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  Abstract— Three multivariate statistical tools (Principal 

Component Analysis, Factor Analysis, Analysis Discriminant) 
have been tested to characterize and model the sags registered in 
distribution substations. Those models use several features to 
represent the magnitude, duration and unbalanced grade of sags. 
They have been obtained from voltage and current waveforms. 
The techniques are tested and compared using 69 registers of 
sags. The advantages and drawbacks of each technique are listed. 
 

Index Terms— discriminant analysis, factor analysis, power 
quality monitoring, principal component analysis, voltage sag 
(dip). 

I. INTRODUCTION 
HE importance of Power Quality monitoring has 
increased in the last years [1]. Consequently, it has caused 

sudden advances in monitoring devices. Electric parameters 
are permanently monitored and registered, producing huge 
volume of data. The end-user has a large amount of data that 
can be used to assess and reduce the power quality problems 
[2][5]. Hence, statistical techniques have to be exploited to 
take advantage of information contained in those registers.  
Principal Component Analysis (PCA), Factor Analysis (FA) 
and Discriminant Analysis (DA) have been tested in this paper 
to characterize voltage sags and determine unusual ones.  

This paper is organized in twelve sections. In the second 
section the features extracted from sag waveforms are 
described. Next, we present the registers of voltage sags. In 
the fourth to sixth sections, PCA, FA and DA are briefly 
explained. Later, in the seventh to ninth sections, the results of 
each technique are shown. Finally, comparison results, 
conclusion and future works are discussed. 

II. FEATURES OF VOLTAGE SAGS 

We have extracted, from the sags waveforms, a set of 
features useful to describe duration, magnitude and unbalance 
degree of sags. They are summarized in Table I. Each feature 
have been selected because the information it provides: 

1) RCV and PNF: Minimum Remaining Complex Voltage 
and Positive-Negative Factor F contain information about 
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magnitude and unbalance grade of sags, respectively. Six-
phase and Symmetrical component are two algorithms to 
calculate them [4][3]. The first algorithm was used in this 
work. RCV is a voltage signal that represents the three phase 
voltages. 

2) Lv: Loss of voltage is defined as the integral of the RMS 
voltage drop during the event. Lv describes magnitude and 
duration of sag [3]. In this analysis Lv was computed from 
RCV instead of the three gathered voltage signals, according to 
the equation 1: 

   (1) 

TABLE I 
FEATURES TO UNUSUAL VOLTAGE SAG EVENT DETERMINATION 

Feature Duration Magnitude Unbalance 
RCV  X  
PNF   X 
Lv X X  

GVo X  X 
Iratio  X  
T X   

Nseg X   
 

3) GVo: This is a new feature we propose in this paper. 
Gain of zero sequence voltage corresponds as the integral of 
the RMS zero sequence voltage during the event. It has been 
computed using the equation 2: 

   (2) 

4) Iratio: Ratio between the fundamental frequency 
component of the currents during and before of voltage sag 
event. It was previously defined in [6]. 

5) T: Voltage sag event duration measured in samples. 

6) Nseg: Nseg/2 corresponds to number of sag transitory 
states. 

Duration, magnitude and unbalanced grade were selected as 
sag characteristics in order to determine this unusualness.  

III. DESCRIPTION OF VOLTAGE SAGS:  

The study has been carried out with 69 registers of sags. All 
the registers contain 40 cycles, sampled at 128 samples per 
cycle (50Hz).  
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The sequence of RMS values has been calculated using the 
Short Fourier Transform (SFT) in one cycle (128-samples) 
sliding window to estimate the magnitude of the nominal 
frequency (50Hz). Matlab® has been used to compute the 
feaures whereas the statistical analysis has been performed on 
SPSS®1. All the features were standardized with zero mean 
and unit variance (µ=0; σ=1). Table II summarized the 
correlation among these features.  

