
INTERACTING SOFTWARE-AGENTS TO SUPPORT A
KIND OF EXPERT SUPERVISION SYSTEMS

Contreras, O.C., De La Rosa, J. and Melendez, J.

Grup d’Enginyeria de Control i Sistemes 1ntel.ligents (&in, Institut d’Inform8tica i Aplicacions
(IIiA), Universitat de Girona (UdG) & European Associated Laboratory-Intelligent Systems and

Advanced Control (LEA-SICA), AV. Lluis Santa16 s/n, 17071 Girona (Spain) T.+3472
418391/418487 F.+3472 418098 E-mail: {Orlando, peplluis, quimmel) @eia.udg.es.

Abstract - Expert supervision systems are software applications specially designed to automate the
process monitoring. The goal is to reduce the dependency on human operators to assure the right
operation of a process including when faulty situations. Construction of this kind of applications involves
an important task of design and development in order to represent and to manipulate process data and
behaviour at dferent degrees of abstraction for interfacing with data acquisition systems connected to
the process. This is an open problem that complicates notably with the number of variables, parameters
and relations to account for the complexity of the process. Multiple specialised modules tuned to solve
simpler tasks that operate under a co-ordination provide a solution. A modular architecture based on
concepts of software-agents, taking advantages of the integration of diverse knowledge-based techniques,
is proposed for this purpose. The components (software-agents, communication mechanisms and
perceptiodaction mechanisms) are based on ICa (Intelligent Control architecture), a software middle-
ware supporting building-up of applications with software-agent features.

1. INTRODUCTION

Nowadays, the requirements related to quality assurance
and uniformity of products together with exigencies of
availability and flexibility of processes cause the
necessity of automation of surveillance systems. The
detection of deviations from normal operation and the
proposing of appropriate correction actions are the tasks
of expert supervision systems (ESSs). These systems
are software applications specially designed to automate
the process monitoring. The goal is to reduce the
dependency on human operators to assure the right
operation of a process including when faults
(misbehaviours) are present. Three basic tasks are
differentiated to achieve the supervision goals: fault
detection (analysis of process variables and detection of
deviations), fault diagnosis (reasoning on detected faults
for determining the origin) and reconfiguration
(proposing of correction actions to recover normal
operation condition). These tasks constitute the rationale
that an ESS should have as influence on the process
behaviour through variables, parameters and relations
(among them) of a process behaviour model.

Multiple knowledge-based techniques and methods
(heuristic rules, fuzzy logic, analytic reasoning,
qualitative reasoning, neural network and so on) have
been proposed to achieve the supervision goals [I].
Those techniques and methods that take benefit of
knowledge, experience or heuristics extracted from
process operators and engineers constitute the base of
the expert process supervision. But none of the
techniques and methods is a unique solution. The results

could be improved by combining them in order to take
benefit of all available information from both the
process data and behaviour.

The necessity of representing and processing data and
behaviour at different degrees of abstraction, and of.
interfacing with data acquisition systems connected to
the process is an open problem that increases notably
with the number of variables, parameters and relations
to treat the process complexity. As a consequence, it is
difficult to build a unique structure to a decision system
based on the flow of information as in Fig. 1 . In such
case, multiple specialised modules tuned to solve
simpler tasks that operate under co-ordination provide a
solution. Software-agents [2], [3] offer capabilities
(solving focus, autonomy, co-operation, etc.) that can
solve the complexity of dealing with multiplicity of
tuned tasks to achieve the supervision goals.

0-7803-5670-5/99/$10.00 01999 IEEE 907

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

In the following sections a modular architecture based
on concepts of software-agents is proposed to achieve
supervision goals in complex processes taking
advantage of integration of diverse knowledge-based
techniques and methods. The components (software-
agents, communication mechanisms and
perceptionlaction mechanisms) are based on ICa
(Intelligent Control architecture)’ [4], a software
middle-ware to support building-up of applications with
software-agent features. Conclusions and future work
are also presented.

