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Abstract

Our purpose is to provide a set-theoretical frame to clus-
tering fuzzy relational data basically based on cardinality
of the fuzzy subsets that represent objects and their comple-
mentaries, without applying any crisp property. From this
perspective we define a family of fuzzy similarity indexes
which includes a set of fuzzy indexes introduced by Tolias
et al, and we analyze under which conditions it is defined a
fuzzy proximity relation. Following an original idea due to
S. Miyamoto we evaluate the similarity between objects and
features by means the same mathematical procedure. Join-
ing these concepts and methods we establish an algorithm
to clustering fuzzy relational data. Finally, we present an
example to make clear all the process.

1. Introduction

Clustering analysis (CA) is one of the most important
applied techniques for pattern recognition. The basic idea
of CA is to group together objects closely related. Methods
with objective function models using object data have been
very developed ([1, 2, 5, 9, 11]) but we will focus our atten-
tion in methods with relational clustering. We can distin-
guish two main types: methods that rely on optimization of
an objective function of the relational data and methods that
use decompositions of relation matrices, transitive closures
or mathematical algorithms. In all approaches is essential
to recognize how similar are objects. We intend to put to-
gether known results of relational fuzzy clustering with a
new family of similarity indexes.

Using matrices of relational data, a fuzzy clustering pro-
cess consists in three steps. The first one is to define a
fuzzy relation between objects and features, after that we
have to evaluate the similarity between objects, which can
be thought as a fuzzy proximity relation, and, finally, we
determine the partitions by its transitive closure for some
t-norm or by means an algorithm ([8]).

If we prefer to apply any hierarchical method based on
an algorithm then two clusters are usually grouped to con-
stitute a new cluster when their similarity attaints the max-
imum value. To continue the process we need to define the
similarity between this new element an the others. There are
many methods to deal with this objective, the most usual is
the single linkage, complemented by the complete linkage
and the average linkage.

Features Contrast Model (FCM) asserts that similarity
should be described as a comparison of features that de-
scribe the objects under consideration, and expresses sim-
ilarity between objects as a function of their common and
distinctive features ([10]).

Let X = {A1, A2, . . . , An} be a set of objects and
Y = {P1, P2, . . . , Pm} a set of features. FCM assigns to
each element Ai a value µAi

(Pk) ∈ {0, 1} depending on if
Ai verifies or not feature Pk. Function v : X → ℘(Y ) de-
fined as Pk ∈ v(Ai) if and only if Ai verifies Pk serves to
relate objects with features. Fuzzy Features Contrast Model
(FFCM) is an extension of FCM when the values belong to
the interval [0, 1] so they are fuzzy. We represent each ob-
ject Ai as a fuzzy subset Ãi of the set of features Y namely

Ai −→ Ãi = (µÃi
(P1), µÃi

(P2), . . . , µÃi
(Pm)) (1)

In these conditions card(Ãi) = |Ãi| =
n∑

j=1

µÃi
(Pj) ([4]).

All information determines a matrix S ∈ Mm×n[0, 1] rep-
resenting a fuzzy relation S̃ between objects and features.
Therefore two objects A and B are represented by two fuzzy
subsets Ã and B̃. These values are obtained from the inner
structure of the data or by experts. An additional hypothe-
sis for FFCM is that similarity between A and B has to be
a function of Ã ∩ B̃, Ã − B̃ and B̃ − Ã.

1.1. Fuzzy similarity measures

A very common approach in engineering and applied sci-
ences is to measure the similarity between objects associ-
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ating them to a n-dimensional vector and calculating their
similarity by means a decreasing function s = f(d) (usu-
ally s = 1− d) of their normalized distance d, so following
the first assumption of FFCM but the second one because
an object is only thought as a point in a metric space. Very
strong properties are fulfilled but when the human judge-
ment has a principal role in the description of the objects
can lead to undesirable properties because do not take in
account the deep fuzzy structure of the data.

