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Abstract

We present algorithms for computing approximate dis-
tance functions and shortest paths from a generalized
source (point, segment, polygonal chain or polygonal re-
gion) on a weighted non-convex polyhedral surface in which
obstacles (represented by polygonal chains or polygons) are
allowed. We also describe an algorithm for discretizing, by
using graphics hardware capabalities, distance functions.
Finally, we present algorithms for computing discrete k-
order Voronoi diagrams.

1. Introduction

Computing shortest paths, and consequently distances,
on polyhedral surfaces is a fundamental problem in compu-
tational geometry with important applications in geograph-
ical information systems, robotics and computer graphics.
Shortest path distances computation often arise as a subrou-
tine in the solution of other problems, for example Voronoi
diagrams computation.

In this paper we present algorithms for computing ap-
proximate distance functions and shortest paths from a gen-
eralized source on a possibly non-convex weighted poly-
hedral surface with obstacles. We also describe an algo-
rithm that uses hardware graphics capabilities to discretize
the distance function. As an application, we present algo-
rithms for computing discrete k-order Voronoi diagrams of
a set of generalized sites on a weighted polyhedral surface
with obstacles. We omit some proofs due to lack of space.

1.1. Preliminaries

Let P be a possibly non-convex polyhedral surface
represented as a mesh consisting of n triangular faces
f1, · · · , fn with associated positive weights w1, · · · , wn, re-
spectively. The weight associated with an edge, is the min-
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imum of the weights of the two neighboring faces. From
now on, a generalized element on P refers to a point, seg-
ment, polygonal chain or polygon. We model obstacles in
P by a set of non-punctual generalized elements on P . We
only consider paths from generalized sources to points on
P that stay on P and avoid the obstacles. The cost of a
path Π on P is defined by ‖Π‖ =

∑n
i=1 wi|Πi|, where |Πi|

denotes the Euclidean length of the path lying inside the
face fi. For a generalized source s and a point q on P , the
path of least cost between them is called shortest path. The
cost of the shortest path is called the (shortest path) distance
between s and q. The distance function defined by a gen-
eralized source s on P is a function ds such that for any
point q ∈ P , ds(q) is the distance between s and q. Given
ε ∈]0, 1[, a path is called a (1+ε) approximation of a short-
est path between a generalized source and a point on P if
its cost is at most (1 + ε) times the cost of a shortest path.

Let S be a set of r generalized sites on the polyhe-
dral surface P and let S′ be a subset of k sites of S,
k ∈ {1, · · · , r−1}. The set of points of P closer to each site
of S′ than to any other site of S, is a possibly empty region
called the k-order Voronoi region of S′. The set of k-order
Voronoi regions of all subsets of k sites of S is called the
k-order Voronoi diagram of S. When k = 1 and k = r − 1
the k-order Voronoi diagram is called the closest Voronoi
and the furthest Voronoi diagram, respectively.

1.2. Related Work

Shortest Paths

Results on algorithms computing (1 + ε) approximate
shortest paths on weighted polyhedral surfaces involve ge-
ometric parameters that have been omitted for the sake of
clarity. In 1991 Mitchell and Paparimitriou [MP] gave the
characterization of the shortest paths on weighted surfaces
and presented an algorithm that uses the continuous Dijk-
stra method to provide an (1 + ε)approximate shortest path
that runs in O(n8 log n/ε) time and O(n4) space. There
exist several papers providing (1 + ε) approximate short-

International Conference on Computational Sciences and Its Applications ICCSA 2008

978-0-7695-3243-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICCSA.2008.21

394

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on May 8, 2009 at 07:19 from IEEE Xplore.  Restrictions apply.



est paths that discretize the polyhedral surface reducing the
problem to the determination of shortest paths on weighted
graphs using Dijkstra algorithm [ALMS, AMS1, AMS2].
The discretization scheme places Steiner points on the tri-
angle edges or on the bisectors of the triangle vertices.
Between the formers, the best algorithm follows a log-
arithmic discretization scheme and has time complexity
O(n/ε log 1/ε (1/

√
ε + log n)) [AMS1]. An algorithm

of time complexity O(n/
√

ε log n/ε log 1/ε) that uses the
later approach is presented in [AMS2]. However, there ex-
ist an alternative strategy called Bushwhack, proposed by
Sun and Reif [SR]. They use the shortest path proper-
ties smartly and obtain, by using the discretization strat-
egy introduced in [AMS1], an approximate shortest path in
O(n/ε log 1/ε log n/ε) time.

Voronoi Diagrams

The computation of exact generalized Voronoi diagrams
use to be complicated because it involves the manipula-
tion of high-degree algebraic curves or surfaces and their
intersections. Algorithms based on different distance func-
tions have been proposed to compute 2D and 3D discretized
Voronoi diagrams on a grid by using graphics hardware
[FG, HKLMC].

Mount [Mou] shows that the closest Voronoi diagram of
r sites on a non-weighted polyhedral surface with n faces,
assuming r ≤ n, has complexity O(n2) in the worst case
and also gives an algorithm that computes the diagram in
O(n2 log n) time. Aronov at al. [AKOV] show that the
furthest Voronoi diagram of the sites on the polyhedral
surface has maximum combinatorial complexity Θ(rn2),
and present an algorithm that computes the diagram in
O(rn2 log2 r log n) expected time. In [FS] an algorithm
that computes discrete generalized higher-order Voronoi di-
agrams on non weighted polyhedral surfaces is presented.
To the best of our knowledge there exist no results related
to the complexity and computation of a k-order Voronoi di-
agram on weighted surfaces.