2. COMPUTATIONAL COMPLEXITY OF
EXPERT SUPERVISION SYSTEMS

The computational complexity in the design and
development of ESSs is basically due to:

The information comes from heterogeneous
sources: data are quantitative/qualitative values
obtained from process variable measures.
Behaviour is defined through analyticheuristic
models according to the knowledge that operators
and engineers have on process operation. Models
describe the situations of interest that determine the
behaviour through variables, parameters and
relations (among them) in mathematical terms, or
qualitative terms such as causalities or if-then rules,
or hybrid [11.
The information comes from distributed sources:
process might be the combination of multiple
interacting components.
The information is imprecise: some situations are
ambiguous due to the fact that the knowledge on
process behaviour (or part) is based on experience
from operators and engineers. Some situations are
imprecise due to uncertainties in the behaviour, e.g.
intermittent or unpredictable faults. Some relations
are imprecise descriptions of numerical variable
magnitudes; e.g. considering the symbol “too hot’
for a variable “temperature”, it is an imprecise
interpretation of “temperature” as it represents
certain range of temperature values.
The information is insufficient: data acquisition
systems provide only real, actualised and
instantaneous values of variables, which do not
constitute sufficient information to know the
process state. In addition, those values must be
elaborated (by means of additional analysis
functions) and stored in order to deduce deviations.
The information is time dependent: process evolves
through the time so that input data must be
periodically actudised and output responses must
be produced in a restricted time. Also, information

’ ICa was developed by the Autonomous Systems
Laboratory (ASLab) of the Universidad Polit6cnica de
Madrid (Spain). The eXiT group has been authorised to
use ICa in researches and developments.

on past process states is needed for knowing the
present process state.
The information is voluminous: big number of
variables, parameters and situations might be
involved in the process behaviour (consequence of
size and complexity); a big number of relations are
needed for describing that behaviour.

3. STATE OF THE ART

Researchers have tackled the ESS computational
complexity with the integration of multiple applications,
motivated by the positive aspects of distributed
processing performance, reliability, flexibility,
modularity and resource sharing [51, [61, VI, [81, PI ,
[lo]. Researches have been centred mainly on the co-
operation among expert systems [l l], [12] and their
integration with database systems with capabilities to
store and update information from process [91, [131.
Generally the integration have been carried out with
object-based techniques and the co-operation with
exchange of information based on methods. The
interfacing with data acquisition systems has been
generally carried out with 4namic data exchange
(DDE). But, that integration has always been directed to
closed solutions composed of applications that work
together.

4. OUTLINE OF THE SOFTWARE-AGENT
BASED EXPERT SUPERVISION SYSTEMS

The ESS computational complexity is tackled with
modules based on software-agents and focused on the
treatment (acquisition, abstraction, storing, controlling
and reasoning) of process data and behaviour.
Specialised software-agents should supervise multiple
parts of a process, whose interactions might allow
supervising the global process; a software-agent should
have knowledge dn only the behaviour of a process part.
The proposed modular architecture is founded on this
conception and it is named software-agent based
expert supervision system architecture. So, modules
are software-agents focused on acquisition, abstraction,
storing, controlling and reasoning of process
information, which interact to achieve the supervision
goals.

A software-agent based ESS (A-ESS) is defined as a
“software application with the ability to sense a process
and act on it, composed of specialised sofiware-agents
for reasoning (detecting and diagnosing faults) about
process behaviour in order to propose appropriate
actions to maintain the operating conditions in case of
faults”. Process constitutes the environment where the
software-agents inhabit. Process variables data
(measures and abstractions) constitute the perceptions,
which determinate the current process state. Fig. 2
shows a view of the expert process supervision based on
software-agents.

908

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

St",,",

t I

Fig. 2 An overview of the software-agent based
expert process supervision

4.1 Basic Components

The basic A-ESS components are software-agents. The
behaviour of a software-agent is determined by the
services that it supports, with an A-ESS, for dealing
with process information: acquisition, abstraction,
storing, controlling and reasoning. So, four kinds of
software-agents named abstractor agents, reasoning
agents, control agents and facilitator agents are defined.
Perceptionlactuation mechanisms named
perceptors/actuators and a kind of databases named
perception bases are also defined. The tasks related to
all these components are the following:

Perceptors and actuators constitute the interface
with a process. Perceptors perceive real, actualised
variable measures. Actuators execute actions on
process (by means of reconfiguration).
Perception bases store variable data (measures and
abstractions) that indicate to software-agents how a
process evolves through the time.
Abstractor agents are in charge of abstracting
information from acquired variable measures. They
elaborate (by means of analysis functions)
significant information for interpreting the current
process behaviour.
Reasoning agents are in charge of reasoning on
perceptions. The tasks associated to this kind of
agents are to detect faults, to diagnose faults and to
propose (partial) actions to cope with them.
Control agents are in charge of controlling the
information flow and the restrictions of time among
process and software-agents, and of taking final
decisions to cope with faults.
Facilitator agents are in charge of performing
support operations for other software-agents, e.g.
mathematical operations.

The communication roles among A-ESS components
are established on clienvserver bases in the following
way (see Fig. 3):

I Ifmerr I

Fig. 3 Process - software-agents - humans
interaction based on the A-ESS structure

Perceptors
0 They are servers of real, measured variable values

to perception bases.

Actuators
0 They are clients of reconfigured variable values

from control agents.

Perception Bases
0

0

They are clients of real, measured variable values
from perceptors.
They are clients/servers of variable data (measures
and abstractions) fromlto abstractor agents,
reasoning agents and control agents.
They are servers of variable data to facilitator
agents.

0

Abstractor agents
0 They are clients of variable data from perception

bases.
0 They are servers of variable abstractions to

perception bases.

Reasoning agents
0

0

0

They are clients/servers of variable data fromlto
perception bases.
They are clients for services from facilitator agents.
They are clientdservers for services frondto other
reasoning agents.
They are servers for services to control agents.

Control agents
0 They are clients/servers of variable data from/to

They are clients for services from facilitator agents.
' perception bases.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

They are clients for services from reasoning agents.

Facilitator agents
They are clients of variable data from perception
bases.
They are servers for services to abstractor agents,
reasoning agents and control agents.

4.2 Operation Cycle

When a process is in operation, an A-ESS perceives
real, actualised variable measures by means of
perceptors, which are saved into perception bases.
Control agent informs to the abstractor agents on new
changes in acquisitions. Then, abstractor agents access
the perception bases and apply abstraction functions on
the data. They save results into the perception bases. At
the same time, they acquaint control agent about the
new state of perception bases. The control agent asks
reasoning agents on process behaviour. Those software-
agents access the perception bases and reason on
available data to detect and diagnose faults (if exist). At
the same time, a reasoning agent could request to one
other for partial results (if needed). Also, it could
request to a facilitator agent on needed operations.
Depending on decisions, reasoning agents save
modified variable data into perception bases, or send
partial solutions to one other reasoning agent, or to the
control agent. Also at that time, control agent could
request to a facilitator agent on needed operations. It
reasons on results and takes final decisions. In that case
and depending on decisions, it sends reconfigured
variable values to actuators or messages to human
operators and engineers.

4.3 Basic Features

With the A-ESS approach, we expect to gather up a set
of desirable features in order to decrease the ESS
computational complexity. These are:

Modularity: perceptors, actuators, perception
bases and software-agents are self-contained
entities that make A-ESS easier to understand, to
build and to maintain.
Solving focus: not all information is needed for
solving all tasks in the supervision goals. The
software-agents might be designed and developed
in a way that is more likely to pay off.
Hierarchical structure: an A-ESS is understood as
a hierarchical organisation for managing process
data and behaviour. Components have different
ranks in the structure: acquisition, abstraction,
storing, facilitation, reasoning and control.
Integration of heterogeneous components:
software-agent knowledge might be constructed
with the most appropriate software technology,
whether heuristic rules, procedural programming,
fuzzy logic and so on, or hybrid.