To deal with the fuzzy character of the data sometimes
a softer definition is usually taken in account. A function
s : P̃ (E) × P̃ (E) −→ [0, 1] is a fuzzy similarity mea-
sure if and only if verifies that for any pair of fuzzy subsets
Ã, B̃ 0 ≤ s(Ã, B̃) ≤ 1 and s(Ã, B̃) = s(B̃, Ã) (symme-
try). If moreover ∀Ã s(Ã, Ã) = 1 (reflexivity), it can be
interpreted as a proximity fuzzy relation in X . These kind
of fuzzy relations are fundamental to carry out a fuzzy clus-
tering process ([12]).

For binary relational data and in order to analyze how
similar are two objects we define similarity and dissimilar-
ity crisp parameters ([8]):

a = |v(Ai) ∩ v(Aj)| b = |v(Ai) ∩ v(Aj)
c|

c = |v(Ai)
c ∩ v(Aj)| d = |v(Ai)

c ∩ v(Aj)
c| (2)

Parameters a and d evaluate common features and b and c
distinctive features. From similarity and dissimilarity pa-
rameters are defined many similarity indexes for crisp sets
([8]).

1.2. Transitive closures

Let R̃ be a fuzzy relation in an universe of objects X ,
then R̃ is t-transitive if and only if

∀a, b ∈ A µR̃(a, b) ≥ max
c∈A

t(µR̃(a, c), µR̃(c, b))

A proximity fuzzy relation R̃ is a t-equivalence fuzzy re-
lation if verifies the t-transitive condition. The concept of
closure t-transitive R̃∗ of a proximity relation R̃ is defined
as the smaller t-equivalence relation that includes R̃ namely

R̃∗ = min{S̃ : R̃ ⊂ S̃ and S̃ is t − equivalence} (3)

When the t-norm is not explicitly mentioned means that we
use the t-norm of the minimum. Designating by R the ma-
trix representation of R̃, we calculate its t-transitive closure
by means R∗ = Rn ([2]). Other methods most performing
to calculate the transitive closure have been found, which
reduce its computing time from order O(n5) to order O(n2)
([6]).

1.3. Hierarchical methods for fuzzy cluster-
ing relational data

Hierarchical methods consist in not considering fix be-
forehand how may clusters there are and are divided in ag-

glomerative and divisive methods. In this paper we only
refer to agglomerative methods in which we start from the
most finer partition composed by all the singletons until we
merge all the objects in an unique cluster. It seems very
logical that at each step we group elements with the max-
imum similarity (minimum distance). When two objects
have been grouped our set of reference changes and its car-
dinal diminishes in one unit. In some manner we have to de-
fine the similarity between this new element and the others.
The form in which is carried out this process determines
all the clustering process because different definitions for
similarity between clusters induce different algorithms. The
most known is given by the single linkage: let ∆ and Γ be
two clusters, if we group ∆ and Γ so Σ = ∆ ∪ Γ therefore

∀Φ, Φ 	= ∆,Γ s(Σ,Φ) = max(s(∆,Φ), s(Γ,Φ)) (4)

Others, as complete linkage or average linkage simply
change the maximum for the minimum or an average re-
spectively.

Another approach is based in the theory of fuzzy rela-
tions. We calculate the transitive closure with the t-norm
of the minimum, which is the greatest t-norm, and for each
α-level we obtain a partition. A very important theorem
proves that this partition coincides with the results of the
simple linkage clustering process and the connected com-
ponents of a fuzzy graph ([8]). All that makes advisable to
use this method for a great set of applications. In fact what
happens is that the condition of transitivity for the function s
is equivalent to the ultrametric property. Unfortunately, we
obtain undesirable results in some applications what means
that for all α-level the partition is formed only by the whole
universe or by n clusters all them constituted by only one
element.

A more general procedure is calculating the closure t-
transitive for some t-norm greater than the bounded prod-
uct (t(x, y) = max(0, x + y − 1) because for this t-norm
the t-transitivity condition is equivalent to the triangular in-
equality, and by means an iterative process obtaining a par-
tition. Following this strategy Miin-Shen Yang et al have
implemented an algorithm that in certain domains improve
the single linkage method but loosing uniqueness what is a
great inconvenient ([12]). The algorithm proposed at sub-
section 2.2. wants to be another alternative to these kind of
procedures.

