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Abstract:

This paper deals with the problem of identification and semiactive control of smart structures subject to

unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure
equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental
results obtained have verified the effectiveness of the proposed control algorithms.
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1 Introduction

Vibration control of smart structures have been achieved
by using emergent technologies and smart materials in the
recent years. As one of effective structural control tech-
niques, the semiactive control becomes very promising for
the vibration attenuation in smart structures due to its in-
herent stability, requirement of low electric supply and
the facility of maintenance [1]-[2]. In a semiactive con-
trol system, the adjustment of the damping and/or stiff-
ness of adaptable devices can be done on-line according to
feedback signals and control commands. One of promis-
ing semiactive actuators is the magnetorheological (MR)
damper which can change rapidly its state from linear vis-
cous fluid to semi-solid in milliseconds when it is exposed
to a magnetic field. In general, the design of semiactive
controller is generally difficult due to the high nonlineari-
ties, mainly the hysteresis phenomenon, presented by the
MR damper. In this paper, new semiactive control ap-
proaches are proposed based on the backstepping control
technique in order to attenuate the vibrations of smart struc-
tures subject to unknown external disturbances. The paper
is organized as follows. First, the description of experi-
mental setup is given. Then, the identification of hysteretic
model of the MR damper is presented. In the controller
design, the dynamics of MR dampers is taken into account
so as to achieve the better performance of the semiactiv-
elly controlled structure. Finally, experimental results are
presented to show the effectiveness of proposed control
schemes.
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2 Experimental Setup Description

The theoretical and experimental studies are done on a
semiactivelly controlled structure in the the Washington
University Structural Control and Earthquake Engineering
Laboratory (WUSCEEL), as shown in the figure 1. The
test structure is of 6 stories, single bay, steel frame and
188c¢m tall and has a mass of 147kg, distributed uniformly
among the floors. A couple of MR dampers is installed
between the ground and first floor, and the other couple be-
tween the first and second floors of the structure. Control
forces applied to the structure are sensed by means of force
transducers placed in series with the MR damper. Abso-
lute accelerations are measured at each floor of the struc-
ture by means of capacitive accelerometers. Ground exci-
tations are obtained by means of a uniaxial seismic simu-
lator, which consists of a 1.5m x 1.5m aluminium sliding
table mounted on high-precision, low friction, linear bear-
ings. The MR damper used in the experiments consists of
two steel parallel plates (see figure 2) with the dimension
of 4.45e¢m x 1.9cm x 2.5cm. Damper force is generated
when the moving plate, coated with a thin foam saturated
with MR fluid, slides between the two parallel plates. An
electromagnet, consisting of a coil installed at one end of
the devices, produces the magnetic field applied on the MR
fluid of the saturated foam. The center plate of the device is
0.495¢cm thick, resulting in a gap of 0.071cm. Thus, a max-
imum force of 29NV can be generated by each device, which
is approximately 1.6% the weight of the structure. Electric
power is supplied to the device by means of a current am-
plifier in which an output DC current between 0 ~ 1.2A4 is
present when an input voltage between 0 ~ 4V is applied.

The dynamic motion of the structure is represented by the

following equations:
Mi+Ce+ Ksx=Af - M,Ti, 1)

with  being a vector of relative displacements of the
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structural floors, &, the ground acceleration, f
[f1, fa, .-, fm]T a vector of measured control forces gen-
erated by the nth MR dampers, I' a column vector of ones,
and A a vector determined by the placement of the MR
dampers in the structure. Rewrite the equation (1) into the
following state equation:

z=Az+Bf+Ei, ; y=Cz+Df 2)

where z = [z,%]! is a state vector and y is a vector of
measured outputs about the absolute structural accelera-
tions &; (i = 1,2,...,6) and the semiactive control forces
fij (7 = 1,2,3,4) are generated by the MR dampers, to
which a voltage u; € [0, umq.] is applied through the cur-
rent driver. From the practical point of view, the unknown
seismic excitation &4(t) can be assumed to be bounded by
|Z4(t)] < Xo for all t > 0 where X is a known positive
constant according to the historical seismic records.