 
TABLE II 

DATASET CORRELATION MATRIX 
 RCV PNF LV GV0 Iratio T Nseg 

RCV 1 0,63 -0,47 0,20 -0,61 0,02 0,07 
PNF 0,63 1 -0,24 0,108 -0,39 0,03 -0,18 
LV -0,47 -0,24 1 0,06 0,21 0,51 -0,02 

GV0 0,20 0,108 0,06 1 0,06 0,39 0,04 
Iratio -0,61 -0,39 0,21 0,06 1 0,00 0,19 
T 0,02 0,03 0,51 0,39 0,00 1 0,26 

Nseg 0,07 -0,18 -0,02 0,04 0,19 0,26 1 
 
The features GV0, T and Nseg have low linear correlation 

(correlation coefficients are near to zero, especially Nseg). 
 

TABLE III 
NORMALITY TEST 

Signif. level RCV PNF Lv V0 Iratio T Nseg 
KS 0,02 0 0 0 0 0 0 
SW 0,002 0 0 0 0 0 0 

 
In order to determine the normality of each feature 

(variable) the Kolmogorov-Smirnov (KS) and Shapiro-Wilk 
(SW) normality tests were performed (Table III). KS and SW 
test the null hypothesis H0: The distribution of the population 
is normal. Hence, both tests rejected it; therefore the 
distribution of these features is not Gaussian. 

IV. PRINCIPAL COMPONENT ANALYSIS 

It is based on the analysis of the covariance matrix of a set 
of m observations represented by n variables. The singular 
value decomposition of this matrix is used to obtain a set of 
eigen-values and eigenvectors. And these are used to project 
the original data onto a lower dimension space preserving the 
same information and rejecting the noise. These new 
variables, or scores, are the result of the linear combination of 
the original variables [1]. Then, the set of data can be 
expressed as a linear combination of r (lower than n) new 
variables, ti assuming an error E [9]:    

€ 

X = ti pi
t

i=1

r

∑ + E    (3) 

Where ti and pi are named scores and loading vectors 
respectively and are computed to reflect relevant relation 
amongst samples (ti). While pi highlights the correlation 
among variables and they correspond to eigenvectors of 
covariance matrix (C). 

€ 

Cpi = λpi       (4) 
PCA assumes that the eigenvectors with bigger eigen-values 

 
1 Statistical software to data analysis 

are the best ones for expressing the data upon based on the 
maximum variance criteria.  

€ 

ti = Xpi, i =1,...,r        (5) 
The first r principal components build up a new space with 

a lower dimensionality than the original one. Projection of the 
data to the i-th axis in this new space can be done using linear 
transformation presented in equation 5 [9]. 

A. PCA Previous Tests 
In order to assess if the data are suitable to perform a PCA 

these tests are performed. 

1) Barlett’s Test: In PCA is convenient that the variables are 
correlated, so the correlation matrix differs from identity 
matrix). This test allows statistically determining if the 
variables are correlated or not. Barlett’s tests the null 
hypothesis: H0: The correlation matrix is the identity matrix. 
With a confidence interval equal to 95% and Barlett 
significance value lower than 0,05 implies that variables are 
correlated (hypothesis H0 is rejected). 

2) Kaisser–Meyer–Olkin coefficient: KMO measures the 
proportion between simple correlation and partial correlation. 
KMO greater than 0,7 is recommendable to perform PCA, 
view equation 6. 

 

€ 

KMO =

rij
2

j≠ i
∑

i=1

n

∑

rij
2

j≠ i
∑

i=1

n

∑ + pij
2

j≠ i
∑

i=1

n

∑
   (6) 

Where rij and pij are the simple and partial correlation 
coefficients between variables respectively. 

V. FACTOR ANALYSIS 

Factor analysis is a method for investigating whether a 
number of variables of interest X1, X2,… , Xn , are linearly 
related to a smaller number of unobservable or subjacent 
variables known as factors [10]. 

€ 

X = µ + ti pi
t

i=1

r

∑ + E        (7) 

Where, ti and pi are scores and loadings vectors 
respectively. µ is the mean of scores to k-th observation and E 
are the errors.  

The meaning of the factors must be induced from seeing 
which variables are most heavily loaded on which factors. 