2. A homogenous fuzzy set-theoretical frame

The aim of this section is to provide a homogeneous
structure for clustering depending basically on the cardinal-
ity of the fuzzy subsets. That is achieved using a set of sim-
ilarity indexes which are a generalized set of known fuzzy
indexes ([10]) and defining the fuzzy structure of clusters
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what allow us to determine similarities between objects and
between clusters with the same mathematical method.

2.1. Generalized fuzzy indexes

We wish to generalize crisp indexes making an exten-
sion of (2), without applying any crisp property and prov-
ing that reliable properties are fulfilled. Following defini-
tions and properties are a generalization of some concepts
due to Tolias et al which define a set of fuzzy similarity
indexes -Generalized Tversky index ([10])- that represents
a fuzzified restraint set of crisp indexes. This set contains
as a particular case Jackard’s coefficient but simple match-
ing coefficient or Rao’s coefficient. What we propose has a
similar structure but including all the indexes.

FFCM assumes that similarity between two objects de-
pends on their common and distinctive features. We think
that this affirmation can be interpreted in a general way in
the sense that it is also relevant in which degree two objects
share the negation of a specific feature. Assuming this point
of view, similarity between A and B is a function of Ã∩ B̃,
Ã − B̃ = Ã ∩ B̃c, B̃ − Ã = B̃ ∩ Ãc and Ãc ∩ B̃c. From
now on t and n mean a t-norm and a negation respectively
([7]). Making a fuzzy generalization of (2) we introduce the
fuzzy similarity and dissimilarity parameters in the follow-
ing form:

a = |Ãi ∩ Ãj | =

m∑
k=1

t(µÃi
(Pk), µÃj

(Pk))

b = |Ãi ∩ Ãj
c| =

m∑
k=1

t(µÃi
(Pk), n(µÃj

(Pk)))

c = |Ãi
c ∩ Ãj | =

m∑
k=1

t(n(µÃi
(Pk)), µÃj

(Pk))

d = |Ãi
c ∩ Ãj

c| =

m∑
k=1

t(n(µÃi
(Pk)), n(µÃj

(Pk)))

(5)

We determine a family of generalized fuzzy similarity in-
dexes, which includes a generalization of the simple match-
ing coefficient for λ = µ = 1, defined by

sg(Ã, B̃) =
|Ã ∩ B̃| + |Ãc ∩ B̃c|

|Ã ∩ B̃| + |Ãc ∩ B̃c| + λ|Ã − B̃| + µ|B̃ − Ã| (6)

This family verifies two expected conditions. Exists f :
P̃ (Y )×P̃ (Y )×P̃ (Y )×P̃ (Y ) −→ R that for any ele-
ments Ã, B̃, C̃, D̃ belonging to P̃ (E) therefore sg(Ã, B̃) =
f(Ã ∩ B̃, Ãc ∩ B̃c, Ã − B̃, B̃ − Ã). On the other hand,
monotony is also fulfilled in the sense that if Ã∩ C̃ ⊂ Ã∩B̃,
Ãc ∩ C̃c ⊂ Ãc ∩ B̃c, Ã− B̃ ⊂ Ã− C̃ and B̃− Ã ⊂ C̃ − Ã
therefore sg(Ã, B̃) ≥ sg(Ã, C̃) [3].

It is clear that sg is a fuzzy similarity measure. A rell-
evant property issues from the fact that sg is a proxim-
ity relation if the associated t-norm verifies the noncon-
tradiction principle ([7]): sg(Ã, Ã) = 1 if and only
if |Ã − Ã| = |Ã ∩ Ãc| = 0 what means that for all

x ∈ [0, 1] t(x, 1 − x) = 0, thus the t-norm have to ver-
ify the noncontradiction principle. Moreover, under proto-
typical conditions sg((1, 1, . . . , 1), B̃) does not depend on
the t-norm, and sg((1, 1, . . . , 1), (1, 1, . . . , 1)) = 1, what
is very logical. Under maximum uncertainty conditions
sg(0.5, 0.5, . . . , 0.5), B̃) = 0.5. This last property solves
the question about the inconsistency in considering abso-
lutely similar two objects with the maximum uncertainty
conditions.

2.2. Clustering method defining the fuzzy
structure of clusters

This method has been conceived from some observa-
tions due to S. Miyamoto. It seems logical to use similars
methodologies in the diferents steps of the process seeking
a most homogenous theoretical frame.