T

3 Identification

3.1 Identification of test structure

The available information of the test structure is the accel-
eration measurements of the ground and the ith structural
floor. In order to identify the dynamics of the test structure,
hybrid identification strategy is used, in which an analyti-
cal model is updated by using identified modal parameters
and optimization algorithms. First, a white noise acceler-
ation signal is used to excite the structure at the ground
level. Then, the experimental transfer functions from the
ground to the ith floor are obtained. The Eigensystem Re-
alization Algorithm (ERA) [3] is applied to estimate the dy-
namic properties of the experimental structure (i.e. damp-
ing factors and natural frequencies). The finite impulse re-
sponses for each floor are required as inputs for the algo-
rithm. Such responses are computed by applying the In-
verse Fast Fourier Transform (IFFT) on each transfer func-
tion. The mass and stiffness parameters of the analytical
model are optimized by using the identified damping fac-
tors and natural frequencies. The optimal damping matrix
is found by using the FMINCON optimization function of
MATLAB with objective function being defined as the sum
of the square errors between the experimental and simu-
lated acceleration values at each time sample, when a white
noise excitation signal is applied to the ground level during
n seconds. The damping matrix is computed based on the
method proposed in [3]:

C., = M ®diag(2h 27 f_])®" 3)

with @ = [¢1 ¢ ... ¢p] being the modal matrix, ¢;
the eigenvectors of M 'K, f. the frequencies and h,
the damping factors estimated by using the ERA. The ini-
tial parameters used to optimize the damping matrix corre-
spond to the damping factors, while natural frequencies are
maintained constant during the optimization.

By using the above procedure, the following esti-
mated values of the test structure are obtained: stiff-
ness of each floor k; = 273N/c¢cm and mass m; =
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0.227Ns?/cm. The natural damping factor has been
assumed to be 1% for each floor and the natural fre-
quencies obtained by means of the analytical model are:
[1.39 4.08 6.54 8.62 10.19 11.18] Hz, while the nat-
ural frequencies and damping factors estimated by us-
ing ERA are: [1.29 3.85 6.11 8.22 9.64 10.81] Hz and
[1.38 0.71 0.64 0.56 0.48 0.91] (%). Figure 3 presents a
plot of the transfer function (from ground acceleration to
the fourth floor) obtained by using the experimental data,
the analytical model, and the model with optimized damp-
ing and mass parameters. Finally, the optimal damping fac-
tors [4.95 1.16 0.76 0.41 0.20 0.24] % are obtained by us-
ing the white noise as excitation signal during 60 seconds.

3.2 Identification of MR dampers

A simple mechanical model for the MR damper has been
previously developed in [4]-[5] in which experimental tests
show that it can predict accurately the behavior of a MR
damper with the advantage of being adequate for control

purposes. The MR damper force is expressed as follows:
f = 0A¢+az )
2= —v|Adlz]z"Th = BAGIZ|" + AdAG (5)

with Ag = ¢; — ¢; being the difference of displacement
at the ends of the device and z an evolutionary variable
that accounts for the dependence of the historical response.
The parameters ~, 3, n and A, can be adjusted to control
the linearity in the unloading situation and the smoothness
of the transition from the pre-yield to the post-yield region
[6], [7], [8]. The parameters of a MR damper depend gener-
ally on the commanding voltage signal . Thus, for control
purposes this dependence is formulated as

§=6(u) =dq+0u (6)

The dynamic response of the current driver circuit to
changes in the command input is approximated by a first-
order time lag expressed by:

a=au) =a, + apu

@)

U= —n(u—v)

where v is the command voltage applied to the control cir-
cuit.

