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M u l t i a g e n t  S y s t e m s
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This system uses an 

auction mechanism 

based on trust to select 

an ambulance  

for emergency  

patient transportation.

Emergency transportation on specialized vehicles is needed when a person’s health 

is in risk of irreparable damage. A patient can’t benefit from sophisticated medical 

treatments and technologies if she or he isn’t placed in a proper healthcare center with the 

appropriate medical team. For example, strokes are neurological emergencies involving a

limited amount of time in which treatment mea-
sures are effective.1 These situations also re-
quire an expert medical practitioner to determine 
whether the stroke is not hemorrhagic. Only in 
such a case should the patient receive the medi-
cation rt-PA (recombinant tissue plasminogen 
activator).

Emergency medical transportation is guided by 
the criteria and protocols provided by regulatory 
authorities—for example, Spain’s Emergency Med-
ical Service (SEM). According to the SEM crite-
ria, patients receive a transportation priority, with 
0 being the highest. Each priority level requires an 
ambulance to arrive at the patient’s location within 
a particular response time. For priority 0, 15 min-
utes is the maximum allowed time. In Spain, emer-
gency medical transportation involves two types of 
ambulances. Priority-0 patients should be moved 
by an advanced vital support vehicle (SVA), which 
has an intensive-care unit. However, if no SVA is 
available within the required response time, a ba-

sic vital support vehicle (SVB), which has a stan-
dard care unit, can also be used. Lower-priority pa-
tients are usually moved by an SVB.

Recent studies in Girona, a rural region in 
northeast Spain, have shown that ambulance 
teams have different response times, mainly be-
cause of the drivers’ expertise. In most cases, 
ambulances are based in a village some distance 
from the patient. So, the driver’s knowledge of lo-
cal roads is essential for arriving on time at the 
patient’s location.

Girona has seven fully equipped ambulances 
(that is, SVAs with a doctor on the crew) for 223 
locations spread over 5,910 km2. The challenge 
for the regional authorities is to appropriately co-
ordinate their resources to continuously improve 
response time, taking into account the resources 
needed and driver expertise. Given such a situa-
tion, the administrations of the major hospitals in 
Girona have considered developing a computer-
ized system to support coordination of ambulance 
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services. In response, we developed a multi
agent system. Results from simulated ex-
periments based on real data show that our 
system can substantially decrease response 
time, thus improving patient care.

The architecture
To ensure that resources (ambulances) are 
properly used and patients are assisted as 
quickly as possible, we must coordinate the 
different agents involved in the process. 
Our multiagent system provides the compu-
tational framework for such coordination.2 
The system architecture comprises ambu-
lance team agents and an ambulance co-
ordinator agent (see Figure 1). This model 
represents the current real ambulance or-
ganization for any given region. Thus, the 
multiagent approach lets us maintain the 
real distributed organization of resources.

The ambulance coordinator agent col-
lects requests for services from other ex-
ternal agents (including human operators). 
A service consists of arriving at a patient’s 
location, giving the patient first aid, and 
transporting the patient to the appropriate 
medical center. The system processes one 
priority-0 request at a time, as in the real or-
ganization. For each request, the ambulance 
coordinator agent assigns the service to an 
appropriate ambulance.

To solve the assignment problem, we use 
an auction mechanism, a well-known mar-
ket mechanism to distribute tasks (in our 
case, services) to different agents. More 
specifically, we use inverse auctions (also 
called the contract net protocol), in which 
the auctioneer proposes some tasks to be 
performed under certain conditions.3 The 
ambulance coordinator agent plays the role 
of auctioneer by proposing a service (one at 
a time) to the ambulance team agents (the 
bidders). The ambulance team agents re-
ply to the ambulance coordinator with a bid 
containing the estimated arrival time. Using 
a winner determination algorithm, the am-
bulance coordinator agent selects the am-
bulance to which it will assign the service. 
The system suggests this decision to the hu-
man coordinator. If the human coordinator 
accepts the suggestion, the system informs 
the ambulance team agents and the external 
agent requesting the service.