Let ℘̃(Y ) be the power set of fuzzy subsets of Y there-
fore there is a map between objects and fuzzy subsets of
features

X −→ ℘̃(Y )

Ai −→ Ãi so that Y
µÃi−→ [0, 1]

Pj −→ µÃi
(Pj)

When we form a new cluster we make the union of two
precedent clusters. It is necessary to define the membership
function of a cluster without confusing it with the union of
two fuzzy subsets. The difference consists in the fact that if
∆ = {A,B} then Ã∪B̃ 	= ∆̃ = ˜{A,B}. We need to define
in some manner the membership function of ∆̃ ∈ P̃ (Y ).

Let ∆ = {Ai}i∈I∗ ∈ ℘(X) be a cluster and I∗ ⊂ I
with I = {1, 2, . . . , n}. We define a correspondence be-
tween clusters and fuzzy subsets of features by means the
following map

℘(X) −→ ℘̃(Y )
∆ −→ ∆̃ so that

Y
µ∆̃−→ [0, 1]

Pj −→ µ∆̃(Pj) =

∑
i∈I∗

µÃi(Pj)

|∆|
(7)

If Γ and Λ are two clusters represented by fuzzy subsets
Γ̃ = ˜{g, g ∈ Γ} and Λ̃ = ˜{h, h ∈ Λ}, we define

s(Γ, Λ) =
|Γ ∩ Λ| + |Γc ∩ Λ|c|

|Γ ∩ Λ| + |Γc ∩ Λc| + λ|Γ ∩ Λc| + µ|Γc ∩ Λ| (8)

Unfortunately, do not exist formula to update the similar-
ity measures from one step to another. It is necessary to
calculate the membership function of the new cluster de-
termining the similarity measure between this new element
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and the others. After that we need an algorithm to estab-
lish the partition. We present a procedure that has a similar
structure to the classical algorithms of hierarchical cluster-
ing; obviously, other algorithms can be introduced but all
the ideas lead us to an algorithm similar to this one. We
do not use a programming language, is only a description
of the necessary steps to achieve the hierarchical clustering.
The iterative process of the classical methods is modified by
the following form:

Input: A set of objects X with |X| = n, a set of features
Y with |Y | = m and a fuzzy relation S̃ between X and Y
represented by a matrix S ∈ Mm×n([0, 1]).

Output: A directed tree that describes the process of gen-
erating clusters called dendogram.

Algorithm

• For i = 1, . . . , n do ∆i = {Ai},
Z(0) = {∆1, . . . ,∆n} and I = {1, . . . , n}.

• For i, j ∈ I , i 	= j do s(∆i,∆j) = sg(Ai, Aj)

• l = n, k = 0 (l enumerate clusters and k partitions).

• l = l + 1, k = k + 1

• Find α = max
G,H∈Z(k);G �=H

s(G,H) = s(∆i,∆j) (If

there is more than a pair of elements that verify this
condition we select between them randomly).

• ∆l = ∆i ∪ ∆j

• µ∆̃l
(Pj) =

∑
Ai∈∆l

µÃi
(Pj)

|∆l|

• I = I − {i, j} ∪ {l}, Z(k) =
⋃
i∈I

{∆i}

• For i ∈ I , i 	= l do s(∆i,∆l) = sg(∆i,∆l) (Updating
similarities).

• Repeat the process until |I| = 1 (l = 2n−1, k = n−1
or |Z(k) = 1|).

end of the algorithm
As the fuzzy relation is changed from a step to another

step the maximum values of the similarity (or minimums of
the distance) refer to different matrices so we do not have
an order of the similarity levels as we have for instance in
the simple linkage method. We can order only the steps.

3. Example

With the aim to clarify all the process by means an ap-
plication we have chosen a complete geometrical example.
Like this we have the great advantage of checking the re-
sults in a unmistakable way. On the other hand, the fuzzy

relation between objects and features becomes crisp. Cal-
culations have been reduced to the minimum expression be-
cause they can be easily checked. Our objects are equilat-
eral triangles with all the possible combinations of bisectors
therefore X = {T1, T2, T3, T4, T5, T6, T7, T8}. One trian-
gle has no bisectors, three have one bisector, three have two
bisectors and one has three bisectors.