Sharing reasoning: software-agents could share
information (calculated data or partial results) for
making decisions to arrive to global supervision
solutions (final actions). Then, the co-operation is
needed because none of all the software-agents
should have global view of the solutions.
Distributed work: the available data from a
process might be located in different
logical/physical points (according to process
nature). From the point of view of inter-operation,
the components could inter-act and work on a
network of machines with the overall functionality
distributed among these machines.
Interfacing with data acquisition systems:
perceptors and actuators constitute the data
inputloutput interface between process and A-ESS.
Perceptors throughput real, actualised variable
values into perception bases. Control agents
throughput reconfigured variable values in
actuators. Both must become part of data
acquisition systems.
Interfacing with humans: control agents should
inform humans on process situations.
Reusability: if two tasks are functionally similar,
one same software-agent could achieve them. Also,
once a set of components have been constructed for
one A-ESS, it should be possible to construct new
ones that use these components.
Software patterns: software patterns for every
component that can be reused to implement several
entities on them, allowing that process engineers
should focus on the task-solving rather than on the
design of the components.
Evolutiodmaintenance: if a process changes, the
modifications on the A-ESS structure must be done
only on the components where the changes are
involved. Also, replace and/or add components to
modify that structure, according to process
modifications.
Openness: all components could be integrated with
other software applications in different supervisory
control environments. For this, implementations on
software patterns of perceptors and actuators might
become part of the other applications.

5. DESCRIPTION OF THE SOFTWARE-AGENT
BASED EXPERT SUPERVISION SYSTEM

ARCHITECTURE

Perceptors, actuators, perception bases, and software-
agents 'are created with agent interfaces based on ICa.
Communication and interaction mechanisms are created
with ICa communication means. TCa is a distributed-
object-based software middle-ware to support the build-
up of flexible and reusable distributed applications and
services with software-agent features [4].

9 10

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

5.1 Characteristics of the ICa 5.2 Structures of the A-ESS Components

ICa is an object-based framework developed in C++
language that allows building applications (with
software-agent features) on distributed objects in the
frame of process control. It is based on CORBA
(Common Object Request Broker Architecture)’
specifications [141, with extensions to cope with
requirements of industrial environments (time-
dependency, fault tolerance and, mainly,
multithreading).

The ICa has the following features:

It has ICa Agent Definition Language (ICa ADL) to
generate software-agent interfaces3, as software-
patterns4, in which attributes and operations that
determine the identity and the behaviour of
software-agents are defined. ICa ADL is both a
declaration language and a programming language
on C++ language.
It has ICa Object Request Broker (ICa ORB), a
communication infrastructure that allows
requestsheceives among ICa software-agents across
distributed heterogeneous computer-environments.
ICa offers various pre-constructed communication
means to pass information among ICa software-
agents called transports, providing support for
shared memory and TCPAP communications. Of
course, it is possible to develop new transports on
the pre-constructed transports for domain specific
domain architectures.
It presents a Zornnion API (Application
Programming Interface) and behaviour in all the
platforms that it operates hiding hardware and
operating system particularities, and allowing for
platform-independent common management of
resources such as threading. It permits
interoperability among platforms such as Win32 on
Intel x86, Linux on Intel x86, etc.
The ICa ADL has mapping for Java language. It
permits the development of open applications that
inter-operate in C++ and Java environments.
It incorporates capabilities-for development of real-
time systems such as timeout call, call processing-
time estimation and dynamic thread priority

, management. Plus, it incorporates supports for
static and dynamic redundancy that permits the
development of fault-tolerant systems.

0

CORBA is a public-license open standard for the
construction of distributed-object-based applications.
The Object Management Group (OMG) developed it.

Interfaces are similar to classes in C++ language and
interfaces in Java language.

A software pattern is a pre-designed component that fit
on fixed situations [141, [161.

Software patterns for perceptors, actuators, perception
bases and software-agents are constructed on ICa agent
interfaces. Software patterns for communication
mechanisms are constructed on ICa communication
means. They are pre-designed components that span the
A-ESS components and which could be reused to
implement several entities on them. The software
patterns for perceptors and for actuators capture the
design of data inputloutput interfaces and of interaction
between process and A-ESS. The software pattern for
perception bases captures the design and the interaction
of this kind of components into an A-ESS. The software
pattern for software-agents specifies the roles and
interactions of all kinds of software-agents into an A-
ESS. The software patterns for A-ESS communication
mechanisms specify the communications among all A-
ESS components. All these software patterns should
allow that control engineers could focus on the task
solving rather than on the design of components.