Graphics Hardware

The increasing programmability and high computational
rates of graphics processing units (GPUs) make them at-
tractive as an alternative to CPUs for general-purpose com-
puting. Recently, different algorithms and applications
that exploit the inherent parallelism, easy programmabil-
ity and vector processing capabilities of GPUs have been
proposed [OLGHKLP, PBMH]. In computational geome-
try and GIS fields there exist several algorithms that have
a fast hardware-based implementation [HKLMC, GHLM,
KCC, KMV, AKMV, FEKKVS, MKV].

The graphics pipeline [OpenGL] is divided into several
stages. The input is a list of 3D geometric primitives ex-
pressed as vertices defining points, lines, etc. with attributes
associated. The output is an image in the frame buffer, a
collection of several hardware buffers corresponding to two
dimensional grids whose cells are called pixels. In the first
stage of the pipeline, per-vertex operations take place, each
input vertex is transformed from 3D coordinates to window
coordinates. Next stage is rasterization, when it finishes we
obtain a fragment, with its associated attributes, for each
pixel location covered by a geometric primitive. Fragment
attributes are obtained from the attributes associated to the
vertices by linear interpolation. The third stage, the frag-
ment stage, computes the colour for each pixel in the frame
buffer, according to the fragments corresponding to it taking
into account a series of tests such as the depth test and per-
fragment operations. Information of a user defined rectan-
gle of the colour buffer can be easily transferred to the CPU
or directly to a texture. The unique programmable parts of
the graphics pipeline are the vertex and fragment shaders
which are executed on a per-vertex and per-fragment basis,
respectively. They are used to change the vertex or fragment
attributes.

1.3. Our Contribution

In this paper we present an algorithm for comput-
ing approximately shortest paths, and consequently dis-
tances, from a generalized source on a, possibly non-
convex,weighted polyhedral surface P with obstacles.
More specifically:

• We extend the discretization scheme introduced by
Sun and Reif [SR] to handle the generalized source
case in arbitrary position. As generalized sources we
consider points, segments, polygonal lines and poly-
gons. We prove that the discretization scheme provides
(1 + ε)-approximate shortest paths (Section 2).

• We obtain (1 + ε)-approximate shortest path distances
on the weighted polyhedral surface by using Bushwack
strategy (Section 3).

• The algorithm is extended to the case of several
sources and their distanced field is obtained, providing
an implicit representation of the closest Voronoi dia-
gram of a set of generalized sites on the surface (Sec-
tion 4).

• We explain how the distance to arbitrary points of the
surface and the actual shortest path is obtained (Sec-
tion 5)

We also present two algorithms, based on distance func-
tions and hardware graphics capabilities, for computing dis-
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crete Voronoi diagrams of a set of m generalized sites on the
polyhedral surface P with obstacles:

• We present an algorithm for discretizing, by using
hardware graphics, the distance function defined by a
generalized source on P (Section 6).

• We obtain discrete k-order Voronoi diagrams, k =
1, · · · , m − 1 (Section 7).

We present some experimental results (Section 8) and
we finally provide some conclusions and future work (Sec-
tion 9).

Figure 1. Shortest path (1 + ε)-approximate
distances and Voronoi diagrams computa-
tion of a set of generalized sites.

2. Discretization Scheme

We provide a discretization scheme to obtain (1 + ε)-
approximate distances from a point or segment source to
a graph node. In fact, we define a logarithmic discretiza-
tion scheme which places Steiner points on the edges of the
triangulated polyhedral surface P according to a given pa-
rameter 0 < ε ≤ 1. The scheme we propose adapts the one
provided by Sun and Reif [SR] to take into account a point
or segment source s which is not necessarily a vertex nor an
edge.

We start by providing some definitions and notation, we
denote E the set of edges of P , f a face, e an edge, v a ver-
tex and x an arbitrary point. We define F (f) as the union
of the faces without empty intersection with f , face f in-
cluded, F (x) as the union of the faces containing point x.
Let E(x) denote the set of edges containing x and S(x) the
set of sources contained in F (x) \ {x}, in the current case
S(x) will be empty or {s}. Let Dx be the minimal distance
between x and S(x)∪E \E(x), De = sup{Dv|v ∈ e} and
Dve = D(e). For each point x we define the radius r′(x) to

be Dx/5, and the weighted radius r(x) of x to be wm

wM
r′(x),

where wm, wM are the minimal and maximal weights of
the faces in F (x). Notice that these radius take into account
not only the proximity of the edges in E \ E(x) but also
the proximity of s to x, when x is in F (fs). Finally V (x)
is the vicinity of point x. Vicinity V (x) is defined to have
radius rε(x) = εr(x), it contains all the points around x at
distance at most rε(x). When instead of a point x a source
s is considered F (s), S(s), E(s), Ds, r′(s), r(s), V (s) and
rε(s) are analogously defined.

