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Abstract— The speed of fault isolation is crucial for the design
and reconfiguration of fault tolerant control (FTC). In this
paper the fault isolation problem is stated as a constraint
satisfaction problem (CSP) and solved using constraint propa-
gation techniques. The proposed method is based on constraint
satisfaction techniques and uncertainty space refining of inter-
val parameters. In comparison with other approaches based
on adaptive observers, the major advantage of the presented
method is that the isolation speed is fast even taking into
account uncertainty in parameters, measurements and model
errors and without the monotonicity assumption. In order to
illustrate the proposed approach, a case study of a nonlinear
dynamic system is presented.

I. INTRODUCTION

Fault diagnosis of industrial processes becomes more

important in light of increased automation in industry. The

early detection and isolation of faults can help avoid major

system breakdowns. The development of model-based fault

diagnosis began at various places in the early 1970s. Methods

for fault detection in dynamic systems have been receiving

more and more attention over the last two decades, because

of economical and safety related matters. Fault detection

and isolation methods are based on detecting discrepancies

between the system outputs and model outputs.

This paper introduces a fault diagnosis approach based

on a model that takes into account the uncertainties in

the measured signals and in the model by using intervals.

These uncertainties are caused by, for example, non-modeled

effects, electrical disturbances, model simplifications, and so

on.

Some interval methods have been proposed in the context

of fault detection and diagnosis, e.g. [1], [2] and [3]. [4]

include constraint propagation to solve fault detection prob-

lems. In [5], the problem is solved using a tool known as

IntervalPeeler, based on constraint projection algorithms (2B-

consistency) to reduce interval domains of variables without

bisections.

When interval uncertainties are considered, consistency

methods which combine interval methods and constraint

satisfaction techniques can be used to solve different prob-

lems such as system and state estimation, fault detection,
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robustness analysis, robust control design problems, risk

assessment, and worst case behavior analysis.

Constraint satisfaction techniques implement local rea-

soning on constraints to remove inconsistent values from

variable domains. In practice, the set of inconsistent values

is computed by means of interval reasoning. In section II

the fault detection and isolation problems are shown like

constraint satisfaction problems and the resolution of them

is performed by the solver RealPaver [6]. The alternative to

use an efficient combination of Hull and Box consistency, is

explored.

In [7] a method of fault isolation for non-linear dynamic

systems is presented, which assumes that the fault is detected

once it occurs and the isolation procedure is triggered at this

time. That method is based on the monotonous characteristic

of an observer prediction error and parameter partitioning,

the authors remark its speed, being quicker than other

methods based on adaptive observers.

The main contribution of this paper is that, the isolation

problem is based on parameters uncertainty refining instead

of partitioning, stated and solved as a Constraint Satisfaction

Problem (CSP). A sliding time window is used to reduce the

computational effort. Interval calculations lead the proposed

approach to be independent of the assumption that the system

dynamics is a monotonous function with respect to the

considered parameters.

Thus, the aim of this paper is to show the usefulness of

the consistency methods to solve not only the fault detection

problem, but also the isolation problem when a fault appears

as a parameter deviation for non-linear dynamic systems.

The method provides the estimation of the faulty parameter

range, which is very useful information for the controller

reconfiguration in the Fault Tolerant System.

In order to illustrate the proposed approach effectiveness,

it is applied to a well known alcoholic fermentation process

presented, for instance in [7], [8], [9] and [10]. In section

III, the used model is described, two simulation scenarios

are considered and fault detection and isolation results are

presented. Finally, section IV provides some conclusions and

outlines the future work.

II. CONSTRAINT SATISFACTION TECHNIQUES

Many engineering problems can be formulated in a logical

form by means of some kind of first order predicate for-

mulas: formulas with the logical quantifiers (universal and

existential), a set of real continuous functions (equalities

and inequalities), and variables ranging over real interval

domains.
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As defined in [11], a numerical constraint satisfaction

problem is a triple CSP = (V,D, C(x)) defined by

1) a set of numeric variables V = {x1, . . . , xn},

2) a set of domains D = {D1, . . . , Dn} where Di, a set

of numeric values, is the domain associated with the

variable xi,

3) a set of constraints C(x) = {C1(x), . . . , Cm(x)}
where a constraint Ci(x) is determined by a numeric

relation (equation, inequality, inclusion, etc.) linking a

set of variables under consideration.

