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Abstract—This paper presents and compares two approaches 

to estimate the origin (upstream or downstream) of voltage sag 
registered in distribution substations. The first approach is based 
on the application of a single rule dealing with features extracted 
from the impedances during the fault whereas the second method 
exploit the variability of waveforms from an statistical point of 
view. Both approaches have been tested with voltage sags 
registered in distribution substations and advantages, drawbacks 
and comparative results are presented. . 
 

Index Terms— Fault location, position measurement, power 
quality monitoring, voltage sag (dip) source detection. 

I. NOMENCLATURE 
PCSC:   Phase change sequence current algorithm 
RS:    Resistance sign algorithm 
DR:    Distance relay algorithm 
MANOVA: Multivariate analysis of variance 
AD:    Discriminant analysis 
PCA:   Principal component analysis 
MPCA:  Multiway Principal Component Analysis 
CBR:   Case Based Reasoning 

II. INTRODUCTION 
UE to the impact on sensitive industrial loads and costs 
led by the damages and maintenance costs, voltage sags 

have focused the attention of power quality studies leaded by 
the utilities. Unfortunately, those disturbances propagate 
through the power system affecting loads connected in whole 
network. Hence, the responsibility for the generation of 
disturbances on the system must be assessed, being the 
automatic location of their origin one of the most interesting 
aspects involved. Given a register and two basic steps have to 
be accomplished: the first one is to isolate the origin upstream 
or downstream; next an appropriate algorithm has to be used 
to accurate locate the origin in the network. In this work we 
tackle the first step under the basis that the waveforms of 
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voltages and currents are available. Recent studies reinforce 
the importance of developing robust and simple algorithms for 
the relative (upstream/downstream) fault location [1]. 

The first approach we propose is based on a single rule 
extracted from the analysis of features used in previous source 
location algorithms proposed in the literature. A multivariate 
statistic analysis of available registers described by such a set 
of features revealed the composition of this rule.  The second 
approach takes advantage of information contained on sag 
waveforms. A model based on PCA using the complete 
registers of voltage and current signals has been used to 
classify the waveforms in two classes (downstream/upstream). 

The problem of estimating the fault location from the 
registers of sags is not new. Chouhy [1] has described and 
compared five source location algorithms using synthetic data 
[2] to [5]. In this comparison, the DR algorithm obtained the 
best results [5], whereas the RS algorithm obtained poor 
results [3]. Author has also tested PCSC algorithm in [6]. DR, 
RS and PCSC algorithms where selected to perform the 
statistical analysis of the features involved in the first method 
proposed in this paper.  

On the other hand, Khosravi et al. ([7][8]) presents a 
methodology based on the MPCA to build a statistical model 
using the voltage and current waveforms that is used in the 
classification of sags according to their origin. The 
classification is done based on the projection of new sags on 
the projection space defined by the model and analyzing the 
distance to the center of the model (T2 statistic) and the 
projection error (Q statistic). Later, Melendez et al. ([9]) 
refined the method by adding a CBR step in the decision 
procedure that allows improving the classification rate based 
on the similarity of the new sag with those previously 
diagnosed. This last approach is being compared in this papers 
with the one rule method described previously.  

This paper is organized in six additional sections. In the 
third section the set of registers of sags is described. Next, a 
brief description of confusion matrix and ROC curves is 
performed because the first has been used in the comparison 
and the second in the selection of the best MPCA model of the 
second approach. In the fifth and sixth sections, both methods 
are presented. Later, in the seventh section the results yield by 
both methods are summarized and compared. Finally, the 
conclusions are given. 
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III. GATHERED VOLTAGE SAG  
ENDESA1 provided the set of sag events registered in three 

substations (25kV) classified as upstream or downstream. 
Each register was sampled at 128 samples per cycle (50Hz) 
and contains 40 cycles (Fig. 1).  

A. Preprocessing 

Short Fourier Transform (SFT) in one cycle with a 128-
sample sliding window has been used to estimate the RMS 
voltage and current sequences at the frequency (50 Hz) of 
nominal power.  