Steiner points are placed on the edges of P considering
that source s and each vertex v has a vicinity. For a given
vertex vi Steiner points vi,1, vi,2, . . . , vi,ki are on edge e =
vivj and outside the vicinities, they are chosen according to
the following criteria:

- When e is not in F (fs), the first node is placed
so that |vivi,0| = rε(vi), the rest using the equal-
ity |vi,kvi,k+1| = ε Dvi,k

, until placing vi,ki where
vi,kivi + ε Dvi,ki

≥ |vive|.
- When e ∈ F (s) we take into account the vicinity of s,

V (s). If e ∩ V (s) = ∅ we proceed as in the previous
case. Otherwise, when e∩ V (s) 	= ∅, e \ V (s) defines
two subedges viv and vvj , since we are considering vi

we choose Steiner points on e′ = viv. Steiner point
vi0 is placed so that |vivi,0| = rε(vi), Steiner points
for i = 1 . . . ji so that |vi,kvi,k+1| = ε Dvi,k

until
k = ji where vi,jiv + εDvi,ji

≥ |vi, ve′ |. The rest
of points are placed considering endpoint v, Steiner
point vi,ki = rε(v), for k = ki . . . ji + 1 according
to |vi,kvi,k+1| = Dvi,k

until vi,ji+1v + εDvi,ji+1 ≥
|v, ve′ |.

Lemma 2.1 The number of Steiner points placed on each
edge is in O

(
1
ε log 1

ε

)
.

Proof. The proof is omitted for lack of space.

We build a graph whose nodes are the vertices of P and
the Steiner points. Graph edges consist of face-crossing
segments joining pairs of Steiner points of the same face,
and edge-using segments joining consecutive nodes along
an edge, and each vertex v to the first node of the edges
where v is incident to. Notice that when s is a vertex this
scheme is the logarithmic scheme provided by Sun and Reif
[SR].

2.1. Approximation Analysis

We are interested in bounding the committed error when
using the previous graph to compute weighted distances
from a point or segment source s. With this purpose we
present different Lemmas.
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From now one we denote by w̃ and w′ the largest and
smallest weight of the faces of P . We assume ε ≤ 1 and
w′ ≥ 1, it is not a restriction because it can be achieved by
adding one to all the face weights.

Lemma 2.2 For any path p from source s ∈ fs to node
t ∈ ft which does not intersect the vertex vicinities of ft

there is a normalized path p̂ so that ||p̂|| = (1 + ε
2 )||p||.

Proof. Assume that p passes through a vertex vicinity,
V (v). We distinguish between two situations depending on
whether v is a vertex of fs or not (See Figure 2).

A) Let us assume that v is a vertex of fs. We denote u1,
u2, the first bending point of p in V (v) and u′′

2 the last
bending point of p in F (v) (See Figure 2 a)). By using
the definition of Dv and the fact that the radius of V (v)
is ε

5Dv we obtain:

On the one hand that |p[u′′
2 , u2]|+ |u2v| ≥ |u′′

2v| ≥ Dv

and |p[u′′
2 , u2]| ≥ Dv − εDv

5 for being |u2v| ≤ εDv

5 .
Therefore,

|u2v|
|p[u′′

2 , u2]| ≤
ε · Dv/5

Dv − ε · Dv/5
=

=
ε

5 − ε
≤ ε

4
(1)

On the other hand that |p[s, u1]| + |u1v| ≥ |sv| ≥ Dv

and p[s, u1]| ≥ Dv − εDv

5 for being |u1v| ≤ εDv

5 .
Therefore,

|u1v|
|p[s, u1]| ≤

ε · Dv/5
Dv − ε · Dv/5

=

=
ε

5 − ε
≤ ε

4
(2)

We denote r1(/r2) the region with minimum weight
traversed by p[s, u1] (/p[u2, u

′′
2 ]) and u′

1(/u′
2) the last

point of p in r1(/r2), notice that u′
1 may be s. Fi-

nally we denote wr1 (/wr2 ) the weight of r1(/r2) (See
Figure 2 a)). Let us consider the normalized path
p̂[s, u′′

2 ] = {p[s, u′
1], u′

1v, vu′
2, p[u′

2, u
′′
2 ]}. By compar-

ing the costs of p̂[s, u′′
2 ] and p[s, u′′

2 ] and using inequal-
ities (1) and (2) we obtain that:

||p̂[s, u′′
2 ]|| − ||p[s, u′′

2 ]|| =

= wr1 |u′
1v| + wr2 |vu′

2| − ||p[u′
1, u1]||−

−||p[u1, u2]|| − ||p[u2, u
′
2]|| ≤

≤ (wr1 |u′
1v|−||p[u′

1, u1]||)+(wr2 |vu′
2|−||p[u2, u

′
2]||) ≤

≤ wr1 |u1v| + wr2 |vu2| ≤
≤ wr1

ε

4
|p[s, u1]| + wr2

ε

4
|p[u2, u

′′
2 ]| ≤

≤ ε

4
||p[s, u1]|| + ε

4
||p[u2, u

′′
2 ]|| ≤ ε

4
||p[s,u

′′
2 ]||

Therefore,

||p̂[s, u′′
2 ]|| ≤ (1 +

ε

4
)||p[s, u′′

2 ]|| (3)

B) Now, we assume that v is not a vertex of fs. We pro-
ceed in a similar way, let u′′