A solution to a numeric constraint satisfaction problem

(V,D, C(x)) is an instantiation of the variables of V for

which both inclusion in the associated domains and all the

constraints of C(x) are satisfied. All the solutions of the

constraint satisfaction problem thus constitute the set

Σ = {x ∈ D | C(x) is satisfied }.
Consistency techniques can be used to contract the do-

mains of the variables involved removing inconsistent values

[12], [13], [14]. In particular for the fault detection applica-

tion, they are used to guarantee that the observed behavior

and the model are inconsistent when there is no solution.

The algorithms that are based on consistency techniques are

actually ”branch and prune” algorithms, i.e., algorithms that

can be defined as an iteration of two steps [12]:

1) Pruning the search space by reducing the intervals

associated with the variables until a given consistency

property is satisfied.

2) Generating subproblems by splitting the domains of a

variable

Most interval constraint satisfaction solvers are based on

either hull-consistency (also called 2B-consistency) or box-

consistency, or a variation of them [13]. Box-consistency

tackles the problem of hull-consistency for variables with

many occurrences in a constraint. The aforementioned tech-

niques are said to be local: each reduction is applied over

one domain with respect to one constraint. Better pruning of

the variable domains may be achieved if, complementary to

a local property, some global properties are also enforced on

the overall constraint set.

In this paper, the solution of the fault detection and

isolation CSP is performed by using the solver RealPaver

[6]. The BC4 algorithm, an efficient combination of hull and

box consistency, is used in Section III.

A. Fault detection

The fault detection problem can be represented by a CSP

similar to the one presented in [15], which deals with the

problem of nonlinear state estimation. For example, consider

a discrete-time nonlinear dynamic system described by:

xxx(k + 1) = ggg(xxx(k),uuu(k), θθθ,www(k))
yyy(k) = hhh(xxx(k),uuu(k), θθθ) + vvv(k),

(1)

where:

- uuu(k) ∈ ℜnu , yyy(k) ∈ ℜny and xxx(k) ∈ ℜnx are the

input, output and state vector, respectively.

- www(k) ∈ ℜnw and vvv(k) ∈ ℜny are the perturbation

and measurement noise vectors, which are un-

known but bounded. The perturbation vector takes

into account, for instance, unmodeled dynamics of

the actual plant, unknown inputs or an error due to

the discretization procedure.

- θθθ ∈ ℜnp is a vector of uncertain parameters.

The dynamic system (1) can be represented as a CSPfd:

V = {θθθ, ỹ̃ỹy(1), . . . , ỹ̃ỹy(k), x̂̂x̂x(1), . . . , x̂̂x̂x(k+1), ũ̃ũu(1), . . . , ũ̃ũu(k)

www(1), . . . ,www(k), vvv(1), . . . , vvv(k)}

D = {ΘΘΘ0
, Ỹ̃ỸY (1), . . . , Ỹ̃ỸY (k), X̂̂X̂X(1), . . . , X̂̂X̂X(k+1), Ũ̃ŨU(1), . . . , Ũ̃ŨU(k)

WWW (1), . . . ,WWW (k),VVV (1), . . . ,VVV (k)}

C = {x̂̂x̂x(2) = ggg(x̂̂x̂x(1), ũ̃ũu(1), θθθ,www(1))

ỹ̃ỹy(1) = hhh(x̂̂x̂x(1), ũ̃ũu(1), θθθ) + vvv(1)

...

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k), ũ̃ũu(k), θθθ,www(k))

ỹ̃ỹy(k) = hhh(x̂̂x̂x(k), ũ̃ũu(k), θθθ) + vvv(k)}.

where:

- ΘΘΘ0 is defined by the nominal range of parameter

variation, and

- Ỹ̃ỸY (k) and Ũ̃ŨU(k) are given by interval measurements,

which are inaccurate due to the analog to digital

conversion errors, the calibration of the sensors, etc.

The fault-free operating mode is characterized by the

nominal vector ΘΘΘ0.

A problem finding the CSP solution is the continuous

increment with time in the computational effort. An alter-

native for overcoming this problem is the use of a sliding

time window. The time interval from the initial time point

to the current one is called time window ω [16], Fig. 1. By

using sliding time windows, the parameters of the system

are allowed to vary in time at a speed depending on the

size of the window (they are assumed to be invariant within

each window). The smaller is the window, the higher is the

allowed variation speed.

Fig. 1. Fault detection by means of the consistency between the model
and all the measurements within a window of length ω.
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When no solution is found for CSPfd, a fault is detected.

Otherwise, when the observed behavior and the model are

not proven to be inconsistent, means that there is not a fault

or, if there is a fault, it can not be detected.