Ambulance team agents
An ambulance team agent’s goal is to esti-
mate the time required to perform a service 
according to the ambulance’s current loca-

tion, availability, and crew, and the traffic 
conditions.

For such purposes, ambulance team 
agents incorporate a GPS module, a traffic 
module, and a trajectory module. We de-
signed these modules in accordance with 
the new ambulance fleet deployed in Gi-
rona, which have been equipped with GPS 
and an onboard data terminal that can com-
municate information to and from the am-
bulance coordinator’s PC.

The GPS module receives inputs from an 
ambulance’s GPS system, which returns the 
ambulance’s location. The traffic module 
reads information about temporarily closed 
roads from the national traffic center. (Our 
experiments used simulated GPS inputs 
and traffic center information.) You might 
think that traffic jams highly affect an am-
bulance’s movement. However, emergency- 
transportation officials have told us that 
warning lights and sirens enable ambu-
lances to overcome such congestion. What’s 
really important is to avoid roads blocked 
by, for example, snow or roadwork. These 
situations would cause rerouting of the am-
bulance route, increasing the time to get to 
the patient.

The trajectory module contains a repre-
sentation of the region’s transportation net-
work. Using information from the GPS and 
traffic modules, it calculates the optimal tra-
jectory from the ambulance’s current loca-
tion to the patient’s location, from that point 
to the hospital, and from the hospital to the 
ambulance base.

The system proposes the trajectory mod-
ule’s results to the current ambulance driver 
(a member of the crew). The driver can fol-
low the proposed trajectory or adapt it ac-
cording to her or his experience and knowl-
edge about the zone where the ambulance 
is. When the driver accepts the trajectory, 
the ambulance team agent computes the 
estimated arrival time as a function of the 
distance and the maximum allowed speed 
(which is usually 90 kmh) for the three seg-
ments of the trajectory. If the driver rejects 
the trajectory, the ambulance team agent 
asks her or him for the estimated arrival 
time to the three locations.

Once the ambulance team agent has the 
estimated time to arrive at the patient’s lo-
cation (ET), to transport the patient to the 
hospital (TT), and to return to the ambu-
lance’s base (RT), it sends its bid to the am-
bulance coordinator agent. So, the bid bi 
generated by the ambulance agent i has this 
structure:

bi = <ETi, TTi, RTi>

The total time the ambulance requires 
from the moment the service is assigned un-
til it’s available again depends on not only 
ET, TT, and RT but also the time for sup-
plying first aid to the patient and for hos-
pital admission (the crew must be with the 
patient until she or he is attended by the 
hospital staff). However, the bid doesn’t 
take into account these treatment and ad-
mission times because they don’t depend on 
the ambulance assigned to the service.
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driver trust

Ambulance team
agent 1 …

Emergencies

Ambulance team
agent 2

Ambulance team
agent 3

Ambulance
coordinator
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Figure 1. A multiagent-system architecture for assigning ambulances to patients. 
This model represents the current real ambulance organization for a given region.
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Obviously, an ambulance agent sends 
a bid only if the ambulance is available—
that is, it’s idle at its base or returning from 
a previous service. Conversely, the ambu-
lance is unavailable from the instant it starts 
a service until the patient is admitted to the 
hospital.

The ambulance  
coordinator agent
As we mentioned before, the ambulance 
coordinator agent gathers the ambulance 
agents’ bids and determines which ambu-
lance should be assigned a given service. 
However, it would be unrealistic to assume 
that the estimations in the bids are always 
precise. To deal with possible mistakes in 
the estimates, we could develop a model of 
the driver’s abilities. However, this task is 
difficult. Instead, we use a mechanism that 
approximates drivers’ abilities on the basis 
of the ambulance coordinator agent’s trust 
in the drivers.