The identification of MR dampers can be done in two steps.
First, the MR damper parameters are identified before be-
ing installed at the structure. For this purpose, an exper-
imental frame is used in which the measurements of the
structural displacement and velocity and the damper force
are used to identify the parameters of the model expressed
in equations (4)-(7). Afterwards, when MR dampers are
installed at the structure, their parameters will be updated.
In this case, a variety of representative tests are realized
to update the MR damper parameters by using sinusoidal
excitations with different frequencies and amplitudes be-
ing applied at the ground level of the structure. Concretely,
three configurations are studied: (1) Two MR dampers in-
stalled between the base and the first floor (2) Two MR
dampers installed between the first and second floor and (3)
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two MR dampers on each of the fist two floors of the struc-
ture. Forces generated by each MR damper and accelera-
tions induced to each floor are measured in order to identify
and optimize the MR damper parameters. The FMINCON
optimization function is used to determine the optimal val-
ues by taking the values obtained in the step 1 as the initial
values. The objective function is defined as the error be-
tween the experimental and predicted accelerations at each
floor. Predicted responses are calculated by using the opti-
mal M, Cs and K¢ matrices. As a result, the following op-
timal MR damper parameters are obtained: d, = 0.0454;
dp = 0.0195; A, = 12; v = 300; 8 = 300; n = 80;
while the values of «, and «; of the four MR dampers are
varied in the ranges of o, € [45,60] and oy, € [45,90].
Finally, an integrated system model is obtained by using
the optimal parameters of the structure and the MR damper
after their installation. Figure 4 shows the good result of
identification obtained by comparing the experimental and
analytical MR damper forces.

4 Controller Design

The control objective is to design a semiactive controller
that can effectively attenuate structural vibrations when un-
certain disturbances act on the structure. In this paper, the
backstepping control technique is used for the design of
semiactive controller, in which the hysteretic dynamics of
the MR dampers is taken into account. Based on the mo-
tion equations of the test structure for the nodes 1 and 2
where the MR dampers are installed,

. 1 - . = . .
i o= - Zmﬂ:7 + Zmixg + kixy + 11 + f1
L li= i—1
1 n
Ty = - [Z m;Z; — k1x1 — &1 + (kl + ]412)3324-
2 li=3

(c1 +c2)da + fo + Z m;Zg

1=2

|

the following state equations are obtained:

Y1 =192 Y3 = Y4
1< =
y2 = —mi [Zm1x1+zmz$g+klyl +Cly2+f1
I = i=1
1 n
o= lZmiéz&i — kiyr — aryz + (k1 + k2)ys
S

e+ eys+ fat Y midy

=2

|

where y; =: x1, yo =: x1, y3 =: x2 and y4 =: Xo.

The following standard variables, typically adopted in the
literature of backstepping control [9]-[10], are used for the

®)

&)
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controller design:

€1 = Y1; €1 = Y2; e1€1 = e1ys;

ex =1yo —a1; €3 =12+ hiyz; e2éa = ea(P2 + hiyo)
€3 = Ys3; €3 = Ya; €3€3 = €3Y4;

ey =ys — 02; €4 =4+ h3ys; eséy = es(Ya + haya)
ayp = —hier  ag = —hzes;;

By substituting (9) into the last equation, one obtains:

. e [~ .
eaby = —— lg miZ; + kiyr + (1 — mih1)y2 + fi
m 5
+ E mii*g} (10)
i=1
. er |~ .
ey = ——o E mii; — kiyr — ciyz + (b + k2)ys
m2 53

+(er+ e —maha)ys + Y midg + f2| (11)
=2

In order to achieve the asymptotic error suppression, the
following control law is derived

i = - Zmi-i'i - Zmiﬂ'ﬁg —k1yr — (1 — maha)ye
fmer (12)
foo= =) madi =Y midy + kg + cays — (k1 +
i=3 i=2
k2)ys — (c1 + c2)ya + maoes (13)

However, the control laws (12) and (13) are not imple-
mentable in practice since they contain unmeasurable vari-
ables, such as z and Z4. On the other hand, a voltage com-
mand, in stead of a force command, is required for the MR
dampers. In order to overcome these problems, two semi-
active backstepping control approaches are studied. The
first one computes the equivalent command voltage based
on the equation (4), the force value obtained from (12) and
(13) with the estimated value of the evolutionary z. The
second one uses the modified Clipped-Optimal control al-
gorithm, used in (4), to compute the equivalent command
voltage.

