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ABSTRACT

One of the key aspects in 3D-image registration is the
computation of the joint intensity histogram. We propose
a new approach to compute this histogram using uniformly
distributed random lines to sample stochastically the over-
lapping volume between two 3D-images. The intensity val-
ues are captured from the lines at evenly spaced positions,
taking an initial random offset different for each line. This
method provides us with an accurate, robust and fast mutual
information-based registration. The interpolation effects are
drastically reduced, due to the stochastic nature of the line
generation, and the alignment process is also accelerated.
The results obtained show a better performance of the in-
troduced method than the classic computation of the joint
histogram.

1. INTRODUCTION

Recently, multimodal image registration has played an in-
creasingly important role in medical imaging. Its objective
is to find a transformation that maps two or more images,
acquired using different imaging modalities, by optimizing
a certain similarity measure. Among the different similar-
ity measures that have been proposed, mutual information
(MI)[2, 9] and normalized mutual information (NMI)[6] are
the most commonly used since they produce satisfactory re-
sults in terms of accuracy, robustness and reliability. How-
ever, MI-based methods are very sensitive to implementa-
tion decisions [3]. In particular, the way of estimating the
probability distributions and the choice of the interpolator
have a great influence in the accuracy and robustness of the
registration results.

The computation of the joint histogram, as proposed
in [2], is usually done by taking all the points of the ref-
erence image and the corresponding values of the trans-
formed floating image. In general, an interpolation scheme
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is needed to estimate these transformed values at non-grid
positions. This interpolation provokes undesirable artifacts
when the voxel grids have coinciding periodicities [7], re-
ducing the robustness and accuracy of the MI-based meth-
ods. Moreover, to accelerate the matching process, different
multiresolution and multisampling schemes have been pro-
posed. In particular, downsampling techniques are used to
speed up the registration process [3].

In this paper, we introduce a new approach to compute
MI-based similarity measures by using uniformly distributed
random lines. This method accelerates the alignment and al-
most suppresses the interpolation artifacts due to the stochas-
tic nature of the process. Several experiments show clearly
the suitability of our approach to speed up the registration
process and to improve its accuracy and robustness.

This paper is organized as follows. In Section 2, we
briefly describe MI-based registration techniques and the
main difficulties related to its implementation. In Section 3,
a new method to compute the intensity histogram based on
random lines is introduced. In Section 4, the registration
results obtained with different multimodal images are ana-
lyzed. Finally, our conclusions are presented in Section 5.

2. MEDICAL IMAGE REGISTRATION

In this section we review some basic notions on MI-based
registration methods and the principal difficulties related to
their implementation.

MI is a basic concept in information theory, which is
usually used to measure the statistical dependence between
two random variables A and B, and is defined by

I(A,B) =
∑∑

pAB(a, b)log
pAB(a, b)

pA(a)pB(b)
,

where pAB(a, b) is the joint probability density function
(pdf) and pA(a) and pB(b) are the marginal pdf’s. In the
context of image registration, the random variables A and
B correspond to the reference and floating images, respec-
tively, and registration is achieved by maximizing the MI.
The normalization of MI, defined by NMI(A,B) = 1 +
I(A,B)/H(A,B), is more robust than MI due to its greater
independence of the overlap area [6].
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The most successful automatic image registration meth-
ods are based on MI, which is a measure of the dependence
between two images. All these methods are based on the
same four steps: the superposition of the reference and float-
ing images, the computation of the pdf’s, the computation
of the similarity metric and the optimization of the metric
by reorientating the images. Since the differences between
them are in the implementation of these steps we are go-
ing to review some of the most important implementation
aspects.

The key point of the implementation of an MI-based
registration technique is the estimation of the marginal and
the joint pdf’s. To compute them, two different methods
are usually applied: the Parzen window method [9] and the
joint intensity histogram method [2]. We focus on the lat-
ter. The joint intensity histogram is obtained by binning
the intensity pairs (A, T (B)) of the overlapping parts of the
reference image A and the transformed image T (B). Since
generally the grid points of T (B) do not coincide with the
grid points of image A, the application of this method re-
quires the selection of an interpolator. Although there are
different interpolators, all of them introduce artifacts that
will deteriorate the accuracy and reliability of the registra-
tion. Therefore, the implementation of the interpolator also
requires a strategy to reduce interpolation artifacts [7].

