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Abstract: This paper deals with the problem of semiactive
vibration control of civil engineering structures subject to
unknown external disturbances (for example, earthquakes,
winds, etc.). Two kinds of semiactive controllers are
proposed based on the backstepping control technique.
The experimental setup used is a 6-story test structure
equipped with shear-mode semiactive magnetorheological
dampers being installed in the Washington University
Structural Control and Earthquake Engineering Laboratory
(WUSCEEL). The experimental results obtained have
verified the effectiveness of the proposed control algorithms.
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I. INTRODUCTION

Significant advances in the vibration control of civil en-
gineering structures have been achieved in the last years
with the increasing application of emergent technologies
and smart materials. Among diverse structural control
techniques proposed (active, passive, semiactive, etc.), the
semiactive control concept becomes very promising for the
vibration attenuation in flexible structures due to its inherent
stability, requirement of low electric supply and the facility
of maintenance. In a semiactive control system, on-line
adjustment of the damping and/or stiffness of adaptable
devices are done according to feedback signals and control
commands. In general, a semiactive controller can act in a
desirable fashion in both passive and active control modes,
with its performance generally enhanced in active mode [1]-
[2]. One of promising semiactive actuators is the magne-
torheological (MR) damper which can change rapidly its
state from linear viscous fluid to semi-solid in milliseconds
when exposed to a magnetic field. However, the design of
semiactive controller are generally difficult due to the high
nonlinearities, mainly the hysteresis phenomenon, presented
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by the MR damper. In this paper, two new semiactive
control approaches are proposed based on the backstepping
control technique for attenuating vibrations of civil engi-
neering structures subject to unknown external disturbances.
The paper is organized as follows. First, the description
of experimental setup is given. Then, the identification of
hysteretic model of the MR damper is presented. In the
controller design, the dynamics of MR dampers is taken
into account so as to achieve the better performance of
the semiactivelly controlled structure. Finally, experimental
results are presented to show the effectiveness of proposed
control schemes.

Fig. 1. Photograph of the test structure

II. EXPERIMENTAL SETUP

The theoretical and experimental studies are done on
a semiactivelly controlled structure which is designed
and constructed by the the Washington University
Structural Control and Earthquake Engineering Laboratory
(WUSCEEL), as shown in the figure 1. The test structure is
of 6 stories, single bay, steel frame and 188cm tall and has
a mass of 147kg, distributed uniformly among the floors.
A couple of MR dampers is installed between the ground
and first floor, and the other couple between the first and
second floors of the structure. Control forces applied to the
structure are sensed by means of force transducers placed
in series with the MR damper. Absolute accelerations
are measured at each floor of the structure by means of
capacitive accelerometers. Data acquisition, control actions
and system evaluation are realized through a DSP-based
real time control system fabricated by dSpace, Inc., which
includes a 16-bit 16-analog input PC board (DSP2003)
and a 16-bit 8-analog output PC board (DSP2101). Ground
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excitations are obtained by means of a uniaxial seismic
simulator, which consists of a 1.5m × 1.5m aluminium
sliding table (PEGASUS) mounted on high-precision, low
friction, linear bearings.

The MR damper used in the experiments is a prototype
device fabricated by the Lord Corporation for testing and
evaluation. It consists of two steel parallel plates (see figure
2) with the dimension of 4.45cm×1.9cm×2.5cm. Damper
force is generated when the moving plate, coated with
a thin foam saturated with MR fluid, slides between the
two parallel plates. An electromagnet, consisting of a coil
installed at one end of the devices, produces the magnetic
field applied on the MR fluid of the saturated foam. The
center plate of the device is 0.495cm thick, resulting in a
gap of 0.071cm. Thus, a maximum force of 29N can be
generated by each device, which is approximately 1.6% the
weight of the structure. Electric power is supplied to the
device by means of a current amplifier in which an output
DC current between 0 ∼ 1.2A is present when an input
voltage between 0 ∼ 4V is applied.