B. Voltage Sag Selection 
TABLE I 

VOLTAGE SAG EVENTS USED IN THE STUDY 
 Initial amount Excluded Total 

Subst. Down Up Down Up Down Up Down+Up 
A 43 49 0 15 43 34 77 
B 26 35 8 8 18 27 45 
C 12 56 0 17 12 39 51 
 81 140 8 40 73 100 173 

 
(a) 

 
(b) 

Fig. 1. Example of Voltage sag events: (a) Downstream, (b) Upstream. RMS 
sequence calculated with a 128-sample sliding window. 

 
1 Spanish acronym of Energy distribution company of Barcelona-Spain 

 
The initial set of available sags contained 81-downstream 

and 140-upstream sag events.  This original set has been 
cleansed and those registers, without complete waveforms 
(without pre or post fault state. See for example Fig. 2.), have 
been eliminated [10]. Finally a database of 173 sags (73- 
downstream, 100-upstream) has been used, Table I.  

 

 
Fig. 2. Excluded sag event (25 kV). It event does not steady state. The source 
locations algorithms require prefault state.  

IV. CONFUSION MATRIX AND ROC CURVES 
In order to compare the results obtained by both approaches 

a confusion matrix was used. A confusion matrix is a 
representation of classification results as this presented in 
Table II. It shows the differences between the true and 
predicted classes for a set of labeled examples [11]. 

 
 TABLE II 

CONFUSION MATRIX  
  Real class 
  Reference class No reference Class 

Reference class TP FP Predicted 
Class No reference class FN TN 

 
Where,  
• TP stands for true positive (cases correctly predicted as 

the reference class). 
• TN stands for true negative (cases correctly classified 

as non reference class).  
• FP for false positive (cases classified as the reference 

class with its real class is the non reference class). 
• FN for false negative (cases classified as a non 

reference class with its real class is the reference class).  
The evaluation of these indices allows computing several 

performance parameters of the classifier. Special attention is 
put on sensitivity and specificity to compute de Receiver 
Operation Characteristic - ROC curve:  

€ 

Sensitivity =
TP

TP + FN
  (1) 
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€ 

Specificity =
TN

TN + FP
  (2) 

A ROC curve is a two-dimensional graph where the y-axis 
represents sensitivity and x-axis represents 1–specificity of the 
classifier obtained for different values of the decision 
threshold used in the classification. To compare the 
performance of several models through a ROC curve the Area 
Under the ROC curve – AUC can be used. ROC curve and 
AUC are used to select the best PCA model parameters in the 
approach based on waveform. 

V. ONE RULE BASED APPROACH  

A. Introduction 
The proposed rule uses two features in the antecedent to 

determine the sag origin. The proposed rule is the following: 
Proposed rule: 

“IF Rey<0 AND Zsag<Zss THEN downstream ELSE 
upstream END” 

Where Zsag is the impedance during the event and Zss is 
the steady state pre fault impedance. Rey is the estimated 
resistance from the imaginary part of the sequence 
components. 

This rule was obtained from a multivariable statistical 
analysis. MANOVA2 and DA3 statistical techniques were used 
in the analysis. 

B. Voltage Sag Source Location Algorithms 
A brief description of the selected algorithms is included in 

this section in order to show the features analyzed in the 
MANOVA and DA techniques. The first algorithm only uses 
the current signal, while the others use both voltage and 
current signals. 

1) Phase Change in Sequence Current - PCSC: It estimates 
the origin using the change of the phase angle Δφ of the 
positive-sequence component of the current between the fault 
and prefault conditions. The PCSC rule is: 

PCSC Rule: 
“IF Δφ>0 THEN upstream ELSE downstream END” 

Where Δφ is set between –π to π. 
One cycle before the fault is used for computing prefault 

phasor and another cycle after the fault inception is used for 
estimation of fault current phasor [6]. 