Perceptors share a basic structure consisting of:

0 Identification layer: that identifies perceptor. It
has attributes that define the identity of a perceptor
such as name, self-number and description.
Interfacing layer: that permits the interaction with
perception bases. It constitutes the transmission
mechanism, and is made with an ICa transport’ and
a defined method to support the throughputs of
process variable measures into the perception store.
Implementers fix the variables in the data ‘
acquisition system. The transmission method is:

put(pb-name, data): puts variable measures into
a specified perception base.

Idmtificatim 1-

p t e c t e d :
ccl2_trawpsrt trans~0t-t i . . .
pbl ic :
virtual int pltichar w-m. . . .

Fig. 4 Partial definition of perceptor interface

0 Execution layer: that runs and/or stops a perceptor.
It is composed of a collection of ICa methods that
control the execution of a perceptor. The methods
are :

ICa transports are objects with ICa transport-methods
to support the communications across ICa ORB.
Communications are done through calls to those
methods.

911

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

Run(): begins the execution, i.e. executes the

Kill(): stops the execution. The ICa transport no
ICa transport.

longer remains in execution.

Actuators share a basic structure consisting of:

Identification layer: that identifies actuator. It has
attributes that define the identity of an actuator such
as name, self-number and description.
Interfacing layer: that permits interaction with
control agents. It constitutes the acquisition
mechanism, and is made with an ICa transport to
support the receives of final actions.

0 Acting layer: that accomplishes operations for
executing reconfiguration actions by means of
algorithms. It constitutes the action mechanism of
an actuator, and is made with specified-code
written by implementers.
Execution layer: that runs and/or stops actuator. It
is composed of a collection of ICa methods that
control the execution of an actuator. The methods
are:

Run(): begins the execution, ‘i.e. executes the

0 Kill(): stops the execution. The ICa transport no

0

ICa transport.

longer remains in execution.

interface actuator:
r

I d a t i f i c n t i c n 1-

chr *actuator-;
int self-nunhr;
char desaipt im [1

prblic:
-0;
Killl);

prblic:
... a c t i d (...
... action2(...

Fig. 5 Partial definition of actuator interface

Perception bases share a basic structure consisting of

Identification layer: that identifies perception
base. It has attributes that define the identity of a
perception base such as name, self-number and
description.
Interaction layer: that controls the interaction with
perceptors and with other software-agents. It
constitutes the communication mechanism, and is
made with an ICa transport and defined methods to
support the takes/puts/removes of variable data
from/into/from the perception store. The
communication methods are:
0 check(agent-id, message): checks if there is any

available message for it in the transport queue.

If there is one, it reads the message using the
“get” method.

get(agent-id, message): reads the first available
message for it from transport queue. After this,
the message is deleted from the transport
queue. The “agent-id” argument allows the
perception base to return an answer message to
the sender. Then, the message is processed.
The receiver builds an answer with variable
data using another message that is put in the
transport to be relayed to the software-agent
sender, in case of “take”.

return(agent-id, message): returns an answer
message with variable data to the software-
agent identified with the “agent-id” argument.

Storing layer: that constitutes the perception store.
It is composed of a collection of objects that define
the process variables. Each variable has attributes
that set data and abstractions. Implementers fix
them.
Execution layer: that runs and/or stops perception
base. It is composed of a collection of ICa methods
that control the execution of a perception base. The
methods are:

Run(): begins the execution, i.e. executes the
ICa transport.

Terminate(): stops the execution. The ICa
transport remains in execution.

Kill(): stops the execution and removes all
messages from the transport queue, i.e. the ICa
transport no longer remains in execution.

interface perception-base:
1

J

7 prot€cted:
ccl2~t.ransprt transpart (. . .

virtual int check(mg1d agent-id.

virtual int return(Tmg1d agent-id. . _ _

prblic:

virtual int get(Twsg1d agent-id. ...
. . .

plblic:
mo;
Terminatel) ;
Kill () ;

prblic:
... variablel(...
... variablez(...

I ;

Fig. 6 Partial definition of perception base Interface

Software-agents share a basic structure consisting of:

0 Identification layer: that identifies software-agent.
It has attributes that define the identity of a
software-agent such as name, self-number and
description.