Fig. 2. Schematic diagram of shear mode MR damper

The dynamic motion of the structure is represented by the
following equations:

MMMsẍxx + CCCsẋxx + KKKsxxx = ΛfΛfΛf − MMMsΓΓΓẍg (1)

with xxx being a vector of relative displacements of
the structural floors, ẍg the ground acceleration, fff =
[f1, f2, . . . , fm]T a vector of measured control forces gen-
erated by the nth MR dampers, Γ a column vector of ones,
and Λ a vector determined by the placement of the MR
dampers in the structure. Rewrite the equation (1) into the
following state equation:

ż̇żz = AzAzAz + BfBfBf + EEEẍg ; yyy = CzCzCz + DfDfDf (2)

where zzz = [xxx, ẋxx]T is a state vector and yyy = is vector of
measured outputs about the absolute structural accelerations
ẍi (i = 1, 2, ..., 6) and the semiactive control forces fj (j =
1, 2, 3, 4) generated by the MR dampers, to which a voltage
ui ∈ [0, umax] is applied through the current driver. From
the practical point of view, the unknown seismic excitation
ẍg(t) can be assumed to be bounded by |ẍg(t)| ≤ X0 for
all t ≥ 0 where X0 is a known positive constant according
to the historical seismic records.

III. SYSTEM IDENTIFICATION

A. Identification of test structure

The available information of the test structure is the accel-
eration measurements of the ground and the ith structural
floor. In order to identify the dynamics of the test structure,
hybrid identification strategy is used, in which an analytical
model is updated by using identified modal parameters and
optimization algorithms. First, a white noise acceleration
signal is used to excite the structure at the ground level.
Then, the experimental transfer functions from the ground
to the ith floor are obtained. The Eigensystem Realization
Algorithm (ERA) [3] is applied to estimate the dynamic
properties of the experimental structure (i.e. damping factors
and natural frequencies). The finite impulse responses for
each floor are required as inputs for the algorithm. Such
responses are computed by applying the Inverse Fast Fourier
Transform (IFFT) on each transfer function. The mass and
stiffness parameters of the analytical model are optimized
by using the identified damping factors and natural fre-
quencies. The optimal damping matrix is found by using
the FMINCON optimization function of MATLAB with
objective function being defined as the sum of the square
errors between the experimental and simulated acceleration
values at each time sample, when a white noise excitation
signal is applied to the ground level during n seconds. The
damping matrix is computed based on the method proposed
in [3]:

CCCs = MMMsΦΦΦdiag(2hhhe[2πfffe])ΦΦΦ
T (3)

with ΦΦΦ = [φ1 φ2 . . . φn] being the modal matrix, φi

the eigenvectors of MMM−1
s KKKs, fffe are the frequencies and

hhhe the damping factors estimated by using the ERA.
The initial parameters used to optimize the damping
matrix correspond to the damping factors, while natural
frequencies are maintained constant during the optimization.

By using the above procedure, the following estimated
values of the test structure are obtained: stiffness of each
floor ki = 273N/cm and mass mi = 0.227Ns2/cm. The
natural damping factor has been assumed to be 1% for each
floor and the natural frequencies obtained by means of the
analytical model are: [1.39 4.08 6.54 8.62 10.19 11.18] Hz,
while the natural frequencies and damping factors estimated
by using ERA are: [1.29 3.85 6.11 8.22 9.64 10.81] Hz and
[1.38 0.71 0.64 0.56 0.48 0.91] (%). Figure 3 presents a
plot of the transfer function (from ground acceleration to the
fourth floor) obtained by using the experimental data, the
analytical model, and the model with optimized damping
and mass parameters. Finally, the optimal damping factors
[4.95 1.16 0.76 0.41 0.20 0.24] % are obtained by using
the white noise as excitation signal during 60 seconds.
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Fig. 3. Analytical and experimental transfer functions from ground to
fourth floor acceleration

B. Identification of MR dampers

A simple mechanical model for the MR damper has been
previously developed in [4], [5] in which experimental tests
show that it can predict accurately the behavior of a MR
damper with the advantage of being adequate for control
purposes. The MR damper force is expressed as follows:

f = δΔq̇ + αz (4)

ż = −γ|Δq̇|z|z|n−1 − βΔq̇|z|n + AaΔq̇ (5)

with Δq = qi − qj being the difference of displacement at
the ends of the device and z an evolutionary variable that
accounts for the dependence of the historical response. The
parameters γ, β, n and Aa can be adjusted to control the
linearity in the unloading situation and the smoothness of
the transition from the pre-yield to the post-yield region [6],
[7], [8]. The parameters of a MR damper depend generally
on the commanding voltage signal u. Thus, for control
purposes this dependence is formulated as

α = α(u) = αa + αbu δ = δ(u) = δa + δbu (6)

The dynamic response of the current driver circuit to
changes in the command input is approximated by a first-
order time lag expressed by:

u̇ = −η(u − v) (7)

where v is the command voltage applied to the control
circuit.