T8T7T6T5T4T3T2T1

Figure 1. Equilateral triangles.

Our objective is to group objects more similar in the
sense that they have the same bisectors (not the same
number of bisectors). Let bi be the bisectors with pos-
itive, negative and vertical slope respectively. Let Y =
{P1, P2, P3} be the set of features defined by Pi =
to have the bisector bi, and Ti the equilateral triangles rep-
resented at Figure 1. The fuzzy relation S̃ between X and
Y is determined by the matrix

S =

(T1 T2 T3 T4 T5 T6 T7 T8

P1 0 1 0 0 1 1 0 1
P2 0 0 1 0 1 0 1 1
P3 0 0 0 1 0 1 1 1

)
As similarity index we have chosen a member of the fam-

ily of generalized fuzzy indexes defined by λ = µ = 1.
That index is a fuzzy generalization of the simple matching
coefficient and we call it sgsm. Therefore

sgsm(Ã, B̃) =
|Ã ∩ B̃| + |Ãc ∩ B̃c|

|Ã ∩ B̃| + |Ãc ∩ B̃c| + |Ã − B̃| + |B̃ − Ã| (9)

In order to ensure the reflexive hypothesis, cardinals have
been calculated by the t-norm of the bounded product which
verifies the non-contradiction principle. Let R = (rij) be
the matrix of similarities then

R =



T1 T2 T3 T4 T5 T6 T7 T8

T1 1 0.67 0.67 0.67 0.33 0.33 0.33 0
T2 0.67 1 0.33 0.33 0.67 0.67 0 0.33
T3 0.67 0.33 1 0.33 0.67 0 0.67 0.33
T4 0.67 0.33 0.33 1 0 0.67 0.67 0.33
T5 0.33 0.67 0.67 0 1 0.33 0.33 0.67
T6 0.33 0.67 0 0.67 0.33 1 0.33 0.67
T7 0.33 0 0.67 0.67 0.33 0.33 1 0.67
T8 0 0.33 0.33 0.33 0.67 0.67 0.67 1


We will apply three methods in order to notice the differ-

ences.

3.1. Transitive closures

As 0.33 = r51 < 0.67 = max
j=1...5

min{r5j , rj1}, results

that R̃ is not min-transitive. Since R 	= R2, R2 	= R3
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but R3 = R4 we deduce R∗ = R4. Making the necessary
calculations we find R∗

ii = 1 and R∗
ij = 0.67 if i 	= j.

We obtain the different partitions in function of the α-
levels. If 0 < α ≤ 0.67, only one cluster is formed: the
whole set X . If 0.67 < α ≤ 1, eight clusters are formed:
{T1}, T2}, {T3}, {T4}, {T5}, {T6}, {T7} and {T8}.

Now we check another possibility. We will apply a
method proposed by M. S. Yang and H. M. Shih ([12]) using
the t-transitive closure with the t-norm of the bounded prod-
uct which is the smallest that verify the triangular inequal-
ity. We obtain R = R2 so R̃ is tbp-transitive. Choosing
α = 0.55 and applying the algorithm following its nomen-
clature, which do not verify uniqueness, we find the maxi-
mum value at 0.67. Randomly we select r

(2)
21 = 0.67 	= 0;

so C = {1, 2} is our first set of indexes, and I − C =
{3, 4, 5, 6, 7, 8}. As r

(2)
31 + r

(2)
32 , r

(2)
41 + r

(2)
42 , r

(2)
51 + r

(2)
52 ,

r
(2)
61 + s

(2)
62 , r

(2)
71 + r

(2)
72 and r

(2)
81 + r

(2)
82 have some element

equal to 0 therefore our first cluster is ∆1 = {T1,T2}. Fol-
lowing the same procedure ∆2 = {T3,T5}, ∆3 = {T4,T6}
and ∆4 = {T7,T8}. We achieve a partition in which the el-
ements with more differences have not been grouped. These
results are better than those of the transitive closure.

