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In this paper, a decentralized model reference controller 
is designed to reduce the magnitude of the transversal 
vibration of a flexible cable-stayed beam structure in- 
duced by a seismic excitation. The controller design is 
made based on the principle of sliding mode such that a 
priori knowledge on the bounds of the uncertainties and 
disturbances is not requried. A numerical simulation ex- 
ample is presented to illustrate the effectiveness of the 
proposed control scheme for a scaled model of bridge. 

1 Introduction 

In the recent years, active and semi-active control 
schemes have been proposed for the protection of cable- 
stayed bridge structures in the presence of external 
forces such as traffic, heavy winds and earthquakes [l]. 
Among them, the centralized linear active control [2] and 
decentralized nonlinear active control [31 have received 
an important attention. In this paper, the dynamic 
behaviour of this particular type of beam structure is 
characterized by a nonlinear mathematical model with 
interconnection terms [31. A practical decentralized ac- 
tive controller is presented to attenuate the transversal 
vibration of a flexible cable-stayed bridge structure in- 
duced by seismic excitation, in which the knowledge on 
the exact value of system parameters, structural distur- 
bances and the seismic excitation is not required a priori 
in the controller design. 
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2 Problem Formulation 
Cable-stayed bridge is flexible beam structure with very 
small structural damping. In the active control systems, 
sensors are put at the anchor points of the stayed cables 
to measure the relative vertical displacements and veloc- 
ities of the bridge deck, respectively. The control forces 
are generated by the actuators to increase or decrease 
the effective length of the stay cables. The technique 
of finite element has been used for modelling this par- 
ticular bridge structure 131. It is assumed that: (a) The 
mass of the cable that affects degree of freedom i is small 
compared to the ith concentrated mass of such a degree 
of freedom; (b) The stay cables are used as active ten- 
dons and operate in the linear elastic regime. Their sags 
are minimal and therefore neglected. (c) The structural 
damping is very small and can be neglected. Denote 
z: (t)  , z: ( t )  as the relative transversal displacement and 
velocity of the bridge deck, respectively, measured at 
the location where the ith stay cable is anchored, and 
zi(t) = [z:(t), z:(t)lT as the state vector (i = 1,. . . , N ) .  
Then, the dynamic behaviour of the bridge segment, ac- 
counting for the effect of the stay cables, is described 
by the following mathematical model being decomposed 
into N subsystems Si: 
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fni(t) = c,ic,i[sin&(t) - sin~,i] N 

where z(t) =: [z l ( t ) , . . . , zN( t ) ]  T .  mc is the con- 
centrated mass and kij ( i , j  = 1,. .-  , N )  are stiffness 
parameters of the controlled concentrated masses that 
include the effect of the stay cables. Positive scalars cai, 
c,i and cli are the cross-sectional area, Young modulus 
of elasticity and unstressed length, respectively, of 
the ith stay cable. ui(t) is a control force applied 
to the ith stay cable to increase or decrease the its 
effective length. The scalar function f n i ( t )  describes the 
nonlinearities due to the cable-beam geometry. &(t) 
and e,, are the stressed and prestressed angles ,between 
the ith stay cable and the local horizontal at the point 
where the stay cable is anchored to the bridge deck, 
respectively. The unknown scalar function hi [z(t)] 
represents the structural disturbances or the influence 
of residual modes appeared at the anchor points and 

the scalar function c ( k i j ,  O ) T z j  ( t)  describes the inter- 

connection effects among the local subsystems. a,k(t) is 
the vertical component of an unknown earthquake force. 

N 

j=l 
j#i  

Assumption 1. The system parameters have upper 
and lower bounds such that m, E [m;,m$], cai E 

with cij, c$, c,, c2, c;, ch, m,, m$, k-  k+ ( i , j  = 
1 , .  . . , N )  being known positive constants, respectively. 

[c,,c;i], cei E [c,,c~], cli E [c;,c~] and kij E [kG,k;] 

V' Y 

Assumption 2. The vertical component of an unknown 
earthquake acceleration to the bridge deck a,k( t )  is uni- 
formly bounded such that a,k(t) E [aik,  U&] for all t 2 0 
with aik and being known non-zero constants. 