The identification of MR dampers can be done in two steps.
First, the MR damper parameters are identified before being
installed at the structure. For this purpose, an experimental
frame is used in which the measurements of the struc-
tural displacement and velocity and the damper force are
used to identify the parameters of the model expressed
in equations (4)-(7). Afterwards, when MR dampers are
installed at the structure, their parameters will be updated.
In this case, a variety of representative tests are realized

to update the MR damper parameters by using sinusoidal
excitations with different frequencies and amplitudes being
applied at the ground level of the structure. Concretely,
three configurations are studied: (1) Two MR dampers
installed between the base and the first floor (2) Two MR
dampers installed between the first and second floor and
(3) two MR dampers on each of the fist two floors of
the structure. Forces generated by each MR damper and
accelerations induced to each floor are measured in order
to identify and optimize the MR damper parameters. The
FMINCON optimization function is used to determine the
optimal values by taking the values obtained in the step 1
as the initial values. The objective function is defined as the
error between the experimental and predicted accelerations
at each floor. Predicted responses are calculated by using the
optimal Ms, Cs and Ks matrices. As a result, the following
optimal MR damper parameters are obtained: δa = 0.0454;
δb = 0.0195; Aa = 12; γ = 300; β = 300; η = 80;
while the values of αa and αb of the four MR dampers
are varied in the ranges of αa ∈ [45, 60] and αb ∈ [45, 90].
Finally, an integrated system model is obtained by using the
optimal parameters of the structure and the MR damper after
their installation. In figure 4, it is shown the good result of
identification obtained by comparing the experimental and
analytical MR damper forces.

Fig. 4. Experimental and simulated MR damper forces

IV. CONTROLLER DESIGN

The control objective is to design a semiactive controller
that can effectively attenuate structural vibrations when
uncertain disturbances act on the structure. In this paper,
the backstepping control technique is used for the design
of semiactive controller, in which the hysteretic dynamics
of the MR dampers is taken into account. Based on the
motion equations of the test structure for the nodes 1 and
2 where the MR dampers are installed,

ẍ1 = − 1
m1

[
n∑

i=2

miẍi +
n∑

i=1

miẍg + k1x1 + c1ẋ1 + f1

]

ẍ2 = − 1
m2

[
n∑

i=3

miẍi − k1x1 − c1ẋ1 + (k1 + k2)x2+
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(c1 + c2)ẋ2 + f2 +
n∑

i=2

miẍg

]
(8)

the following state equations are obtained:

ẏ1 = y2 ẏ3 = y4

ẏ2 = − 1
m1

[
n∑

i=2

miẍi +
n∑

i=1

miẍg + k1y1 + c1y2 + f1

]

ẏ4 = − 1
m2

[
n∑

i=3

miẍi − k1y1 − c1y2 + (k1 + k2)y3

+(c1 + c2)y4 + f2 +
n∑

i=2

miẍg

]
(9)

where y1 =: x1, y2 =: ẋ1, y3 =: x2 and y4 =: ẋ2.

The following standard variables, typically adopted in the
literature of backstepping control [9]-[10], are used for the
controller design:

e1 = y1; ė1 = y2; e1ė1 = e1y2;
e2 = y2 − α1; ė2 = ẏ2 + h1y2; e2ė2 = e2(ẏ2 + h1y2)
e3 = y3; ė3 = y4; e3ė3 = e3y4;
e4 = y4 − α2; ė4 = ẏ4 + h3y4; e4ė4 = e4(ẏ4 + h3y4)
α1 = −h1e1 α2 = −h3e3; ;

By substituting (9) into the last equation, one obtains:

e2ė2 = − e2

m1

[
n∑

i=2

miẍi + k1y1 + (c1 − m1h1)y2 + f1

+
n∑

i=1

miẍg

]
(10)

e4ė4 = − e4

m2

[
n∑

i=3

miẍi − k1y1 − c1y2 + (k1 + k2)y3

+(c1 + c2 − m2h3)y4 +
n∑

i=2

miẍg + f2

]
(11)

In order to achieve the asymptotic error suppression, the
following control law is derived

f1 = −
n∑

i=2

miẍi −
n∑

i=1

miẍg − k1y1 − (c1 − m1h1)y2

+m1e1 (12)

f2 = −
n∑

i=3

miẍi −
n∑

i=2

miẍg + k1y1 + c1y2 − (k1 +

k2)y3 − (c1 + c2)y4 + m2e3 (13)

However, the control laws (12) and (13) are not
implementable in practice since they contain unmeasurable
variables, such as z and ẍg . On the other hand, a voltage
command, in stead of a force command, is required for the
MR dampers. In order to overcome these problems, two
semiactive backstepping control approaches are studied.
The first one computes the equivalent command voltage
based on the equation (4), the force value obtained from

(12) and (13) with the estimated value of the evolutionary
z. The second one uses the modified Clipped-Optimal
control algorithm, used in [4], to compute the equivalent
command voltage.