Several interpolation schemes have been introduced: lin-
ear interpolation (the intensity of a point is obtained from
the weighted combination of the intensities of its neigh-
bors), nearest neighbor (NN) interpolation, and partial vol-
ume interpolation (the weights of linear interpolation are
used to update the histogram, without introducing new in-
tensity values), amongst the most commonly used. Tsao [7]
has shown that jittered sampling is extremely beneficial to
the robustness and accuracy of registration, reducing con-
siderably the interpolation artifacts. Stochastic sampling
has also been proposed to reduce the grid effects which
come from sampling the images on a regular grid [8].

To speed up the registration, multiresolution and multi-
sampling techniques have been introduced. The objective is
to reduce the computational cost by means of coarse-to-fine
hierarchical strategies which start with the reference and
floating images on a coarser resolution. Then they gradu-
ally improve the estimates of the correspondence or param-
eters of the mapping functions while going up to the finer
resolutions [3].

3. UNIFORMLY DISTRIBUTED GLOBAL LINES

In this section, we introduce a new method based on the use
of random lines to compute the joint intensity histogram in
3D-image registration, which is the most demanding step in
the similarity measure computation. The overlapping vol-
ume between two 3D-images is stochastically sampled us-

ing a uniform distribution of lines in the sense of integral
geometry, i.e., invariant to translations and rotations [4].
Points chosen on each line provide us with the intensities
to calculate the probability distributions. This line density
was first used in computer graphics to compute the illumi-
nation in a scene. The lines generated using this density
were called global lines [5].

Two alternatives to generate a global line density can be
used. As a first alternative, a global line can be generated
taking two random points on a sphere circumscribing the
object or the scene [5]. This is only valid for a sphere, that
is, taking pairs of points on the surface of any convex body
does not result in a uniform density. As a second alterna-
tive, a global line can also be generated from the walls of a
convex bounding box containing the object or the scene [1].
This can be done taking a random point on the surface of
the convex bounding box and a cosinus distributed random
direction.

Initial Offset

Regular Step

Intersection
line 
3D model

Fig. 1. Global lines are cast from the walls of the bounding
box.

For our registration intentions, we adopt this second al-
ternative, taking the reference image as the bounding box
(see Figure 1). The intensity values are captured from the
lines at evenly spaced positions, taking an initial random
offset different for each line. The random offset ranges from
0 to the step size. The regular grid sampling is thus substi-
tuted by sampling with random lines in our method. Al-
though we skip with regular steps, the use of a random off-
set ensures the stochasticity of the process. The cost of the
histogram computation depends on both the number of lines
cast and the number of points taken for each line, which is
inversely proportional to the step size.

4. HISTOGRAM ESTIMATION USING GLOBAL
LINES

To evaluate the global line method, different registration ex-
periments were carried out. The data sets used in our tests
(see Figure 2) are a diffusion-weighted imaging (DWI) and
perfusion weighted imaging (PWI), from the Josep Trueta
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Fig. 3. (a) NMI using the global line method with 150000 sampling points vs. the slice translation on the X-axis. The step
size increases from top to bottom (1, 2 , 4, 6 and 8 mm.). The classical NMI curve in bold. (b) NMI using the global line
method with a step size of 5 mm. vs. the slice translation on the X-axis. The number of sampled points increases from top to
bottom (50000 , 75000, 100000, 125000 and 150000 points). The classical NMI curve in bold. (c) Computational cost of the
global line method (continuous line) vs. the value obtained with the classical NMI method (dash-dotted line). The horizontal
axis represents the number of sampled points and the vertical axis the time units.

Fig. 2. PWI-DWI and CT-MR test image pairs.

Hospital, and a CT and an MR images, from the Vander-
bilt data base. The DWI and PWI sets have a resolution of
256 × 256 × 20 and 128 × 128 × 12. The voxel size is
0.977×0.977×7.0 mm3 for the DWI and 1.797×1.797×
10.0 mm3 for the PWI. The CT image has a resolution of
512×512×28 and a voxel size of 0.654×0.654×4 mm3.
The resolution of the MR image is 256 × 256 × 26 and
the voxel size is 1.25 × 1.25 × 4 mm3. Our results have
been compared with the classical NMI method proposed by
Studholme et al. [6] which has been represented in all the
plots as the bold bottom curve. The first and second exper-
iments aim to analyze the influence on the method of the
step size and the number of lines cast. The behaviour of the
NMI has been analyzed moving the floating image through
the X axis from -10 mm to 10 mm around the origin. In
these experiments, the PWI-DWI images have been used as