912

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

0 Communication layer: that controls the
communication with other A-ESS components. It
constitutes the communication mechanism, and is
made with an ICa transport and defined methods to
support the requestsheceives of information. The
communication methods are:

send(agent-name, task, In-message,
Out-message): sends a message to a specified
software-agent and to a specified task and
waits for the answer in the incoming message.

send(agent-name, task, message): sends a
message to a specified software-agent and to a
specified task and does not wait for the answer
message.

check(component-id, message): checks if there
is any available message for it in the transport
queue. If there is one, the software-agent may
decide to read or to remove the message using
the “get” or “remove” methods respectively.

get(component-id, message): reads the first
available message for it from the transport
queue. After this, the message is deleted from
the transport queue. The “component-id”
argument allows receiver to return an answer
message to the sender. Then, the message is
processed. The receiver builds an answer using
another message that is put in the transport to
be relayed to the component sender.

remove(): removes the first available message
for it from the transport queue.

return(agent-id, Out-message): returns an
answer message with partial results to the
software-agent identified with the “agent-id”
argument.

take(pb-name, data): takes variable data from a
specified perception base.

put(pb-name, data): puts variable data into a
specified perception base.

0 remove(pb-name, data): remove variable data
from a specified perception base.

act(actuator-name, action): sends specified final
actions to a specified actuator. Only control
agents should use this method.

0 Task-solving layer: that accomplishes the
operations for solving assigned task5 by means of
algorithms. It constitutes the reasoning mechanism,
and is made with specified code written by
implementers. Algorithms must be constructed with
the most appropriate software technology, whether
heuristic rules, procedural programming, fuzzy
logic and so on, or hybrid.
Execution layer: that runs and/or stops software-
agent. It is composed of a collection of ICa
methods that control the life of a software-agent.
The methods are:
0 Run(): begins the execution, i.e. executes the

Stop(): stops the execution and maintains
ICa transport.

readiness for execution.

0 Terminate(): stops the execution and terminates
the tasks. The ICa transport remains in
execution.

0 Kill(): stops the execution and removes all
messages from the transport queue, i.e. the ICa
transport no longer remains in execution.

Fig. 7 Partial definition of software-agent interface

5.3 Structure of A-ESS Applications

IC. ORB

T T T T

Fig. 8 Framework of A-ESS applications
and interaction with process

An A-ESS application is a set of modules composed of
one or more perceptors, one or more actuators, one or
more perception bases, zero or more abstractor agents,
zero or more facilitator agents, one or more reasoning
agents and of one control agent. They might be in
interaction and under co-ordination of the control agent.
Perception bases and software-agents live in
applications from which they are executed. Perceptors
and actuators should become part of data acquisition

913

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

systems from which they are executed (see Fig. 8).
Applications must be running before the A-ESS
components can be executed. The applications could be
distributed over a network of machines.

An A-ESS is intended to work on-line with a process. It
works as a dynamical system according to a sampling
period. .Process variable measures are actualised (and
saved into perception bases) every sampling time.
Subsequently, software-agents are executed. They
reason on the data in the perception bases and deduce
outputs (manipulate perception bases or deduce partial
results or final actions).

6. CONCLUSIONS AND FUTURE WORK

The A-ESS architecture has been defined and presented.
It is based on concepts of software-agents. Theirs
components (perceptors, actuators, perception bases,
abstractor agents, facilitator agents, reasoning agents
and control agents) and communication mechanisms are
created on ICa (Intelligent Control architecture), a
distributed-object-based software middle-ware to
support the build-up of flexible and reusable distributed
applications and services with software-agent features.
A set of architecture features has been also briefly
described. These features are modularity, solving focus,
hierarchical structure, integration of heterogeneous
components, sharing reasoning, distributed work,
interfacing with data acquisition systems, interfacing
with humans, reusability, software patterns,
evolutiodmaintenance and openness. Those features
should allow managing the A-ESS computational
complexity and that make A-ESS much easier to
understand, to build and to maintain.