2) Resistance Sign - RS: It obtains the source location from 
the sign of the real part of the estimated impedance. RS 
algorithm uses the positive sequence voltage and current 
component. The impedance is estimated taking n cycles of the 
voltage and current signals including prefault and fault cycles. 
The number of cycle is determined by the reversion of the 
power flow. Two impedances are estimated, therefore two 
resistances too (Rex and Rey), Rex is due to the estimated 
impedance from the real part of the sequence components; and 
Rey is due to the estimated impedance from imaginary part of 
the sequence components. An extended explanation about this 

 
2 MANOVA – Multivariate Analysis of Variance 
3 DA- Discriminant Analysis 

is performed in [2]. The RS rule is: 
RS Rule: 

“IF Rex>0 AND Rey>0 THEN upstream ELSE IF Rex<0 
and Rey<0 THEN downstream ELSE not conclusive test 

END” 
Hence, if both resistances have different sign the test is not 

conclusive. Positive sign means that source location is 
upstream and negative sign is associated to downstream sag 
[2]. 

3) Distance Relay - DR: Its principle is based on the change 
of magnitude and angle of the impedance seen by the relay 
before and after the fault. For a downstream fault the seen 
impedance during the fault will decrease with respect the seen 
impedance in steady state; its phase angle will change too. The 
DR rule is: 

DR Rule: 
“IF |Zsag|<|Zss| AND ∠Zsag>0 THEN downstream ELSE 

upstream END” 
According to the different type of faults, Zss and Zsag the 

proper voltage-current pair has to be taken in estimating them 
[5]. 

C. Results Of Source Location Algorithms 
The algorithms were implemented in Matlab®. The results 

obtained for each one are reported in Table III. The upstream 
class has used as the reference class. The classification rates 
obtained with the dataset we presented are very poor: 51,4%, 
27,7% and 65,9% respectively.  

 
TABLE III 

CONFUSION MATRIX OF THE PROPOSED RULE RESULTS 
Real Class Real Class Real Class  

PCSC (51,4%) RS (27,7%) DR (65,9%) Total (173 sags) 
TP FN TP FN TP FN Upstream 
56 44 48 0 87 13 100  
FP TN FP TN FP TN Downstream 
40 33 0 0 46 27 73 

 
The poorest results correspond to RS algorithm. It is 

because Rex and Rey have different signs in many cases. The 
Rex does not take negative values. As a result FP and FN are 
zero. In Fig. 3 this behavior is depicted and commented. PCSC 
algorithm obtained the second better classification rate. With a 
classification rate near to 50% is difficult to know the reasons 
to obtain good or wrong classification. As a result, it was 
impossible analyze the PCSC feature (Δφ) behavior. DR 
algorithm obtained the best results (65,9%), however this 
classification rate is very low for a practical exploitation. This 
low rate was obtained because results with ∠Zsag>0 have 
been considered falses in many cases to downstream sag 
source location when they should be classified as true. As a 
result, 46 downstream source locations were classified as 
upstream. 

D. Statistical Tools: Justification of the classification rule  
The multivariate statistical tools used to propose the source 

location rule are here described. 
1) MANOVA: The more important purpose of MANOVA is 

to explore how independent variables influence on some 
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patterning of response on the dependent variables. 
The sag source location was used as independent variable 

whereas Δφ, Rex, Rey, Zsag/Zss, ∠Zsag features were used as 
dependent variables. MANOVA allows answering this 
question: Which is the importance of each feature in the 
source location? Hence, we will know the influence grade of 
the source location over each feature. Finally, the features with 
most influence grade (quality) were selected. 

 
TABLE IV 

QUALITY OF THE SOURCE LOCATION EFFECT OVER THE FEATURE 
Feature Definition Algorithm Quality 

Δφ 
Difference in phase angle 
between the positive-sequence 
component of current during 
fault and prefault conditions. 

PCSC 1,2% 

Rex 
Real part of the estimated 
impedance from real part of 
sequence components. 

RS 91,2% 

Rey 
Real part of the estimated 
impedance from imaginary part 
of sequence components. 

RS 36,1% 

Zsag/Zss Ratio between fault impedance 
and steady state impedance. DR 44,1% 

∠Zsag Phase angle of the impedance 
during the voltage sag. DR 0,4% 

 
Table IV shows the quality of the sag source location effect 

over each feature. Values near to 100% indicate that the most 
of the variability in this feature is associated with sag source 
location. The tests of between subjects effect table indicates 
that the significance value for Δφ, ∠Zsag are greater than 
p=0,05; which means that sag source location effect is not 
significance over them (Table V). Thus, Rex, Rey and 
Zsag/Zss are features that are more associated with the sag 
source location.  