1 , and u′′
2 be the first and

last bending points of p in F (v) (See Figure 2 b)).
Point u′′

1 plays the role of s, we define p̂[u′′
1 , u′′

2 ] =
{p[u′′

1 , u′
1], u′

1v, vu′
2, p[u′

2, u
′′
2 ]} (Figure 2 b)). It can

be proven that

|u1v|/|p[u′′
1 , u1]| ≤ ε

4
(4)

(equivalent to (1)), again using the same reasoning we
obtain a result equivalent to (3):

||p̂[u′′
1 , u′′

2 ]|| ≤ (1 +
ε

4
)||p[u′′

1 , u′′
2 ]|| (5)

Assuse that p passes through l vertex vicinities,
V (v1), V (v1), . . . , V (vl). For each vertex we replace the
subpath pi of p that passes through V (vi) for the normal-
ized path p̂i. Using the correspondent inequality ((3) or (5))
for each vicinity we obtain that ||p̂|| ≤ ||p|| + ε

4

l∑

i=1

||pi|| ≤ (1 +
ε

2
)||p||.

Lemma 2.3 For any path p from source s ∈ fs to node t ∈
ft there is a normalized path p̂ so that ||p̂|| = (1 + ε

2 )||p||.
Proof. We omit the proof due to lack of space, however, it
is similar to the proof of Lemma 2.2.

Theorem 2.1 The obtained graph contains a (1 + 3ε)-
approximation of the shortest path Π from point source s
to an arbitrary node t.

Proof. According to Lemma 2.3 it exists a normalized path
Π̂ such that ||Π̂|| ≤ (1 + 1

2ε)||Π||.
Let v = v1v2 be a segment of Π̂ contained in

a face f . Endpoint v1(/v2) of v1v2 is on a segment
u1,1, u1,2(/u2,1, u12,2) which is delimited by either two
Steiner points or a vertex and a Steiner point, they are
named a pure Steiner segment and a half Steiner segment,
respectively. Segments conforming Π̂ belong to one of the
following three categories: (1) Both endpoints are on pure
Steiner segments; (2) An endpoint is on a pure Steiner seg-
ment and the other on a half Steiner segment; (3) Both end-
points are on half Steiner segments. For each of the three
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a) b)

Figure 2. A subpath of path πs,t from s ∈ fs

to t ∈ ft in red, in dashed green a normalized
path and in blue a path on the graph. Path
πs,t goes through vertex vicinity V (v), where
v is: a) a vertex of the face containing s; b) a
vertex of a face not containing s nor t.

cases it can be proven that |u1,i, u2,j| ≤ (1 + 2ε)|v1v2| for
i, j ∈ {1, 2}:

|v1v2| ≤ |v1u1i| + |u1iu2j| + |u2jv2| ≤

≤ ε|v1v2| + |u1iu2j| + ε|v1v2| = |u1iu2j| + 2ε|v1v2|.
Consequently, we can construct a path Π′ such that

||Π′|| ≤ (1+2ε)||Π̂|| ≤ (1+2ε)(1+
ε

2
)||Π|| ≤ (1+

5ε

2
)||Π||.

3. Distance Functions

We also show that the Bushwack strategy can be used
for the case of a point source in general position and for a
segment source. We consider polygonal line and polygon
sources and end allowing generalized obstacles on the sur-
face.

3.1. From Point Source to Node

Let us consider an arbitrary point source s in a face of P ,
we provide a way to obtain an approximate shortest paths
from s to any node of the graph considering the discrete
graph presented in Section 2 by adapting the Bushwack
strategy.

Distance Propagation

It is well known that two shortest path originated to the
same source point cannot intersect in the interior of any
face, we can use Bushwhack strategy to compute distances
from a point source s.

Now s is not a vertex, thus, we have to adapt the initial-
ization step where intervals Is,−,e associated to the source
s are created. These intervals encode distance function ds

of source s on the edges e of the triangle(s) containing s.
Bushwack strategy propagates the distance function across
mesh triangles in a lazy and best-first propagation scheme.
When a node v on an edge e is first visited, several inter-
vals Iv,e,e′ are created, with e′ opposite to v when v is a
vertex or adjacent to e otherwise. Interval Iv,e,e′ contains
those contiguous nodes of e′ whose shortest path from s to
v′ ∈ I(v, e, e′) may use node v before arriving v′ via an
edge-using or face-crossing segment contained on the face
determined by e′ and v. According to Lemma 2.1 and The-
orem 2.1 and the Bushwack strategy complexity when there
exist m nodes per edge, we provide the following Theorem.

Theorem 3.1 (1 + 3ε)-approximate distances from a
point source s to the graph nodes can be obtained in
O(mn log(mn)) time and O(mn) space, where m ∈
O(1

ε log 1
ε ).

3.2. From Segment Source to Node

Let us now consider a segment source s on P , we use the
previous discretization scheme. We want to note that Ds is
the minimal distance between s and the edges of P that do
not intersect s. It is used to define the radius of V (s), the
vicinity of s, which is rε(s) = ε wm

wM

Ds

5 . Given point x, Dx

is the minimal distance between x and S(x) ∪ E \ E(x),
where S(x) = {s} \ {x} when s ∈ F (x) or S(x) = ∅, oth-
erwise. Consequently the discretization scheme takes into
account the proximity of segment s and provides a (1+3ε)-
approximation of the optimal path from the segment source
s to a node t.