The trust model
The trust an ambulance coordinator agent 
(a truster agent) has in an ambulance team 
agent is its belief that the agent can ful-
fill its obligations during an interaction.4 
An ambulance team agent with an expert 
driver should have a high trust value be-
cause that ambulance is expected to arrive 
on time at the patient location. Conversely, 
a novice driver could have a low trust value 
because she or he probably is less able to 
find alternative faster routes to the patient’s 
location. By “expert” and “novice,” we re-
fer not to the driver’s actual driving abili-
ties but to his or her knowledge of the area 
covered by the ambulance.

We use Jigar Patel and his colleagues’ 
probabilistic approach to trust. They de-
fine trust as a value in the [0, 1] interval; 
0 means a totally untrustworthy agent, 
whereas 1 means complete reliability.4 
Because there’s insufficient information 
to define such a probability, Patel and his 

colleagues propose using the expected 
value given previous experience of all in-
teraction outcomes. Then, the trust value 
ti,j that agent ai has for agent aj is deter-
mined by

 ti j, =
+
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and si,j and ui,j are the number of past suc-
cessful and unsuccessful interactions.4

In our problem domain, a successful in-
teraction is one in which the time the ambu-
lance takes to arrive at the patient’s location 
is less than or equal to the estimated time 
this agent sent as a bid (plus a  margin that 
has been established experimentally); oth-
erwise, the interaction fails. The initial val-
ues of  and  are 1.0.

Using this approach, we have a single 
truster agent, the ambulance coordinator, 
so we can skip the first index in the nota-
tion. The ambulance coordinator has a trust 
value for every ambulance team, <t1, …, 
tn>, where n is the number of ambulance 
team agents. We assume that each vehicle 
has a permanent crew. We’ll try to relax this 
bold assumption in future research.

The following example illustrates how we 
compute trust. Table 1 shows the ambulance 
coordinator’s past experiences with ambu-
lance team 1, assuming  = 2 minutes. From 
such information, s1 = 3 and u1 = 2. Accord-
ing to Equation 2,  = 4 and  = 3. Finally, 
according to Equation 1,

 t1
4

4 3
0 57=

+
= .

 

Suppose that there’s a new successful 
interaction. In this case, trust in the ambu-
lance team increases: s1 = 4,  = 5, and, fi-

nally, t1 = 0.62. If the new interaction were 
unsuccessful, t1 would decrease to 0.5.

Fuzzy filtering
The ambulance coordinator agent modifies 
ambulance team agents’ bids according to 
their trust values because the ambulance 
with the best estimated time shouldn’t nec-
essarily be the winner. It should also have a 
good degree of trust. So, we use fuzzy fil-
ters to modify the information provided by 
the ambulance team according to the team’s 
trustworthiness.5

A fuzzy filter is an inference system in 
which the rules have this form:

if A1 is S1 and … and An is Sn then F is L1

Ai and F are fuzzy variables and Sj and L1 

are fuzzy labels. Ai are the input variables; 
F is the filtered variable (output).

We apply the fuzzy filters three times per 
bid, once for each time provided in the bids: 
ETi, TTi, and RTi. For simplicity, we focus 
here on ETi; we handle the other two cases 
in the same way. The input variables are ETi 

and trust (Ti); the filtered variable is the in-
creasing time (ITi), which increments the 
estimated time as shown in Figure 2.

For each fuzzy variable, we define these 
fuzzy labels:

ET: {very short, short, medium, long, 
very long},
T: {very low, low, medium, high, very 
high}, and
IT: {very short, short, medium, long, very 
long}.

The fuzzy system consists of fuzzy rules 
such as these:

R1: If ET is short and T is low, then IT is 
very long.
R10: If ET is short and T is very high, 
then IT is very short.

We follow a Sugeno approach.6,7 The 
input membership functions (ET and T) 
are triangles, and the output membership 
functions (IT) are linear. The and operator 
and the implication method are the prod-
uct, and the defuzzification method is the 
weighted average. Figure 3 shows the sys-
tem’s behavior.

For each agent, we fuzzify the numerical 
values expressed on the bids and trust into 
ET and T values correspondingly (by ap-

•

•

•

•

•

Table 1. Ambulance coordinator experiences of ambulance team 1.