 
TABLE V 

TEST OF BETWEEN-SUBJECT EFFECTS 

Feature Type III  
Sum of squares 

df Mean 
square 

F Sig. 

Δφ 11,92 2 5,96 2,02 0,146 
Rex 94,05 2 47,02 891,95 0,00 
Rey 3,25 2 1,63 49,91 0,00 

Zsag/Zss 292,03 2 146,01 69,12 0,00 
∠Zsag 3,84 2 1,92 0,647 0,53 

 
2) DA [12]: It is a technique for classifying a set of 

observations into predefined classes. The purpose of using it is 
to determine the class of an observation based on a set of 
variables known as predictors or input variables. The model is 
built based on a set of observations for which the classes are 
known. Based on this training set, the technique constructs a 
set of linear functions of the predictors, known as discriminant 
functions. 

DA has a method so-called addition by step implemented in 
SPSS Inc.4, which adds step-by-step variables in order to 
determine the most discriminator variables. In each step the 
variable that minimize the Wilk’s Lambda5 is added. As a 
 

4 SPSS Inc. -  Statistical software (www.spss.com) 
5 Probability distribution used to contrast multivariate hypothesis. 

result, with addition by step method is possible to obtain the 
set of features that best describe the sag source location.  

Addition by step method was applied to the set of sags. Rex 
and Rey were obtained as the most discriminator variables. 

Observe that DA and MANOVA results are similar, except 
that the last one revels the importance of Zsag/Zss feature. 
Consequently, the three features have been selected and the 
influence in the determination of origin of sags analyzed.  

E. Feature selection 
 

 
Fig. 3.  Rex Vs Rey. Features extracted from RS algorithm. 

 
The Rex vs. Rey is depicted in Fig. 3. Rex only takes 

positives values, whereas Rey takes both positive and 
negatives values. The range of these resistances is important 
because RS algorithm is based on the sign of them. Therefore, 
observing the RS rule, RS algorithm will not obtain 
downstream results, on the contrary many not conclusive 
result are obtained. Similar results in a test with synthetic sag 
were found [13]. For these reasons, Rex is excluded of the 
feature selection previously performed. 

 

 
Fig. 4.  Rey Vs Zsag/Zss. Features extracted from RS and DR algorithms. The 
downstream sags are inside of area Rey<0 and Zsag/Zss<1. 

 
A linear classifier (with negative slope) gives a good 
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solution using Rex and Rey, but the goal of this analysis is to 
propose a rule. With rules a training process is not needed. 

A plot representing Rey vs. Zsag/Zss determines clearly the 
voltage sag origin. From Fig. 4 it is possible to extract the 
proposed rule. So, voltage sag origin will be downstream 
whether Rey<0 and Zsag<Zss. Otherwise, the voltage sag 
source location will be upstream. 

F. Results Of The Approach Based On One Rule  
The proposed rule was applied to the set of sags. The results 

are shown in Table VI. 
 

TABLE VI 
CONFUSION MATRIX OF THE PROPOSED RULE RESULTS 

 Real Class Total 
 TP FP Upstream 

(Predicted) 94 6 100 
 FN TN Downstream 

(Predicted) 8 65 73 
 

Observe that the results obtained with the proposed rule are 
better than the results obtained by the previous algorithms 
with the same database. The classification rate is 91,9%, 
which are 26% units higher than the DR algorithm results 
(65,9%). 

VI. APPROACH BASED ON WAVEFORM 
This approach consists in building a PCA model from 

upstream or downstream sags. In this analysis the set of 
upstream sags were selected to build the model, because the 
amount of them is greater than downstream sags. So, the goal 
is to extract the relevant information of upstream sags useful 
to discriminate them from the downstream sags. The 
methodology has two general steps [9]:  

1) Case Base Preparing and Model Construction in the 
Principal Component Space: RMS sequence of signals is 
computed, after that, RMS sequences are standardized, later 
the PCA model is created and downstream and upstream sags 
are projected in the PCA space. 