4.0.1 Backstepping control scheme 1 (BF1)
By using (4) and (6) and the desired force values f; and f

in (12) and (13), the following control law is obtained:
fi — qa;2i + 60, Ay;
oz + 0, Ay;

U; 1=1,2 (14)

where Ay, = y2 and Ays = y4 — y2. Since the variable

z; cannot be measured directly, an estimated value Z; is
obtained:

L= —yilAyilglEM T - BiAy " + AiAyfls)
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Define z; = z; — 2; as the estimation error between the real
value z; and the estimated value Z;, then

2 = Zi + Z; Zi=ti— 4 (16)

By taking z; = es, Zo = ey, the denominator of the
commanding voltage signals u; and us can be replaced
by dp, Y2 + ap, 21 + ap, Z1 = b, Y2 + ap, 21 + o, €2 and
Obs (Ya—y2) 0, 2o+, Zo = Op, (Ya—y2)+p, Zo+p, e4.
Now, an implementable law, based upon the bounded val-
ues of X and the estimated values of z;, is adopted for the
backstepping control:

n

|

1
u = - mlxl —k — Qg R
! Ay, (?:’1 + 62) + 0, Y2 ; 191 141
—(0a; —mahic1)ys +mieg — Z m; Xosgn(es)
i=1
z = > =2 il
? apy (22 +e4) +0u,(1a —12) | o e

+(c1 4 0ay)y2 — (k1 + k2)ys — (c1 + c2 + 0ay)Ya

— g, 22 + Maesg — Z m; Xosgn(eq)
i=2

forall ap, (21+€2)+8p, y2 # 0and ap, (22+€4)+p, (Y4 —
y2) # 0, otherwise u; = 0. Moreover, for some types of
MR dampers [6]-[8], the constraints v > 8 > 0andn = 1
must be satisfied by the control law.
Stability Analysis
In order to verify the closed-loop stability, the following
Lyapunov function candidate is defined:

1 1 1 1 1., 1.
V = €161 + e96s + €365 + €464 + 5151 + 525418)

From equations (11)-(13), one obtains:

e1e1 = e1ys €363 = €3Y4
n
s = oY milXoleo] — dgea] - eres — hac
€€y = mi|Ap|€2 Tg€2 €1€2 2€9
i=1
1 n
. . 2
e416s = —m—g m;[Xolea| — Zgea] — ezeq — hael
9
=2

with hy = m 'ag, and hy = m5 ' ag,.
From equations (5), (15)-(16) and for n=1 one gets:

—vi| Ay 2E — BiAyizi (Jz:] — |2])
— (v — Bi) [Ayilz] < 0

Finally, the derivative of Lyapunov function becomes:

<

V:

1 < i}
- Zmi [Xolea| — Ege2] — hoe3 — hye?
i

1< . 8
—— > mi[Xolea| = #gea] — (1 = B1) ly2|}
m2 =

(v2 = B2) lya — 42|75 < 0
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Therefore, the stability of the closed-loop system is en-
sured.