Date Estimated time Real time Outcome

2 Mar. 12:00 12:15 Failure

2 Mar. 20:00 20:00 Success

3 Mar. 09:00 09:01 Success

4 Mar. 05:05 05:04 Success

4 Mar. 08:09 08:20 Failure
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plying the triangle membership functions). 
After applying the fuzzy filter, we obtain 
IT. The defuzzification of IT results in a 
numerical time increase, which modifies 
the original estimated time that each agent 
provided:

 ET ET ITi i i′= + ( )defuzzification

Finally, we obtain a new set of estimated 
times for each agent:

 ET ET ETn′ ′ ′{ }1 2, , ,…

The winner 	  
determination algorithm
This algorithm uses the values of the modified 
bids to assign a task to an ambulance team.

The criterion for selecting the winner is 
quite straightforward: the best ambulance is 
the one that gets to the patient the earliest. 
However, we’ve added a small modification 
to take into account that not all the ambu-
lances are identical, that the first 15 min-
utes after the emergency has occurred are 
the most critical, and that medical attention 
should be provided immediately.

For an emergency, an SVA is preferred. 
However, if an SVA will take more than 
15 minutes to arrive at the patient’s loca-
tion but an SVB can arrive within 15 min-
utes, then the SVB ambulance should be se-
lected. If no ambulance can arrive on time, 
the one with the shortest arrival time should 
be selected.

Formally, given the set A of SVAs and 
the set B of SVBs, with ETi′ being the es-
timated time of arrival of ambulance i at 
the patient’s location (after being modi-
fied by the fuzzy filters), the selection al-
gorithm is
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 Maintaining region coverage

Although the winner determination algo-
rithm ensures that an ambulance will arrive 
as quickly as possible, it has a dangerous 
drawback. It takes into account only the es-
timated time of arrival to the patient’s loca-
tion, ignoring that the ambulance must get 

to a hospital and, after dropping off the pa-
tient, return to its base. Thus, while an am-
bulance is attending a service, the area sur-
rounding its base is undercovered.

Imagine the situation in Figure 4 (see p. 
54), where a patient is located at Lp and two 
ambulances are available: A1 with its base 
in city C1 and A2 with its base in C2. More-
over, because of the treatment the patient 

requires, she or he must be moved to a hos-
pital in C2. The figure also shows the esti-
mated driving times between each location.

According to the algorithm, A1 should 
be assigned the service because its ET′ is 8 
minutes, whereas the ET′

 
for A2 is 10 min-

utes. However, A1 will be away from its 
base for 33 minutes but A2 will be away for 
only 20 minutes. So, if A2 were assigned the  
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Figure 2. Fuzzy filtering. This process filters the estimated time to arrive at 
the patient’s location (ET) to obtain an increasing time (IT), which the winner 
determination algorithm then uses.
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Figure 3. The fuzzy filter’s output surface for any input. The figure shows the limits 
and the variation of increasing time (IT) according to the estimated time (ET) and 
the trust (T).
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patient, she or he would still be attended 
within the 15-minute window, and bet-
ter area coverage would be maintained (C1 
would have A1 available, and C2 would be 
unattended for only 20 minutes).

With these new criteria, we use the fol-
lowing region coverage algorithm to select 
one ambulance:

 

if then∃ ∈ ′ ≤ ′

= ∈ ′ ≤ ′{
a A ET

selA a A ET

a

a

such that 15

15 }}
= ′ + ′( )

∃ ∈
∈selected TT RT

b
a selA a aargmin

else if BB ET

selB b B ET

sel

b

b

such that ′ ≤ ′

= ∈ ′ ≤ ′{ }
15

15

then

eected TT RT

selected

b selB b b= ′ + ′( )

=

∈argmin

else

aargmini A B iET∈ ∪ ′

As in the previous algorithm, if no ambu-
lance can reach the patient in 15 minutes, 
the fastest ambulance should be assigned 
the service.