2) Model Exploitation: It is based on the similarity criteria 
between new sags and those in the case base previously 
diagnosed. New sag is projected in Upstream-PCA model. 
Later, k1 nearest neighbors is identified based on Q statistic in 
PCA space. After, the best k2 neighbors from k1 nearest are 
selected. The k2 neighbors and a decision threshold (Th) are 
used to determine if the new sag is close enough to the 
upstream sag model.  

A. Results Of The Approach Based On Waveform MPCA 
Models 
Validation of the approach has been done using 4-fold cross 

validation and computing the sensitivity and specificity for 
each experiment.  

The Upstream-MPCA model was built. The model has been 
adjusted to capture the 95% of the variability contained in the 
original data resulting a model with 10 first principal 
components. 

The methodology has been tested using different pairs of 
values for the k1 and k2 retrieved cases and using different 

thresholds (Th) to compute the ROC curve depicted in Fig. 5. 
It can be observed that all the tests had a very good 
performance: AUC near 1 view Table VII. 
 

 
Fig. 5.  ROC curves. 

 
TABLE VII 

AUC VALUES OF THE CLASSIFIERS 
Parmaters TP FP FN TN SEN SPE AUC 

k1=15,k2=1 100 1 0 72 1 0.986 0.993 
k1=15,k2=3 100 3 0 70 1 0.958 0.999 
k1=15,k2=5 100 5 0 68 1 0.931 0.998 
k1=10,k2=3 100 2 0 71 1 0.973 0.999 
k1=10,k2=5 100 4 0 69 1 0.945 0.990 

 
According to Table VII, the best classifier has k1 = 10 and 

k2 = 3 because it presents less FP and high AUC value. In 
order to select the Th value for this classifier, a test with 
several Th values between 0 and 1 was performed. The best 
sensitivity and specificity values were obtained with Th =0,2. 

VII. COMPARISON OF THE TWO APPROACHES 
The waveform approach obtained the best result (98,8% 

against 91,9%). The confusion matrix in Table VIII is shown. 
It presents only 2 errors, while the feature approach has 14 
errors in the determination of sag origin. 

 
TABLE VIII 

CONFUSION MATRIX OF THE TWO APPROACHES 
Approach TP FP FN TN SEN SPE Hit 
Feature 94 6 8 61 0,922 0,910 91,9%±4,1% 

Waveform 100 2 0 71 1,000 0,973 98,8%±1,6% 

 
According to table, the error is 8,1% and 1,2%, 

respectively. In the waveform approach, with an interval 
confidence of 95% (Normal distribution)6 the error will 
fluctuate 1,2%±1,6% and the classification rate 98,8%±1,6%, 
which means that other similar tests are very probably (0,95) 
to give a classification rate inside in the interval 97,2% to 
100%.  

In spite of the difference between the classification rates, 
 

6 Whether the number of instances is greater than 30, the Normal 
distribution is possible use it [16]. 
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each approach has additional advantages and drawbacks that 
have to be taken into account. Table IX summarizes some 
them.  

 
TABLE IX 

ADVANTAGES AND DRAWBACKS OF THE TWO APPROACHES 
First Approach (Features) Second Approach (Waveforms) 

• The classification rate is good.  
• The computational cost is low. 
• It does not require training and 
validation processes. 
• It does not require raw data. The 
needed information from relays can 
be obtained. 
• It is not based on model. 
• It is possible online implement it. 

• The classification rate is 
excellent.  
• The computational cost is high. 
• It requires training and validation 
processes. 
• It requires raw data to obtain the 
training and validation dataset. 
• It is based on model. 
• It is possible to online implement 
it. 

 

VIII. CONCLUSION 
Two voltage sag source location approaches have been 

tested. One approach is uses a statistical model of the 
waveforms based on MPCA and the other one is simpler and 
is based on simple features extracted from the RMS 
waveforms. Both present good results in the estimation of the 
sag origin. Their advantages and drawbacks have been related.  

Now, the wrong classified sags are being analyzed carefully 
to improve the single rule method. At the same time the 
methods will be tested with a larger number of sags registered 
in other substations. 
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