Distance Propagation

Again, to be able to compute shortest paths by using
Bushwhack strategy, we have to prove that two shortest
paths from s to arbitrary points on P do not intersect in the
interior of a face (Lemma 3.1) and adapt the initialization
step where we create intervals on the edges of the face(s)
containing s. Notice that these intervals will contain both
edge-using and face-crossing segments from s to the nodes,
each node will be joined to the point of s defining mini-
mum distance. Consequently in the faces containing f we
can find two different types of edges: those emanating from
the endpoints of s and the rest that are perpendicular to seg-
ment s (See Figure 3).
Lemma 3.1 Let s be a segment source and p, p′ two points
of P . Denote Πs,p and Πs,p′ the shortest paths from s to p
and to p′, respectively. Shortest paths Πs,p and Πs,p′ do not
intersect in the interior of any face, except for in s.
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Figure 3. Shortest paths from the orange seg-
ment source s to some green nodes.

Proof. We omit the proof due to lack of space.

According to Lemma 3.1, Theorem 2.1 and Lemma 2.1
and using the Bushwack strategy complexity, we can conl-
cude the following Theorem.

Theorem 3.2 We can obtain a (1 + 3ε)-approximate dis-
tance defined by a segment source s in O(mn log(mn))
time and O(mn) space, where m ∈ O(1

ε log 1
ε ).

3.3. From Polygonal Line Source to Node

The distance function defined by a polygonal chain s de-
fined by r′ segments, is obtained by considering s as the
union of all the segments si conforming it. In this case we
define a vicinity around s using the already provided defini-
tions.

The discretization scheme follows the same guidelines,
however, now V (s) may intersect two or more times the
same edge e. Consequently when we consider e \ V (s)
we can obtain more than two sub-edges and some of them
are not incident to a vertex of P . In subedges e′ = uv
not incident to a vertex we place one Steiner point at each
endpoint u and v and then we use the logarithmic scheme
along e′ using first u and next v, in both cases until we get
point ve′ (See Figure 4). All the Steiner points on these
edges should be placed the first time that e is considered.
Thus we can provide the following Lemma and Theorem.

a) b)

Figure 4. a) Polygonal line source intersect-
ing an edge e, in dark blue, nine times. b)
Detail of subedge i2i3 with its corresponding
Steiner points.

Lemma 3.2 The number of Steiner points generated on an
edge intersected r′ times by the Vicinity of s is O(r′ 1ε log 1

ε )
Steiner points.

Theorem 3.3 The graph contains a (1+3ε)-approximation
of any optimal path from a polygonal line source s to a node
t.

A polygonal region s is a connected region of P whose
boundary, ∂s, is a closed polygonal chain. The distance de-
fined by s is 0 in s and the distance function defined by ∂s
in P \ s. Therefore, its distance can be computed consid-
ering the polygonal line source defining its boundary and
propagating the distance to P \ s and giving distance 0 in s.
It is summarized in next result.

Property 3.1 Distances from a polygonal region r can be
computed by considering its boundary polygonal line ∂(s).

Distance Propagation

Let us see that any two shortest paths from s to two dif-
ferent points of P can not intersect in the interior of any
face, except for in a point of s.

Lemma 3.3 Let s be a polygonal line source and p, p′ two
points of P . The shortest paths from p, p′ to s do not inter-
sect in the interior of any face, except for perhaps in s.

Proof. Due to the lack of space, we omit the proof.

Therefore, we can use Bushwack strategy by adapt-
ing the initialization step where we consider each segment
si conforming the polygonal line s independently. Let
s1, . . . , sk be the segments conforming s, we create inter-
vals Isi,−,e′ containing the nodes closer to si than to any
other already considered segment sj , j < i. When a new
segment sj is considered the previously computed intervals
may be modified as it happens during the propagation step.

This method can also be used to compute distances from
a polygonal regions according to Property 3.1. When con-
sidering a polygonal region, in the initialization step we will
only define intervals in P \ s.

Thus by using Lemma 3.3, Lemma 3.2 and making the
logical assumption that the polygonal s intersects each edge
a constant number of times, we can state the following The-
orem.

Theorem 3.4 We can obtain a (1 + 3ε)-approximate dis-
tance defined by a polygonal line or polygon source s in
O(mn log(mn)) and O(mn) time and space complexity,
where m ∈ O(1

ε log 1
ε ).

3.4. Polygonal Obstacles

Given the polyhedral surface P , with obstacles repre-
sented as several surface faces, edges and vertices, we
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can adapt the algorithm to compute approximate weighted
shortest paths that can go along obstacle edges, but not
through them. Obstacle edges have their nodes some how
duplicated, we use a copy of the nodes for each face. The
shortest path arriving at a node on an obstacle edge can not
go through the edge, it can only be propagated along the
edge or back to the face it comes from. Thus the only thing
that we have to change are the edges of the graph.

These modifications do not affect the discretization
scheme nor the proofs of the provided Lemmas. Conse-
quently we can provide the following theorem which sum-
marizes the results obtained until now, assuming 0 < ε < 1
and that source s intersects each edge a constant number of
times.