1) Backstepping control scheme 1 (BE1): By using (4) and
(6) and the desired force values f1 and f2 obtained in (12)
and (13), the following control law is obtained:

ui =
fi − αaizi + δaiΔyi

αbi
zi + δbi

Δyi
; i = 1, 2 (14)

where Δy1 = y2 and Δy2 = y4 − y2. Since the variable
zi cannot be measured directly, an estimated value ẑi is
obtained:

˙̂zi = −γi|Δyi|ẑi|ẑi|n−1 − βiΔyi|ẑi|n + AiΔyi(15)

Define z̃i = zi − ẑi as the estimation error between the real
value zi and the estimated value ẑi, then

zi = z̃i + ẑi; ˙̃zi = żi − ˙̂zi (16)

By taking z̃1 = e2, z̃2 = e4, the denominator of the
commanding voltage signals u1 and u2 can be replaced
by δb1y2 + αb1 ẑ1 + αb1 z̃1 = δb1y2 + αb1 ẑ1 + αb1e2 and
δb2(y4−y2)+αb2 ẑ2+αb2 z̃2 = δb2(y4−y2)+αb2 ẑ2+αb2e4.
Now, an implementable law, based upon the bounded values
of X0 and the estimated values of zi, is adopted for the
backstepping control:

u1 =
1

αb1(ẑ1 + e2) + δb1y2

[
−

n∑
i=2

miẍi − k1y1 − αa1z1

−(δa1 − m1h1c1)y2 + m1e1 −
n∑

i=1

miX0sgn(e2)

]

u2 =
1

αb2(ẑ2 + e4) + δb2(y4 − y2)

[
−

n∑
i=3

miẍi + k1y1

+(c1 + δa2)y2 − (k1 + k2)y3 − (c1 + c2 + δa2)y4

−αa2z2 + m2e3 −
n∑

i=2

miX0sgn(e4)

]

for all αb1(ẑ1 + e2) + δb1y2 �= 0 and αb2(ẑ2 + e4) +
δb2(y4 − y2) �= 0, otherwise ui = 0. Moreover, for some
types of MR dampers [6]-[8], the constraints γ ≥ β ≥ 0
and n = 1 must be satisfied by the control law.

Stability Analysis

In order to verify the closed-loop stability, the following
Lyapunov function candidate is defined:

V =
1
2
e2
1 +

1
2
e2
2 +

1
2
e2
3 +

1
2
e2
4 +

1
2
z̃2
1 +

1
2
z̃2
2 (17)

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 + z̃1
˙̃z1 + z̃2

˙̃z2(18)
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From equations (11)-(13), (17)-(17), one obtains:

e1ė1 = e1y2 e3ė3 = e3y4

e2ė2 = − 1
m1

n∑
i=1

mi[X0|e2| − ẍge2] − e1e2 − h2e
2
2

e4ė4 = − 1
m2

n∑
i=2

mi[X0|e4| − ẍge4] − e3e4 − h4e
2
4

with h2 = m−1
1 αa1 and h4 = m−1

2 αa2 .

From equations (5), (15)-(16) and for n=1 one gets:

z̃i
˙̃zi = −γi|Δyi|z̃2

i − βiΔyiz̃i (|zi| − |ẑi|)
≤ − (γi − βi) |Δyi|z̃2

i ≤ 0

Finally, the derivative of Lyapunov function becomes:

V̇ = − 1
m1

n∑
i=1

mi [X0|e2| − ẍge2] − h2e
2
2 − h4e

2
4

− 1
m2

n∑
i=2

mi [X0|e4| − ẍge4] − (γ1 − β1) |y2|z̃2
1 −

(γ2 − β2) |y4 − y2|z̃2
2 ≤ 0

Therefore, the stability of the closed-loop system is ensured.