FA and PCA methods are related but differ. PCA is 
generally used when purpose is data reduction. FA is generally 
used when the research purpose is to identify latent variables 
which contribute to the common variance of the set of 
measured variables. FA distinguishes the specific variability 
while PCA the global variability [10]. 

A. FA Previous Tests 
Barlett’s test and KMO coefficient revision have to be 

performed to analyze the suitability of this method. But also 
additional two test are recommended:  
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1) Determinant of correlation matrix: If determinant of the 
correlation matrix is close to zero the variables are highly 
correlated. 

2) Measure of Sampling Adequacy - MSA: It is a coefficient 
similar to KMO but MSA is for each variable. MSA greater 
than 0,5 to perform FA is suggested. 

€ 

MSAi =

rij
2

i≠ j
∑

rij
2

i≠ j
∑ + pij

2

i≠ j
∑

   (8) 

VI. DISCRIMINANT ANALYSIS 

Discriminant analysis is a technique for classifying a set of 
observations into predefined classes. The purpose is to 
determine the class of an observation based on a set of 
variables known as predictors (discriminating variables). The 
model is built based on a set of observations for which the 
classes are known (criterion variable). The criterion variable 
contains the class of each observation. Based on the set of 
observations, the technique constructs a set of linear functions 
of the predictors, known as discriminant functions, such that 
[8]: 

 
   (9) 

 
Where, 
bi,  discriminant coefficient. 
xi,  discriminating variables. 
c,  constant term. 
L is analogous to multiple regression, but the b's are 

discriminant coefficients which maximize the distance 
between the means of the class. 

There is one discriminant function for 2-class discriminant 
analysis, but for higher order DA, the number of functions 
(each with its own cut-off value) is the least of (k - 1), where k 
is the number of classes in the criterion variable, or p, the 
number of discriminating variables. Each discriminant 
function is orthogonal to the others [8]. 

The selected features are discriminating variables in this 
analysis. The criterion variable is a vector that indicates if the 
sag is unusual or not. 

VII. PCA RESULTS 

PCA has been applied using the whole set of features except 
Nseg. It has been excluded due to its poor correlation level. A 
significance value in Bartlett’s test (0,01) has been obtained 
(lower than the original 0,05). Therefore, the null hypothesis 
(H0) can be rejected, which means that the features are 
significantly correlated and suitable to apply the PCA method.   

The KMO coefficient equal to 0,55 was obtained. Although 
it is lower than the recommended 0,7, it is close enough to 
continue with the method taking it in consideration. 

Three principal components were selected because explain 
81,1% of the global variability according to Table IV. 
Moreover, observing the loads vectors (pi) in Table V, the last 

three components explain low variability of data. 
 

TABLE IV 
EIGEN-VALUES AND ACCUMULATED EXPLAINED VARIANCE 

 1 2 3 4 5 6 
λ 2,34 1,63 0,90 0,58 0,36 0,20 

%λ 39,07 27,13 14,94 9,62 5,94 3,31 
∑%λ 39,07 66,19 81,14 90,76 96,70 100 

 
TABLE V 

LOADINGS VECTORS 
 Principal Component 

Feature 1 2 3 4 5 6 
RCV 0,91 0,20 0,04 -0,07 0,14 0,33 
PNF 0,75 0,23 -0,08 0,60 -0,10 -0,13 
LV -0,63 0,51 -0,46 0,13 -0,28 0,19 

GV0 0,08 0,70 0,65 -0,16 -0,26 -0,04 
Iratio -0,73 -0,10 0,48 0,42 0,19 0,15 

T -0,18 0,89 -0,18 -0,05 0,38 -0,11 
 

First and second loading vectors are depicted in Fig. 1. It 
shows that sags with low depth are located on the right hand 
side (positive first component axe), while the sags with high 
depth (high sag magnitude) will appear on the left hand side. 
The same occurs with the second principal component, the 
longest sags are located in the positive axe. In third component 
we can observe that the unbalanced grade is described because 
the greatest coefficient is GV0. Hence, these three components 
explain depth, duration and unbalance grade respectively. 