Theorem 3.5 Let P be a weighted triangulated polyhe-
dral surface with generalized obstacles and s be a gener-
alized source on P , a (1 + 3ε)-approximate distance func-
tion from s can be obtained by using Bushwack strategy in
O(mn log(mn)) time with m ∈ O(1

ε log 1
ε ).

4. Implicit Distance Field Computation

When we consider a set of sites S we can use the graph
to obtain their distance field, which for any node gives the
approximate shortest path distance to its nearest site of S.

The scheme provided in Section 2 contemplates the case
when more than one site is considered. Thus, it can be used
to obtain a graph where we will obtain a (1+3ε) - approxi-
mation of the distance field. In this case we have to proceed
as it is explained for the case of polygonal sites in Section
3.3. When we place Steiner points on an edge e that is in-
tersected by V (S) = ∪s∈SV (s) we have to handle each
sub-edge of e apart and use the logarithmic scheme more
than twice. Consequently the number of Steiner points, may
increase.

Lemma 4.1 The number of Steiner points generated on an
edge intersected r′ times by the Vecinity of the sources in S
contains O(r′ 1ε log 1

ε ) Steiner points.

The results related to the ε-approximation provided in
previous sections remain true, consequently, we can state
the following Theorem.

Theorem 4.1 The graph allows the computation of a (1 +
3ε)-approximate distance field defined by a set of general-
izes sites S.

4.1. Distance Propagation

Bushwhack algorithm can be used to obtain the distance
field of a set of generalized sites as it is proven in the fol-
lowing lemma.

Lemma 4.2 Let us consider a set of generalized sites S and
two points of P , p and p′. Denote ΠS,p the shortest path
that joins p to the closest site of S to p, and ΠS,p′ the one
joining S with p′. Then ΠS,p and ΠS,p′ do not intersect in
the interior of a face.

Proof. We omit the proof due to space constraints.

We adapt Bushwack strategy to compute the distance
field by propagating the distance function of all the sites at
once. It is achieved by considering all the sites in the initial-
ization step. We consider the first site and define intervals
on the faces it intersects. Next we consider the second site
and again define its intervals taking into account the previ-
ously defined ones which can be modified. Since intervals
emanating from different sites are stored in the same list,
we propagate their distance field. As it is typically done
by Bushwack, at each step the shortest path with minimal
cost is propagated. The difference is that, now, paths may
come from different initial sites. The time and space com-
plexity does not increase, and is again O(mn log(mn)) and
O(nm), whenever each edge of e is intersected by S a con-
stant number of times.

Theorem 4.2 A (1 + ε)-approximate distance filed de-
fined by a set S of generalized sites on a triangulated
weighted polyhedral surface P with obstacles can be ob-
tained by using Bushwack in O(mn log(mn)) time where
m ∈ O(1

ε log 1
ε ).

5. Distance and Shortest Path Computation

When the propagation of the distance function from a
generalized source to the nodes has concluded, the distance
to any point on P can be obtained. If we are given a set
of sites S, we can compute the shortest path distance to the
closest site by using the distance field defined by S.

5.1. Influence Regions

The approximate distance function in the interior of the
faces is computed by propagating the shortest paths arriving
at the nodes of the discrete graph to the face points. Given a
node v contained on edge e, Bushwhack algorithm defines
intervals Iv,e,e′ associated to v, e and the edges e′ 	= e of
the face(s) containing v or opposite to v when v is a ver-
tex. These intervals contain the nodes (Steiner points and
vertices) that, according to the already visited nodes, may
be reached by a shortest path that leaves from v. Now, for
each interval Iv,e,e′ we define the influence region of I , de-
noted RI , on the face f containing e, e′ and v, as the set of
all points of f that, according to Iv,e,e′ can be reached by a
shortest path emanating from v.
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To compute RI for a given interval Iv,e,e′ on face f with
edges e, e′ and e′′, we consider: a) the already visited nodes
vl, vr, of e placed contiguously on the left and right of v,
respectively; b) the nodes v′l, v′r of e′ placed contiguously
on the left and right of Iv,e,e′ , if Iv,e,e′ contains the left-
most(/rightmost) vertex of e′, v′l(/v

′
r) is the corresponding

vertex of e′. Region RI is the polygonal region of vertices
{vl, v

′
l, v

′
r, vr}. Consequently RI is a region of at most four

vertices. Notice that the influence region RI of an interval
can be computed in O(1) during Bushwack algorithm.

Property 5.1 The influence region RI of an interval can
be computed in O(1) with the information computed during
Bushwack algorithm.

5.2. Distance Computation

The shortest path distance from any point q ∈ f to the
source s can be obtained by finding the node vm on the
edges of f defining the minimum distance value. If ds,v

denotes the distance function defined by s and node v, we
have ds,v(q) = ds(v) + w|vq|, where w is the weight of f .
Notice that to determine vm, those nodes whose influence
region does not contain q can be directly discarded. The
cost of the shortest path from a point of P to its nearest site
can be obtained by standard methods.

Approximation Analysis

We use a graph that provides (1 + 3ε)-approximate dis-
tances from s to the nodes, let us now bound the error pro-
duced when obtaining the distance from s to an arbitrary
point t of P .