Assumption 3. The angle between the i th  stay cable 
and the local horizontal at the anchor points is uniformly 
bounded such that e,@), e,, E [e;, e$] (i = 1, . . . , N )  
for all t 2 0 with 0; and being known positive real 
numbers that lie in the range (0, ~ / 2 )  radians. 

Assumption 4. fdi(t) (i = 1 , . . . , N )  are unknown 
scalar functions that represent the unknown structural 
disturbances appeared at the anchor point of the ith stay 
cable and the interconnection effects among the local 
subsystems such that the following relationships hold: 

j=1 

where ai and Pij ( i , j  = 1, . . .  , N )  are known non- 
negative constants. 

3 Active Control System 

The main objective of an active control system is to im- 
prove the dynamic performance of a bridge structure in 
the presence of traffic, heavy wind and seismic excita- 
tion, which is usually difficult to obtain by using only 
a passive control system. In the recent years, the ac- 
tive protection of civil engineering structures via sliding 
mode control has received a great attention due to its 
excellent robustness properties to the parametric uncer- 
tainties and external disturbances [41--[51. In this paper, 
the principle of sliding mode control is] is extended to the 
decentralized model reference control in order to atten- 
uate the transversal vibration of a cable-stayed bridge 
caused by the vertical component of an unknown earth- 
quake. 

3.1 Reference model 
First, suppose that the desired behaviour of the i th  sub- 
system Si is described by a linear exponentially stable 
reference subsystem Smi defined below, which has the 
same dimension as the corresponding controlled subsys- 
tem Si (i = l , . . . , N )  . 

where zmi(t) =: [ z i i ( t ) ,  zLi(t)lT with x i i ( t )  and 
zki ( t )  being the desired transversal relative displace- 
ment and velocity of the local reference model, cm the 
desired damping factor and wm the desired natural fre- 
quency for the controlled cable-stayed bridge structure 
and ~i (i = l , . . .  , N )  are reference inputs ( r i ( t )  0 in 
this case), respectively. Define the tracking error vector 
ei(t)  =: [e t ( t ) ,  e;(t)lT as follows: 

Then, the following tracking error dynamic subsystems 
Sei (i = 1, . . . , N )  are obtained: 
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A model reference sliding mode control scheme is pre- 
sented below to drive the tracking errors to zero as- 
ymptotically and thus the desired performance, with 
the damping factor crn and natural frequency urn, is 
achieved in the controlled cable-stayed bridge structure. 

3.2 Decentralized controller design 
In the controller design, the following sliding function 
ai(t) E R is deiined for the tracking error dynamic sub- 
system Sei (i = 1 , .  . . , N )  

ai(t) = ETei(t) = Ediet(t) + eviep(t) (5) 

where €i =: with Edi > 0 and cui > 0, is a 
parameter vector to be chosen in order to guarantee the 
closed-loop asymptotic stability of the tracking error dy- 
namic subsystem Sei. When ai(t) = 0 (i = 1 , .  . . , N )  for 
t 2 t,, it is said that sliding motion is generated in the 
tracking error dynamic subsystems Sei (i = 1, . . . , N ) .  
Denote 

V i ( t )  =: - Ej  bi(t) 

then from the definition of bi(t) ,  it is easy to show that 

Since the reference model is exponentially stable, one 
has zmi(t) ---f 0 as t -+ 00. Thus, under Assumptions 
1-4, the following relationship holds for all t 2 0 

where pio, pij  (i, j = 1, . . . , N )  are some known non- 
negative constants. 

The global reaching condition of a sliding mode is 
CL,ci(t)ai(t) iTi(t)  < 0, where q( t )  = cf/lai(t)l for 
ai(t) # 0 and ~ ( t )  = 0 for ai(t) = 0 with cf (i = 1, ... N) 
being some positive constants. The following decentral- 
ized model reference controller is proposed 

where $iu, $io, +ie (i = 1 , .  . . , N )  are positive constant 
parameters to be chosen by the designer. 