You might think that transportation time 
(TTi′) seems crucial and therefore we should 
try to minimize it. However, we focus only 
on a quick response to the emergency (ETi′). 
This is because, once the ambulance reaches 
the given location, the medical staff can start 
treating and stabilizing the patient. Also, 
the severity of the patient’s condition could 
cause the ambulance to stop on the way to 
the hospital or go very slowly to keep the 
patient alive. So, establishing a maximum 
transportation time and modifying trust 
in the ambulance agent on the basis of this 
time would be meaningless.

Experimentation
We implemented our system with three dif-
ferent coordination mechanisms:

the simple assignment algorithm without 
the trust model,
the simple assignment algorithm with the 
trust model (that is, the winner determi-
nation algorithm), and
the region coverage algorithm with the 
trust model.

To evaluate our system, we used data 
from the regional health transportation ser-
vice containing information about priority-0 
ambulance services performed during nine 
months (approximately 7,500 services). For 
each service, we had

the date and time of the call,
the patient’s location,
the destination hospital,
the ambulance’s activation time (when it 
started toward the patient’s location),
the arrival time at the patient’s location,
the departure time for the hospital,
the arrival time at the hospital, and
the end-of-service time.

We used these data to simulate emer-
gency calls that feed our assignment algo-
rithm. Each service request contained the 
time of the call, the patient’s location, and 
the destination hospital.

To assess our system’s performance, we 
analyzed

arrivals within 15 minutes,
arrivals earlier than in the real service 

•

•

•

•
•
•
•

•
•
•
•

•
•

(we explain this later),
the number of SVBs used, and
the time each ambulance spent perform-
ing services and the number of services it 
performed.

Because information on the real ambu-
lance assignments was missing (owing to 
confidentiality issues, the data didn’t in-
clude the ambulance identifier), we couldn’t 
directly compare whether our assignments 
were better than the real ones. However, we 
could indirectly compare them by compar-
ing our ambulances’ arrival time at the pa-
tient’s location with the corresponding time 
provided in the real data. This compari-
son isn’t strict, so we allowed a range (con-
trolled by ) within which times were con-
sidered the same.

Setup
We used the same number of ambulances 
as in the real system: seven agents for SVAs 
and 37 agents for SVBs. In each experiment, 
we initially set each ambulance agent’s trust 
as medium (that is, 0.5). During simulation, 
we computed ET using the distance from the 
ambulance base to the patient’s location (in-
cluding the time needed for the ambulance 
to return to its base if it was out when it re-
ceived the request). We similarly computed 
TT and RT using the respective origin and 
destination locations (the patient’s location, 
destination hospital, and ambulance base).

However, to simulate the actual time from 
one location to another, we added noise to 
the computed values for ET, TT, and RT. The 
distribution of this noise was a function of 
the trust in that ambulance agent. We gen-
erated a random number between 0 and 1 
and compared it with the agent’s trust. If it 
was below the trust value, we didn’t modify 
the driving time; otherwise, we increased it. 
The increment depended on the trust. For 
instance, for the modified ET, if the trust 
was low, the increment ranged from 0 to  
ET −  + 2 ×  min., where  and  are 
the average and standard deviation of the ar-
rival times (simulating a driver’s poor abil-
ity to avoid unexpected traffic disturbances). 
For medium trust, the increment ranged 
from 0 to ET −  +  min. For high trust, 
it ranged from 0 to ET −  min. (simulat-
ing good knowledge of the road network to 
find shortcuts, alternative routes, and so on). 
With these ranges, an agent with low trust 
can increase its trust and an agent with high 
trust can still be penalized.

•
•
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Figure 4. Driving times between the patient’s location (Lp), two ambulance bases in 
cities C1 and C2, and a hospital in C2. Although the ambulance in C1 would arrive at 
the patient faster than the ambulance in C2, its total time away from its base would 
be greater.
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We then compared this simulated driv-
ing time against the estimated time sent by 
the agent, to update its trust. The value of 
the parameter  was 2 minutes. in all the ex-
periments. We took the times spent on the 
scene to treat the patient and in hospital ad-
mission from the real data of each service.