Proposition 5.1 We can obtain (1+4ε)-approximate short-
est paths from a generalized source s to an arbitrary target
point t ∈ P .

Proof. The proof is only hinted due to lack of space. It uses
Lemma 2.3 and shows that any normalized path Π′ can be
(1+3ε)-approximated on the graph. It is done by bounding
the length of the subpath from the last bending point to the
target by ε||Π′||.

When a set of sites S is given, the distance to the closest
site can be computed by using the (1 + 4ε)-approximate
distance filed. By using this result and a proof similar to that
of the previous proposition, we can provide the following
theorem.

Theorem 5.1 Given a set of generalizes sites S, we ob-
tain a (1 + 4ε)-approximation of their distance field. When
S = {s} we obtain a (1+4ε)-approximation of its distance
function.

Distance fields are mainly important because they define
Voronoi diagrams. When distances are exactly computed
the points that are equidistant from two sites conform the
Voronoi diagram bisectors. Since now we are working with
approximate distances, we should study where the exact bi-
sectors are when the approximated distance is used. Let ds

denote the (1 + 4ε)-approximate distance function and d̂s

the exact distance function for a source s. Let p be a point
of an exact bisector determined by sites s0 and s1, thus,
d̂s0(p) = d̂s1(p). Therefore the following proposition can
be given.

Proposition 5.2 The error produced on a Voronoi diagram
bisector tends to 0 when ε tends to 0.

Proof. It can be shown that |ds0(p)−ds1(p)| < 6 ε d̂s0 (p).

5.3. Shortest Path Computation

After computing the distance function for a source s, we
can obtain the shortest path from s to an arbitrary point q on
a face f of P . It suffices to use a backtracing technique and
store, during Bushwhack algorithm, in each node v a pointer
to the previous node in the path that goes from s to v. Once
the distance function is computed, the path is obtained by
first determining the node v of f providing the minimum
distance at q. From node v we go back to node v′ stored in
the pointer associated to v. We keep jumping until we arrive
at source s. The shortest path can be obtained in O(m + n)
time where n is the number of segments conforming the
path. To obtain the path we store the pointers to the nodes.

When a set of sources S is considered, the shortest path
to the closest site can be obtained by using the same strategy
by using the distance field instead of the distance function.

6. Discrete Distance Functions

In this Section we overview our algorithm to compute,
by using graphics hardware, discrete distance functions on
a weighted polyhedral surface. For more details see [FS],
where a similar process is used for computing discrete dis-
tance functions on non weighted polyhedral surfaces.

Given a point q and a node v belonging to the same face
f of the polyhedral surface P with weight w, the distance
vector

−→
dq of q with respect to v is the vector joining v to q.

Observe that the cost of the path from s to q given by the
shortest path from s to v and a straight line from v to q is
dv(q) = Ds(v) + w|vq|. Notice that |vq| can be computed
as the length of

−→
dq . Distance vector properties allow us to

compute dv(q) interpolating the distance vectors of the ver-
tices of Rv,f .

A planar parametrization ofP is a bijective function that
maps P into a bounded region of the plane R. By using the
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parameterization of P , we discretize the regionR of the xy-
plane as a rectangular grid of size W ×H , which induces a
discretization on the triangles of P . When the parameteri-
zation maintains the triangles shape, the discretization error
in the xy-plane matches with the discretization error on P
[CGAL, CHM, FG].

The parameterization and the surface discretization are
used to obtain a discrete representation on R of the distance
function defined by weighted shortest paths on P . We keep
track of the explicit representation of the distance function
while it is propagated along the surface P with the Bush-
whack algorithm without increasing its computational cost.
When a node v is first visited we compute its intervals, the
influence regions RI and the distance function it defines to
all the grid points of RI . Since grid points can be contained
in the influence region of different nodes, during the process
we store in each grid point of the xy-plane the minimum of
the obtained distances.

The distance to the grid points of RI is computed by us-
ing distance vectors, OpenGL and graphics hardware. The
OpenGL pipeline triangulates the input polygons, processes
the triangle vertices and rasterizes the triangles into frag-
ments with linear interpolation. When RI is first computed
it is painted with OpenGL and mapped to R with the planar
parameterization by using a vertex shader. After the ras-
terization we have a set of fragments representing 2D grid
points {q ∈ R}. We use a fragment shader to compute at
each fragment its corresponding dv(q) as Ds(v) + w‖−→dq‖,
which is normalized into [0, 1] and set as the fragment depth
value. Distance Ds(v) and weight w are sent to the frag-
ment shader and

−→
dq is obtained during the rasterization pro-

cess from the distance vectors to the vertices of Rv,f . Fi-
nally, to store the minimal distance to each point we use the
depth test. Since Rv,f ⊂ f and we have at most m + m′

nodes per edge, each face can be painted O(m+m′) times.
The extra time needed to paint all Rv,f is O((m+m′)HW ),
consequently, the complexity of the Bushwack algorithm is
not increased.

6.1. Visualization on the polyhedral surface

Once we have obtained a discrete representation of any
of the mentioned Voronoi diagrams in the color buffer, we
can transfer the values of this buffer to a texture. The texture
is an explicit discrete representation of the Voronoi diagram
and by using texturing methods, with the already used pla-
nar parametrization, the Voronoi diagram can be visualized
on the polyhedral surface.