2) Backstepping control scheme 2 (BE2): The control
approach consists of using the desired forces f1 and f2

obtained in (12) and (13) to obtain an equivalent command
voltage through the modified clipped-optimal technique.
This technique was proposed for controlling a single MR
damper [6] and multiple MR devices [7], and was experi-
mentally verified in [5]. This control approach is graphically
represented in figure 5. The algorithm consists in appending
m force feedback loops to induce each MR damper and
to produce approximately a desired control force. Then, a
command voltage signal is obtained as follows: when the
ith MR damper provides the desired optimal force (i.e.
fi = fci) the voltage applied to the MR damper should
remain at the present value. If the magnitude of the desired
optimal force is between the minimal force f0i

and the
maximum force fmaxi

, and the two forces have the same
sign, the voltage applied to the current driver is derived
from a linear relation, experimentally obtained, between
the output force and the input voltage which takes the
form: fi = f0i + m(ui − u0i). Otherwise, the commanded
voltage is set to zero. Thus, the control law for the ith
MR damper, using the modified clipped-optimal control, is
given as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui = u0i
+ m−1(fi − f0i

) if
{

sgn(fi) = sgn(fci
)

|f0i
| ≤ |fci

| ≤ |fimax
|

ui = umax if
{

sgn(fi) = sgn(fci)
|fci | > |fimax |

ui = 0 otherwise

Fig. 5. Graphical representation of the Clipped-Optimal control technique

V. EXPERIMENTAL RESULTS

The experiments of semiactive vibrational control were
implemented on a 6-story test structure installed in the
WUSCEEL. The El Centro earthquake has been used as the
excitation signal for verifying the effectiveness of proposed
backstepping controllers and for comparing the semiactive
control case with the passive-on case (with the maximal
damping coefficient). In Figure 6, the peak acceleration
response of the third floor is given to show the effectiveness
of the proposed backstepping control scheme.

Fig. 6. Third floor acceleration response in presence of El Centro
earthquake

Quantitative evaluation of the control performance has
been made by using five evaluation criteria [11], related
to the normalized and peak floor accelerations and base
shear, and the maximum control force between the two
MR dampers, respectively.

The first evaluation criterion considers the normalized peak
response of absolute floor accelerations

J1 = max
i,t

( |ẍai(t)|
ẍmax

a

)
(19)

where the absolute acceleration of the ith floor of the
structure ẍai(t) is normalized by the peak uncontrolled
floor acceleration, denoted by ẍmax

a .
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The second evaluation criterion considers the normalized
peak acceleration response

J2 = max
i,t

(‖ẍai(t)‖
‖ẍmax

a ‖
)

(20)

where ‖ẍai(t)‖ =
√∫ tf

0
ẍ2

ai(t)dt and the absolute
accelerations of the ith floor ẍai(t) are normalized by the
peak uncontrolled floor acceleration, denoted by ‖ẍmax

a ‖.

The third evaluation criterion considers the maximum base
shear generated in the controlled configuration

J3 = max
t

∣∣∣∣∣
6∑

i=1

miẍai(t)
Fmax

b

∣∣∣∣∣ (21)

where Fmax
b describes the maximum base shear in the

uncontrolled configuration.

The fourth evaluation criterion corresponds to the
normed/nondimensionalized base shear.

J4 =

∣∣∣∣∣
∣∣∣∣∣

6∑
i=1

miẍai(t)

∣∣∣∣∣
∣∣∣∣∣

‖Fmax
b ‖ (22)

where ‖Fmax
b ‖ =

∣∣∣∣∣
∣∣∣∣∣

6∑
i=1

miẍai(t)

∣∣∣∣∣
∣∣∣∣∣ represents the maximum

normalized uncontrolled base shear.

Finally, the fifth evaluation criterion is a measure of the
maximum control force per device,

J5 = max
t,i

( |fi(t)|
W

)
(23)

where fi(t) is the force generated by the ith control device
over the time story of each earthquake and W = 1446 N =
weight of the structure.

In the following table, the normalized experimental re-
sponses are shown for the passive-on and semiactive control
cases.

TABLE I

NORMALIZED EXPERIMENTAL RESPONSES

Control strategy J1 J2 J3 J4 J5

Passive-on 0,8159 0,4256 1,1107 0,5711 0,0499

BE2 0,6252 0,4080 0,8519 0,7654 0,0432

BE1 0,6554 0,3432 0,8063 0,4298 0,0078

It is seen from the Table 1 that the dynamic performance
of the structure has been enhanced by using backstepping
controllers as compared with the passive-on case.

VI. CONCLUSIONS

In this paper, two new semiactive control schemes have
been proposed and experimentally verified for the vibration
attenuation of civil engineering structures, in the first one
by estimating the unmeasurable and in the second one
by using the modified clipped-optimal algorithm. In the
controller design, the hysteretic dynamics of semiactive
MR dampers have been taken into account. In this way, the
proposed controllers have presented a better performance
in real operation conditions. The experimental verification
for a 6-story structure has shown the effectiveness of the
semiactive backstepping controllers proposed.
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