Currently, we use no realistic simula-
tor that keeps track of the ambulances’ lo-
cations at any given time. This affects our 
simulation in two ways. First, the estimated 
driving times aren’t very precise. Second, 
assume an ambulance is in the middle of a 
service and receives an assignment for an-
other service. To calculate the time to get to 
the patient, the ambulance team agent com-
putes the time the ambulance takes to re-
turn to its base plus the time from the base 
to the patient. However, in some such real 
cases, the ambulance could divert its route 
in advance, thus decreasing the time to get 
to the patient.

Results
Table 2 shows the results of our simulations 
for each coordination mechanism, together 
with the real data. The results are averages 
over 10 different simulations with the same 
real data. We performed Student’s t-test, and 
all the results are statistically significant.

Almost all the services were performed 
within 15 minutes or less. This percent-
age (above 97 percent in all the experi-
ments) is higher than that achieved in the 
real data, where only 87.57 percent of the 
services were attended within 15 minutes. 
Moreover, the small percentage of services 
that failed to arrive within the window in 
our experiments were cases in which the 
ambulance arrived at the patient’s location 
after 16 to 18 minutes; no case suffered a 
significant delay.

With the simple assignment algorithm, 
approximately 90 percent of the services 
had performance times as good as or better 
than the real services’ times. The introduc-
tion of trust slightly improved this percent-
age, increasing it by 2.4 percentage points. 
The region coverage algorithm significantly 

reduced the number of SVBs used. This in-
dicates that SVA assignment improved and 
that SVAs could therefore provide more ser-
vices without needing to request an SVB.

Reduced SVB use is also evident in Fig-
ure 5, which shows the percentage of ser-
vices performed by each of the seven SVAs 
and the total for all the SVBs. Ambulances 
A4 and A5 performed most of the services 
(approximately 90 percent). This is because 
both ambulances were in the city of Girona 
(the largest in the region) and most of the 
services were in this city. With the region 
coverage algorithm, these two ambulances 
performed a higher percentage of ser-
vices, whereas the percentage for the SVBs 
decreased.

However, ambulances A0 and A6 were sel-
dom (if ever) used because they were in low-
population areas. Although having these 
two ambulances idle most of the time could 
seem a waste of resources, it wasn’t. These 
areas are far from big cities; if they didn’t 

have an ambulance, it would take a long 
time for another ambulance to reach them.

This uneven distribution of services also 
prevented us from observing a greater effect 
of including trust in the assignment process. 
This is because, given that most services 
were in the city of Girona, the two ambu-
lance teams there were usually the best, re-
gardless of their trust.

To see the region coverage algorithm’s im-
pact, we also compared the time each ambu-
lance was busy. Figure 6 (see p. 56) shows, 
for each SVA, the simulated driving times 
according to the random distribution based 
on trust. “Going with trust” is the time an 
ambulance took from its base to the patient 
when the system used trust, and “Returning 
with trust” is the total time to return to the 
base, again when using trust. “Going with 
region coverage and trust” and “Return-
ing with region coverage and trust” are the 
same total times when the system used re-
gion coverage and trust. Although the region 

Table 2. Simulation results (average ±
 

deviation). All figures are percentages.

Without trust With trust With trust & region coverage Real data

Arrivals within 15 min. 97.4340 ± 0.2217 99.8459 ± 0.0559 99.5311 ± 0.0565 87.57

Early arrivals 89.4252 ± 0.1652 92.6986 ± 0.1558 93.8706 ± 0.2579 —

SVB ambulances used 12.2632 ± 0.0928 13.9569 ± 0.0857 8.4874 ± 4.8701 —
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Figure 5. The distribution of services among ambulances. The region coverage 
algorithm significantly reduces the number of SVBs (basic vital support vehicles).
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coverage algorithm increased the time to go 
to patients (because the selected ambulance 
wasn’t always the fastest), it reduced the re-
turn time and the total time each ambulance 
was on the road. This implies that the ambu-
lances were available more often, thus giv-
ing better coverage to the region.