Theorem 1. Under Assumptions 1-4, sliding motion is 
generated in the tracking error dynamic subsystems Sei 
(i = 1, . . .  , N )  by using the decentralized model refer- 
ence sliding mode controller (7) and the tracking error 
vectors e i ( t )  (i = l , . . . , N )  are bounded for all t 2 0 
and converge to zero asymptotically as t -+ m if the 
following relationships hold 

+iu = (V;)-l+u > 0 (8) 

r 1 

I N I  

j=1 1 3#i 1 
Remark. In the implementation of control law, non- 
ideal effects may cause high control activity which can 
excite sometimes high-frequency m o d e l l e d  dynamics 
in the system. The chattering phenomenon can be alle- 
viated usually by the using the following decentralized 
controller: 

%(t)  [eqn.(7)] f.r IOi(t)l 2 62 

-$i6ai(t) f.r lCi(t)I < si 
(11) Ui(t) = 

where Si (i = 1, ... N) are small positive constants related 
to the toleration limit of the dynamic behaviour of the 
bridge structure and (z = 1, ..., N) are non-negative 
controller gains chosen by the designer. In particular, 
one can choose $i6 = 0 (i = 1, ..., N )  to get a practi- 
cal decentralized controller, in which the active control 
system is only put into operation when the control per- 
formance is degraded below the toleration limit. 

4 Simulation 
The following scale model of the bridge has been used 
in the simulation: beam (material: steel) with L = 3 m, 
A = 2 x m2, E = 2.06 x 10" N / m 2 ,  I = 
6.7 x m4, m, = 7.86 Kg, IC11 = 1.5596 x lo6 N / m ,  

lo6 N / m ,  p = 7860 Kg /m3  and cables (material: 
stainless steel wires, SUS304JIS) with cz1 = 3.58 m, 
c12 = 3.327 m, ca1 = c,2 = 2.1 x m2, cel = ce2 = 
1.706 x 101'N/m2, e,, = 56.04', e,, = 63.2". The seis- 
mic excitation has been the scaled Taft earthquake. A 
reference model has been chosen with <, = w, = 1.0, 
zkl(0) = zk2(0) = 0.01. The upper and lower bounds 
for system parameters corresponding to the Assump 
tions 1-4 are defined as the values with &lo% variation 
respect to their nominal ones. Also, 0, = 6; = 40" and 

IC12 = IC21 = -1.1735 x lo6 N / m ,  IC22 = 1.5957 x 
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0: = 6J$ = 80” and p l ,  = m0 = 1000, pll = 2.3 x lo5, 
p12 = p z 1  = 1.8 x lo5, pz2  = 2 . 6 ~  lo5 in (6). The contin- 
uous active decentralized controller (11) has been used 
with €d, = 3, €,i = 1, 7); = 548, 7); = 590, $lo = 0.182, 
$20 = 0.169, $10 = $20 = 2, +le = $2e = 900, 
& = 6, = 0.001, ?)I6 = $26 = 0. The time histories 
of the displacements of the bridge deck in presence of 
the scaled earthquake excitation, without any control 
and with the active decentralized control, are shown in 
Figures 2 and 3, respectively. 

5 Conclusions 
In this paper, a decentralized model reference controller 
has been designed to reduce the transversal vibration of 
a cable-stayed bridge segment induced by the seismic ex- 
citation. In the controller design, only local sensor infor- 
mation has been used to generate the control signal that 
is sent to the actuator of the controlled subsystem. The 
closed-loop robust stability has been achieved through 
the generation of a sliding motion in the system. It is 
shown by the numerical simulation that the magnitude 
of the transversal vibrations of the bridge deck induced 
by a seismic excitation has been sigdicantly reduced by 
using the proposed active decentralized controller com- 
pared with the uncontrolled case. 
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Figure 1. Scaled accelerogram of the 
vertical component of Taft earthquake 
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Figure 2. Time response of the bridge 
without any control 

Figure 3. Time response of the bridge 
with decentralized control 

3820 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:30:22 UTC from IEEE Xplore.  Restrictions apply. 