 

 
Fig. 1.  Loadings vectors (pi). First and second component. The first 
component determines depth and second component the duration of sag. 
 

 
Fig. 2.  Scores vectors. Voltage sag events projected on first and second 
principal component. Depth and duration of sag respectively. 
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When the original data is projected on the PCA space, we 

observe clearly that the sags number 54 is the longest sag of 
the dataset, while sag number 21 is the deepest and shortest; 
view Fig. 2. In third component the sag 54 appears as the most 
unbalanced. 

VIII. FA RESULTS 

Determinant of correlation matrix, significance value 
obtained from Barlett’s test, KMO and MSA coefficients in 
Table VI are shown. 

TABLE VI 
FA SUITABLE TEST RESULTS 

Excluded D KMO Barlett MSA 
    Nseg V0 T Lv 

Nothing 0,1 0,48 0 0,02 0,36 0,43  
Nseg 0,14 0,55 0  0,47 0,46  

Nseg, T 0,25 0,56 0  0,21   
Nseg, V0 0,19 0,54 0   0,36 0,14 

 
In order to obtain a suitable set of features Nseg was 

excluded. Thus, MSA coefficients are close to 0,5 when Nseg is 
not included. A similar behavior was found in PCA too. 

The number of factors through the Chi-square goodness-of-
fit Test and some analysis was determined. It tests the 
hypothesis: H0: The adequate number of factors is lower or 
equal than extracted number of factors and H1: The adequate 
number of factors is greater than extracted number of factors. 
Then, Chi-Test suggests using two factors with a confidence 
interval of 95%, resulting in this case that H0 is accepted  
(0,173>0,05) according to Table VII. 

 
TABLE VII 

GOODNESS OF FIT TEST 
Number of factors Significance (Chi-square) 

1 0 
2 0,173 

 
TABLE VIII 

FACTORIAL MATRIX 
Feature Factor 

 1 2 3 
RCV 0,90 0,00 -0,00 
PNF 0,63 0,06 -0,05 
LV -0,47 0,81 -0,22 

GV0 0,20 0,41 0,81 
Iratio -0,61 -0,03 0,24 
T 0,02 0,69 0,14 

 
However, with a number of factors equal to three, the 

meaning of each factor has a better interpretability than using 
only two. Observing the factorial coefficients shown in Table 
VIII, it is possible to determine the meaning of each factor. 

Hence, first factor describes the depth of sags; second factor 
describes the loss of voltage and duration; and the third factor 
describes the degree of unbalance. 

Sag number 36 is the sag event with a major loss of voltage 
and duration, while sag number 21 is the deepest; view Fig. 3. 
According to PCA the sag number 54 is the longest and most 
unbalanced, while in FA is only the most unbalanced (the 
highest score on third factor). 

 

 
Fig. 3.  Voltage sag events projected on first and second factor. Depth and 
Lv+Tsag of sag respectively. 

IX. DA RESULTS 

In order to perform a DA, sags have been labeled with zeros 
or ones. Zeros is assigned to represent normal or usual sags 
and ones to unusual ones. A distance criteria defined on the 
projection space given by the PCA has been used. The sag 
with a Hostelling distance (it is referred as the T2 statistic) to 
the origin (center of the model) greater than 2 units in the PCA 
space were considered as unusual sags. So, 12 sag events were 
labeled as unusual. 
 

TABLE IX 
DISCRIMINANT FUNCTION COEFFICIENTS 

 RCV PNF LV GV0 Iratio C 
Coefficient 4,743 -6,171 0,005 0,001 0,116 0,502 

 
The coefficients of the discriminant functions in Table IX 

are shown. The features Nseg and Tsag by DA were 
automatically excluded, due to their low discrimination. 
However, the features Lv, V0 and Iratio should be excluded too, 
because their coefficients are near to zero, as a result, their 
contribution is very low. Hence, the DA model only 
discriminates according to depth of sags. 