3.2. Method exposed at subsection 2.2.

At the first step ∆i = {Ti} for i = 1, . . . , 8 so Z(0) =
X . As some objects attain the maximum value (0.67)
we choose between them randomly, for instance s78 =
0.67 and we put them together so ∆9 = {T7, T8} and
Z(1) = {{T1}, {T2}, {T3}, {T4}, {T5}, {T6}, {T7, T8}}.
At this moment we have to calculate the similarity between
this new clusters and the others by means (9). From (7)
the membership function of ∆̃1 is defined by the values
µ∆̃1

(P1) = 0.5, µ∆̃1
(P2) = 1 and µ∆̃1

(P3) = 1. Fol-
lowing the same methodology we obtain the new matrix of
similarities

S1 =



T1 T2 T3 T4 T5 T6 ∆1

T1 1 0.67 0.67 0.67 0.33 0.33 0.17
T2 0.67 1 0.33 0.33 0.67 0.67 0.17
T3 0.67 0.33 1 0.33 0.67 0 0.5
T4 0.67 0.33 0.33 1 0 0.67 0.5
T5 0.33 0.67 0.67 0 1 0.33 0.5
T6 0.33 0.67 0 0.67 0.33 1 0.5
∆1 0.17 0.17 0.5 0.5 0.5 0.5 1


The maximum value is 0.67. We build ∆10 = {T4, T6}

so Z(2) = {{T1}, {T2}, {T3}, {T5}, {T4, T6}, {T7, T8}}.
For the next steps we find that ∆11 = {T3, T5}, ∆12 =
{T1, T2}, ∆13 = ∆5 ∪ ∆2 = {T4, T6, T7, T8}, ∆14 =
∆3 ∪ ∆4 = {T1, T2, T3, T5}, and, finally, ∆15 = X . We
represent all these results in a dendogram in Figure 2.

1 2 3 4 5 6 7

T1

T2

T3

T5

T4

T6

T7

T8

Figure 2. Dendogram of the clusters.

4. Conclusions

Combining techniques on fuzzy similarities, without
considering any a priori crisp simplification, and fuzzy clus-
tering basically based on the fuzzy structure of the data
given by membership functions, we have proposed an algo-
rithm that shows reliable results when other classical meth-
ods do not achieve a good partition of the universe.

References

[1] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal. Fuzzy
Models and Algorithms for Pattern Recognition and Image
Processing. Kluwer Academic Publishers, Boston, 1999.

[2] D. Boixader, J. Jacas, and J. Recasens. Transitive clo-
sure and betweenness relations. Fuzzy Sets and Systems,
120(7):415–422, 2001.

[3] N. Clara. Generalized fuzzy similarity indexes. Neural
Nets. Lectures Notes in Computer Science, 3931:163–170,
Springer 2006.

[4] D. Dubois and H. Prade. Fuzzy Sets and Systems, Theory
and Applications. Academic Press, San Diego, 1980.

[5] R. Krishnapuram and J. M. Keller. A possibilistic approach
to clustering. IEEE Trans, Fuzzy Systems, 2(1):98–110,
1993.

[6] H. S. Lee. An optimal algorithm for computing the max-
min transitive closure of a fuzzy similarity matrix. Fuzzy
Sets and Systems, 1(123):129–136, 2001.

[7] R. Lowen. Fuzzy Set Theory. Kluwer Academic Publishers,
Dordrecht, 1996.

[8] S. Miyamoto. Fuzzy Sets on Information Retrieval and
Cluster Analysis. Kluwer Academic Publishers, Dordrecht,
1990.

[9] P. K. Simpson. Fuzzy min-max neural networks - part 2:
Clustering. IEEE Trans, Fuzzy Systems, 1(1):32–45, 1993.

[10] Y. A. Tolias, S. M. Panas, and L. H. Tsoukalas. General-
ized fuzzy indeces for similarity matching. Fuzzy Sets and
Systems, 1(120):255–270, 2001.

[11] M. S. Yang. A survey of fuzzy clustering. Math. Comput.
Modelling, 18(11):1–16, 1993.

[12] M. S. Yang and H. M. Shih. Cluster analysis based on fuzzy
relations. Fuzzy Sets and Systems, 1(120):197–212, 2001.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:00:57 UTC from IEEE Xplore.  Restrictions apply. 