The structures of the components and the interaction
among them and with the process have been briefly
described. However, none example of a real process has
been presented because the A-ESS architecture is in the
phase of design and prototype. Thus, the next step
should be the implementation. The objective is to
prototype tools without dependency of any process. So,
the next step should be an advanced test using a well
defined benchmark (for instance the COSY benchmark)
as well as the increase in the complexity of process in
order to detect drawbacks and correct them in the
definition.

The other aims of this research is to provide:

A method to apply the architecture, which should
specify the conceptual construction of an A-ESS
through different phases.
Tools to support the architecture, which will be
directed to assist the design and development of A-
ESS applications from a point of view of the
computef-aided control system design (CACSD).

ACKNOWLEDGMENTS

This research is supported by the CICYT project
TAP96- 1 1 14-C03-03, “Plataformas Integradas de CAD
de Supervisibn y Metodologias“, of the Spanish
Government.

Special thanks to the Autonomous Systems Laboratory
(ASLab) of the Universidad Politkcnica de Madrid
(Spain). The eXiT group has been authorised by them to
use ICa in researches and developments.

REFERENCES

[11 R. Isermann and P. BallC, “Trends in the application
of model-based fault detection and diagnosis of
technical processes”, IFAC- 13* Triennial World
Congress, ref. 7f-01, San Francisco, USA, 1996.
[2] M. Wooldridge and N.R. Jennings, “Intelligent
agents: theory and practice”, Knowledge Engineering
Review, vol. 10, 1995.
[3] S . Russell and P. Norving, Inteligencia Artificial, un
Enfoque Moderno. Mexico. Prentice Hall S.A., 1996.
[4] A. De Antonio and M. Segarra, ICa, An Intelligent
Control Architecture, Advanced User’s Guide. Madrid.
ASLab, Universidad Politkcnica de Madrid, 1998.
[5] J.L. De La Rosa, Heuristic for Co-operation of
Expert Systems, Application to Process Control, Ph.D.
dissertation, Universitat Autbnoma de Barcelona,
Bellaterra, 1994.
[6] B. Moulin and B. Chaib-Draa, “An overview of
distributed artificial intelligence” in Foundations of
Distributed Artificial Intelligence, USA, John Wiley &
Sons Inc., 1996.
[7] N.R. Jennings, E.H. Mamdani, J.M. Corera, I.
Laresgoiti, F. Periollat, P. Skarek and L. Varga, “Using
ARCHON to develop real-world DAI applications, part
l”, IEEE expert, pp. 64-70 December 1996.
[8] R. Sam, F. Matia, A. JimBnez, R. ’Galin, A. De
Antonio and M. Segarra, “Heterogeneous software
integration for intelligent process control: the HINT
project”, Valencia COSY Workshop, Valencia, Spain,
1996.
[9] O.C. Contreras and J.L. De La Rosa, “El enfoque
orientado a agentes en el diseiio de sistemas expertos
aplicados en supervisibn”, Bulleti de I’ACIA, No. 12,
Tardor 1997.
[101 B. Chaib-Draa, “Industrial applications of
distributed AI” in Readings in Agents, chapter 2:
applications, USA, Morgan Kaufmann Publisher, Inc.,
1998.
[l l] E. Rich and K. Knight, Artificial Intelligence.
USA. McGraw Hill, Inc., 1994.
[12] G.P. Lekkas, N.M. Avouris and G.K.
Papakonstantinou, “Development of distributed problem
solving systems for dynamic environments”, E E E
Transactions on Systems, Man and Cybernetics, vol. 25,
No. 3 March 1995.

9 14

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

[131 G. Fiol-Roig and M. Ferrer-Gili, “Expert system
for supervision of real-time control process”, UIB report
1998.
[141 S . Vinoski, “CORBA: integrating diverse
applications within distributed heterogeneous
environments”, IEEE Communications Magazine, vol.
14, No. 2 1997.
[15] L. Bass, P. Clements and R. Kazman, Software
Architecture in Practice. USA. Addison-Wesley, Inc.,
1998.
[161 B.P. Douglass, Real-Time UML, Developing
Efficient Objects for Embedded Systems. USA.
Addison-Wesley Inc., 1998.

915

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:29:30 UTC from IEEE Xplore. Restrictions apply.