In order to determine if the covariance matrices of groups 
are significantly equals, Box’s test was performed. It tests the 
null hypothesis H0: The covariance matrices are equals. Box’s 
test rejected H0, which means that the sag classes have 
different distribution in their original space. Therefore, Box’s 
test suggests a quadratic discriminant function. But this is not 
completely true because of the reduced amount of data used.  
Consequently finally we used a linear discriminant function. 
Moreover, the quadratic discriminant analysis computational 
cost is O(n2) for n-dimensional vectors [7]. The linear function 
is: 

 

€ 

L = 4,7RCV − 6.2PNF + 0,005LV + 0,001GV0 + 0,1Iratio + 0,5  (6) 
 

The sags will near to L=3.1 are considered as unusual 
whereas those close to L=-0.6 are the most common.  
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The F test of Wilks’s showed that the means of these groups 
differ and consequently the null hypothesis H0 was rejected 
(Ho: The group means are equals).  

The Box’s test showed that the covariance matrices differ 
between groups. Lack of homogeneity of variances will mean 
significance tests are unreliable. The lack of homogeneity is 
due to the dataset is small and split of the dependent variable 
is very uneven. 

In spite of that DA model with 10-fold cross validation was 
tested. The classification rate was 94.2%. Two usual and two 
unusual sags were wrongly classified. 

X. COMPARISON OF RESULTS 
TABLE X 

FEATURES OF SOME VOLTAGE SAG EVENTS 
id RCV PNF LV GV0 Iratio Tsag 
0 0,74 0,92 206,8 181,9 4,17 1656 

21 0,18 0,20 409,3 86,3 14,30 961 
36 0,39 0,87 1653,7 3,0 2,45 3137 
54 0,95 1,00 209,9 3109,6 2,03 4737 

 
The value taken for features corresponding to sags number 

21, 36 and 54 are shown in Table X. Those have been 
compared with the mean value of each feature (id=0). 
According to PCA an FA results, the relevant features have 
been italicized. For instance, the deepest sag is the number 21, 
its RCV magnitude is 0,18; four times smaller than RCV mean 
(0,74). Similarly, Table X confirms that sag number 54 is the 
most unbalanced and longest. The sag number 36 has the 
highest Lv and high T with respect to average sag. The sags 21 
and 54 are plotted in Fig. 4. 
 

TABLE XI 
COMPARATIVE TABLE 

PCA FA DA 
-No probabilistic. 
-Expert knowledge is 
not required. 
-It allows knowing the 
cause of unusualness. 
 

-No probabilistic. 
-Expert knowledge is 
not required. 
-It allows knowing the 
cause of unusualness. 

-Probabilistic. 
-An expert is required. 
Sags have to be 
previously classified. 
-It does not allow 
knowing the cause of 
unusualness. 

 

 
(a) 

 
(b) 

Fig. 4. Voltage sags number 21 and 54 (Vrms Vs Sample). RMS sequence 
phase voltages. (a) 21, (b) 54. 

 

Some differences between the three approaches are 
summarized in Table XI are related. However, they have the 
next common qualities: training process is not tedious, are 
based on model, can be online implemented. 

XI. CONCLUSIONS 

PCA, FA and DA have been assessed to determine the 
statistically usual and unusual voltage sags. PCA and FA 
allow knowing the causes of the unusualness, whereas the DA 
does not, also, an expert person is required to classify the sags 
as unusual or usual, whereas for using PCA and FA an expert 
is not required. 

The selected features have shown a low correlation level in 
the registered sags used in this analysis. New features have to 
be proposed and to register more sags as well. 

PCA, FA and DA can be used to determine unusual voltage 
sags. Advantages and drawbacks of each one have been 
presented in this paper. 

XII. FUTURE WORKS 

A set of features highly correlated has to be proposed. 
Features that describe the unbalanced grade and duration to 
proposed feature set have to be added. 

To determine unusual sags through one or several 
statistically criterions, such as: Euclidean distance, 
Mahalanobis distance, Hotelling’s T2. 

Proposed a methodology based on features and statistically 
tools to determine unusual voltage sag events. 
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