Figure 7 also illustrates the region cov-
erage algorithm’s impact. It shows the ser-
vices each ambulance performed (the rect-
angles indicate individual ambulance bases, 
with the lines pointing to the different pa-
tient locations to which they traveled). With 

the region coverage algorithm (see Fig-
ure 7a), the two ambulances in the city of 
Girona covered an area larger than they did 
without such coverage (see Figure 7b). This 
is because these ambulances had low return 
times and therefore were assigned most ser-
vices that the simple assignment algorithm 
assigned to ambulances at other bases.

Our results show that a multiagent sys-
tem can integrate the components of 

an ambulance organization so that the sys-
tem can assign the most appropriate vehicle 
for emergency patient transportation. (For a 
look at other applications of agents to emer-
gency medical services, see the sidebar.) 
The system can provide a quick response, 
the first step to ensure that the patient re-
ceives proper treatment. By combining an 
auction protocol with a trust model and 
fuzzy filters that deal with driver expertise, 
the system can take into account more vari-
ables in the decision process than current 
assignment strategies do. In addition, main-
taining region coverage improves decisions 
regarding ambulance distribution. Nev-
ertheless, such a coverage strategy is still 
an experimental coordination model that 
should be discussed with medical authori-
ties, who are ultimately responsible for de-
ciding the trade-off between coverage and 
ambulance arrival time.

Our auction mechanism based on trust 
has room for improvement. The computa-
tion of trust is based on a strict criterion (the 
ambulance either arrived in time or was 
late). A fuzzier approach could take into ac-
count the actual difference between the es-
timated time and the real arrival time, bet-
ter modeling the driver’s expertise.

Moreover, the region coverage algo-
rithm assumes that each base has only one 
ambulance, so when that ambulance is 
busy, the area is undercovered. However, a 
real base might have several ambulances, 
so we need to extend the algorithm to deal 
with this issue.

Another important goal is to integrate 
this multiagent system with other healthcare 
systems dealing with medical protocols and 
diagnosis,2 which would automatically re-
quest ambulance service when needed. As 
part of this integration, we could extend 
our system to cover other ambulance ser-
vices by including lower-priority (but still 
urgent) patient transportation and cases that 
aren’t urgent. In the nonurgent scenario, a 
quick response isn’t needed; the problem is 
to assign sets of patients to different ambu-
lances according to the patients’ transpor-
tation requirements. To solve this problem, 
we’re following a combinatorial auction  
approach.8
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Figure 7. The assignment of services to ambulances, taking into account (a) region 
coverage and trust and (b) just trust. A comparison of both figures shows that with 
the region coverage algorithm, the ambulances based in Girona cover a larger area 
owing to their proximity to the main hospital.
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The past few years have seen more interest in research on 
managing disaster scenarios (such as earthquakes and hur-
ricanes) than in handling medical transport. Scenarios such 
as Robocup Rescue (www.robocuprescue.org) involve co-
ordinating other teams in addition to ambulances, such as 
police forces and fire brigades. Such scenarios are so com-
plex, and each proposed solution involves so many differ-
ent techniques, that evaluating a single component, such as 
ambulance allocation, is difficult. Wei Chen and Keith Decker 
tried to abstract from the disaster scenario by working only 
on ambulance-police coordination. However, they focused 
on how and when the different agents should communicate 
to coordinate their actions.1 The research we present in the 
main article is more specific, and it addresses the problem of 
assigning services to ambulances.

Regarding multiagent approaches for coordinating agents 
involved in medical transport, Anna Ciampolini and her col-
leagues propose having the ambulance choose the desti-
nation hospital.2 In contrast, in our system, the hospital is 
known in advance, and the system assigns the ambulance 
to transport the patient. Our approach is in line with other 
medical coordination approaches, such as those of Decker 

and Jinjiang Li3 and David Isern and Antonio Moreno.4 To 
some extent, the multiagent systems in these approaches 
replicate existing human organization and authority struc-
tures. This is also the case in our approach; we believe that 
using a different structure would be unacceptable to most 
medical authorities.
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