the testing set.
In the first experiment, we have fixed the number of

sampled points to 150000, which corresponds to 11% of
the original model. Figure 3(a) shows the obtained results
considering different step sizes of 1, 2, 4, 6 and 8 mm,
from top to bottom. It is important to note that the step
size determines the number of cast lines, i.e., a small step
size implies a small number of lines, and viceversa. Mainly
two facts have to be noted. First, the curves corresponding
to the step sizes of 1 and 2 mm give undesired results, as
the maxima of these curves do not correspond to the per-
fect registration. This is a consequence of supersampling,
since in general a lower step size can produce several con-
secutive sampling points into the same voxel. For step sizes
greater than 4 mm, the differences between the NMI curves
are minimal and there are only small stochastic fluctuations.
Second, a reduced number of lines cast do not ensure that
the model has been probed in a sufficient number of direc-
tions. Thus, taking into account that the computational cost
of the method increases with the step size, since more lines
have to be generated, the optimization process (minimum
cost) is a trade-off between the number of lines and the step
size.

In the second experiment, the step size has been fixed to
5 mm and a different number of lines has been considered.
The obtained results are represented in Figure 3(b), where,
from top to down, the plotted curves correspond to the NMI
measure computed using 50, 75, 100, 125 and 150 thousand
points. Observe that the NMI value decreases when the
number of points taken increases, converging to the NMI
value measured in the classical way. This behavior is due
to the fact that the joint entropy increases with the num-
ber of points [8]. In Figure 3(c) the cost of the classical
(dash-dotted line) and the global line (solid line) methods
are compared. Note that for our method the time increases
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linearly with the number of points. Therefore, using random
lines the time can be outstandingly reduced. For example,
an acceptable estimation is obtained with 50000 points and
a processing time almost five times lower (see Figure 3(b)
and 3(c)).
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Fig. 4. NMI values using (a) the nearest neighbor and (b)
the linear interpolator schemes.

In the last experiment, interpolation artifacts are stud-
ied. As these especially occur when the voxel grids of the
images have coinciding periodicities, the CT-MR pair has
been properly rescaled in order to maximize these periodic-
ities. The NMI values have been determined as a function
of translation along the X-axis in the range of ± 10 voxels.
Figures 4(a) and (b) show the curves of the NMI values ob-
tained with the global line method using the nearest neigh-
bor and the linear interpolator schemes, respectively. We
have considered different number of sampled points, from
top to down: 75000, 100000, 150000 and 200000. In both
plots, the bottom curve corresponds to the NMI value com-
puted in the classical way. Note that both exhibit interpo-
lation artifacts, in a stairs like mode for the NN scheme
and as a set of local minima at every integer-voxel step
for the linear scheme [7]. Observe in Figure 4(a) that the
curves obtained with the global line method by using the
NN scheme also present small artifacts, but not in a stair
like mode since in our case the grid alignment causes local
maxima. Interestingly, the NN behavior coincides with the
one of the partial volume method [3] as our method tends
to the partial volume scheme when the number of points is
high enough and there is no rotation. Figure 4(b) illustrates
the results of the global line method using the linear inter-
polation scheme. It can be seen that interpolation artifacts
have completely disappeared. This is due to the fact that
the grid effects have been eliminated by the stochastic sam-
pling and the interpolator has a blurring effect that avoids
the artifacts appeared in the previous case.

All the experiments presented reveal a trade-off between
accuracy and computational cost. Future work will be ad-
dressed to analyze it.

5. CONCLUSIONS

In this paper, a new stochastic approach for 3D-image reg-
istration based on sampling the images with uniformly dis-
tributed random lines has been proposed. The advantages of
this method can be summarized as follows. Firstly, similar
to the jittered sampling [7], the global line sampling reduces
considerably the interpolation artifacts, almost suppressing
the periodicities of the voxel grids. Secondly, the registra-
tion accuracy is preserved with a high reduction of sampled
points, accelerating the computation.

Future work will be addressed towards studying the pre-
cise interplay between the step size and the number of lines
required for a given accuracy. Our global line method could
also be applied within a multiresolution framework. More-
over, we will make use of further coherence provided by
bundles of parallel lines, which would allow a hardware im-
plementation by using a z-buffer algorithm.
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