4.0.2 Backstepping control scheme 2 (B FE5)

The control approach consists of using the desired forces
f1 and f5 obtained in (12) and (13) to obtain an equivalent
command voltage through the modified clipped-optimal
technique. This technique was proposed for controlling
a single MR damper [6] and multiple MR devices [7]
and was experimentally verified in [5]. This control ap-
proach appends m force feedback loops to induce each
MR damper and to produce approximately a desired con-
trol force. Then, a command voltage signal is obtained as
follows: when the i¢th MR damper provides the desired op-
timal force (i.e. f; = f.,) the voltage applied to the MR
damper should remain at the present value. If the mag-
nitude of the desired optimal force is between the minimal
force fo, and the maximum force f,,qz,, and the two forces
have the same sign, the voltage applied to the current driver
is derived from a linear relation, experimentally obtained,
between the output force and the input voltage which takes
the form: f; = fo, + m(u; — uo,). Otherwise, the com-
manded voltage is set to zero. Thus, the control law for the
ith MR damper, using the modified clipped-optimal con-
trol, is given as follows:

sgn(fi) = sgn(fe;)

u; = ug, +m(fi — fo,) if
ot mT = o) BN L Sl < o
. sgn(f;) = segn(fe,)
Ui = Umaz if ‘
| feil > [fiman|
u; =0 otherwise

5 Experimental Results

The experiments of semiactive vibrational control were
implemented on a 6-story test structure installed in the
WUSCEEL. The EI Centro earthquake has been used as the
excitation signal for verifying the effectiveness of proposed
backstepping controllers and for comparing the semiactive
control case with the passive-on case (with the maximal
damping coefficient). In Figure 5, the peak acceleration re-
sponse of the third floor is given to show the effectiveness
of the proposed backstepping control scheme.

Quantitative evaluation of the control performance has
been made by using five evaluation criteria [11] related to
the normalized and normed peak floor accelerations, the
peak and normed base shear, and the maximum control
force between the two MR dampers, respectively.

The first evaluation criterion considers the normalized peak
response of absolute floor accelerations

-y

jgzaz
where the absolute acceleration of the ith floor of the struc-
ture Z,;(¢) is normalized by the peak uncontrolled floor ac-

celeration, denoted by Z7**“.

(19)
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Table 1: Normalized Experimental Responses

Control strategy J1 Jo Js Ja Js

Passive-on 0.816 0425 1.111 0571 0.050
BE> 0.625 0408 0.852 0.765 0.043
BE: 0.655 0.343 0.806 0.430 0.008

The second evaluation criterion considers the normed peak
acceleration response

= max (
=/ tf #2.(t)dt and the absolute accel-

erations of the zth ﬂoor xm(t) are normalized by the peak
uncontrolled floor acceleration, denoted by ||Z7***||.

||xaz
‘xmax”

(20)

where ||Zq;(t)

The third evaluation criterion considers the maximum base
shear generated in the controlled configuration

>

i=1

mijai (t)

J3 = max
maxr
t Iy

21

where Iy describes the maximum base shear in the un-
controlled configuration.

The fourth evaluation criterion corresponds to the
normed/nondimensionalized base shear.

iZai(t)

Jy = (22)

LEm ]

6

where [|Fp"%"|| = Zmiiai(t) represents the maxi-

i=1
mum normed uncontrolled base shear.

Finally, the fifth evaluation criterion is a measure of the
maximum control force per device,

(42

where f;(t) is the force generated by the ith control device
over the time story of each earthquake and W = 1446 N =
weight of the structure.

In Table 1, the normalized experimental responses are
shown for the passive-on and semiactive control cases. It
is seen that the dynamic performance of the structure has
been enhanced by using backstepping controllers as com-
pared with the passive-on case.

Js (23)
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6 Conclusions

In this paper, the identification results of smart structures
with MR actuators have been presented. Two new semiac-
tive control schemes have been proposed and experimen-
tally verified for the vibration attenuation of smart struc-
tures, in the first one by estimating the unmeasurable and
in the second one by using the modified clipped-optimal al-
gorithm. In the controller design, the hysteretic dynamics
of semiactive MR dampers have been taken into account.
In this way, the proposed controllers have presented a bet-
ter performance in real operation conditions. The experi-
mental verification for a 6-story structure has shown the ef-
fectiveness of the semiactive backstepping controllers pro-
posed.
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