figures (a), (b), and (c) correspond to I?, A, and Y heuristics respectively. 

The last step is true for the concavity of the logarithm func- 
tion for non-negative numbers: 

True 
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