Distance functions can also be visualized on the polyhe-
dral surface by transferring the values of the depth buffer
to a depth texture. Since distances vary from 0 to 1 they
can be used to weight the color of the pixels. If the white
color is used, pixels are painted in a green gradation from

black (distance 0) to light green (distance 1) according to
the distance function values.

Figure 5. The distance field defined by a set
of four generalized sites.

7. Discrete k-Order Voronoi Diagrams

We can obtain a discrete representation of the closest
Voronoi diagram by using the algorithm to obtain the im-
plicit distance field explained in Section 4 combined with
the process given in Section 6. We paint the influence re-
gions associated to different sources in different colors. As
a result we obtain the Voronoi diagram represented on a
texture representing R, that can be visualized on the poly-
hedral surface by using texturing methods. Moreover, if
we compute the set of distance functions for all r sources,
we can obtain (and visualize on the polyhedral surface) any
high-order Voronoi diagram [FS]. The closest and furthest
Voronoi diagrams are obtained as the lower and upper en-
velope of the distance functions and the k-order Voronoi
diagrams, k ∈ {2, · · · , r − 2}, are obtained using a ”depth
peeling” technique.

The time and space complexities of the algorithm that
obtains the closest Voronoi diagram by using the Bushwack
algorithm are O((nm + n′m′) log(nm + n′m′)) and
O(nm + n′m), respectively. The time needed to com-
pute the r distance functions and store them in a texture
is O(r(nm + n′m′) log(nm + n′m′)). Finally, the extra
time needed to obtain the closest and furthest Voronoi dia-
grams from the distance functions is O(rHW ), and for the
k−order Voronoi diagram is O(rkHW ).

The results obtained are approximated, and two differ-
ent types of error can be seen. One is the discretization
error, which depends on the discretization size. It can be
reduced using the fact that the bigger the grid size W × H ,
the smaller the error produced. The other is due to floating
errors, which are specially related to the depth buffer and
depth texture precision. The 32-bit precision is sufficient
to store the normalized distances which take values in the
interval [0, 1]. This can be specially seen when computing
k-order Voronoi diagrams, where many distances have to be
compared. In the rest of the applications it is not visible.
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8. Experimental results

We have implemented the proposed methods using C++
and OpenGL for the special case of polyhedral terrains.
All the images have been carried out on a Intel(R) Pen-
tium(R) D at 3GHz with 1GB of RAM and a GeForce 7800
GTX/PCI-e/SSE2 graphics board.

In Table 1 we present some experimental results, ob-
tained by considering terrains without obstacles, a set S of
six sites (one point, two segments, two polygonal lines and
one polygon), ε = 0.5, and a grid to discretize the domain
of size 500× 500. We present execution times for weighted
terrains with weights randomly generated between zero and
five. In the table we specify the number of terrain faces,
n, and the number of faces intersected by the sites n′. We
provide the total number of Steiner points. Next, we give
the time needed to compute the distance field using the
Bushwack strategy and finally the time needed to compute
the six distance functions. Notice that the time needed to
obtain the six distance functions is about six times that
needed to obtain the distance field. The extra time needed to
obtain, from the already computed distance fields, the clos-
est or furthest Voronoi diagram is 0.08(s), the 4th nearest
site to each point is 0.3(s) and the 5th nearest site is 0.35(s).

n n′ N. Steiner Points D. Field D. Functions

800 73 24449 5.6 (s) 30 (s)
5000 145 135670 28 (s) 147 (s)

10000 221 260599 54 (s) 281 (s)
20000 271 533677 102 (s) 582 (s)
45000 240 1228163 268 (s) 1408 (s)

Table 1. Distance functions computation.

Figure 6 show some examples of Voronoi diagrams for
generalized sources on polyhedral terrains with n =800
faces obtained with our implementation. The generalized
sources, except for the polygon sources interior, are painted
on the terrain surface and the remaining points of the surface
are colored according to the Voronoi region they belong to.

The error produced by the 32-bit precision of the depth
buffer can be seen in Figure 6 c). Isolated pixels are painted
in the color of the regions adjacent to the region they belong
to.

9. Conclusions and Future Work

We have presented a discretization scheme that provides
(1 + ε)-approximate shortest paths on polyhedral surfaces.
We have proved that the Bushwhack strategy can be used
to obtain the shortest paths on the graph. The algorithm is
extended to obtain the distance field of a set of generalized
sites. Next, a way to obtain an explicit representation of the

a)

b)

c)

Figure 6. A set of eight generalized sources
on a weighted terrain with their: a) Closest
Voronoi diagram. b) Furhtest Voronoi Dia-
gram. c) 6th-nearest diagram.

distance function is provided. As applications we provide
a way to directly obtain a discrete Voronoi diagram from
the implicit distance field, and a more general technique,
which from the distance functions of all the sources in S
the closest, furthest or any k−order Voronoi diagram can be
obtained. Finally some experimental results obtained with
our implementation that works for polyhedral terrains with
generalized sources and obstacles are presented.

As future work we will solve some facility location prob-
lems such as the 1-Center, 1-Median. The 1-Center is the
point minimizing the maximal distance of a point on the
polyhedral surface to a set of sites, and the 1-Median is the
point minimizing the sum of distances of a point on the ter-
rain to the sites.
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