B. Fault isolation

In this paper the fault isolation problem is also stated as

a CSP, similar to the one for fault detection. Considering

the CSPfd, a general approach for fault isolation can be

stated replacing the initial domain of θ, ΘΘΘ0 by ΘΘΘp. Where

ΘΘΘp is the feasible range of parameter variation, given by,

e.g. practical considerations. Then, the isolation problem is

solved, by estimate the consistency parameter range under

fault conditions.

A particular case is when at a time, a single independent

parameter of the system may be faulty. As a novelty, under

this single-fault hypothesis, and considering that:

- kfd is the fault detection time

- ωmax is the maximum sliding time window for fault

isolation, and

- F is the set of fault candidates (possible faulty

parameters),

the generic algorithm of the proposed approach can be

represented as:

Algorithm 1 Algorithm for Fault Isolation

1: begin

2: ω = min(k − kfd , ωmax)
3: for i = 1 to np do

4: ΘΘΘ =

{

Θi = Θp
i

Θj = Θ0

j ∀j 6= i ∈ {1, . . . , np}

5:

V = { θθθ, ỹ̃ỹy(k−ω), . . . , ỹ̃ỹy(k), x̂̂x̂x(k−ω), . . . , x̂̂x̂x(k+1),
ũ̃ũu(k−ω), . . . , ũ̃ũu(k),www(k−ω), . . . ,www(k),
vvv(k−ω), . . . , vvv(k)}

6:

D = { ΘΘΘ, Ỹ̃ỸY (k−ω), . . . , Ỹ̃ỸY (k), X̂̂X̂X(k−ω), . . . , X̂̂X̂X(k+1),

Ũ̃ŨU(k−ω), . . . , Ũ̃ŨU(k),WWW (k−ω), . . . ,WWW (k),
VVV (k−ω), . . . ,VVV (k)}

7:

C = { x̂̂x̂x(k−ω+1) = ggg(x̂̂x̂x(k−ω), ũ̃ũu(k−ω), θθθ,www(k−ω))
ỹ̃ỹy(k−ω) = hhh(x̂̂x̂x(k−ω), ũ̃ũu(k−ω), θθθ) + vvv(k−ω)
...

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k), ũ̃ũu(k), θθθ,www(k))
ỹ̃ỹy(k) = hhh(x̂̂x̂x(k), ũ̃ũu(k), θθθ) + vvv(k)}

8: CSPfi = (V,D, C)
9: Σ = solution(CSPfi)

10: if Σ = ∅ then

11: Erase θi from F
12: end if

13: end for

14: end

In this algorithm, the fault isolation task starts once

the fault has been detected. For each parameter, its initial

domain is set to its possible range in practice and the

initial domains of the other parameters are equal to the

nominal intervals. For example, if we have three parameters

θθθ = (θ1, θ2, θ3), and the corresponding nominal intervals,

Θ0Θ0Θ0 = (Θ0

1
, Θ0

2
, Θ0

3
), and feasible range of variation in

practice, ΘpΘpΘp = (Θp
1
, Θp

2
, Θp

3
), then three constraint satis-

faction problems are solved. For the first, the set of initial

domains of the parameters is: (Θp
1
,Θ0

2
,Θ0

3
), for the second,

(Θ0

1
, Θp

2
,Θ0

3
), and finally, for the third, (Θ0

1
,Θ0

2
,Θp

3
).

The sliding time window goes up from its smallest value

until it gets its maximum possible value. Considering as

initial domain the feasible range of variation Θp
i , when no

CSP solution is found, we can decide that the fault is not

caused by a value change of the parameter θi, because no

value of θi ∈ Θp
i can explain measurement data.

Satisfactory simulation results are presented in Section III.

Only the case where the fault is caused by a change of a

singular parameter is considered.

III. CASE STUDY

1) Process model:

A well-known dynamical example of an alcoholic fer-

mentation process [7] will be used to explain the proposed

method for fault detection and isolation.

The fermentation consists in growing a population of

microorganisms by feeding them appropriate nutrients or

substrates, provided the environmental conditions are pro-

pitious [10]. The model obtained from the mass balance

considerations is composed of the following differential

equations:

dC(t)

dt
= µ(t)C(t) − D(t)C(t)

dS(t)

dt
= −

1

Yc/s
µ(t)C(t) + D(t)Sa − D(t)S(t)

(2)

where,

- C(t) and S(t) represent respectively the biomass,

and substrate concentrations in the bioreactor.

- The dilution rate D(t) is used as the control vari-

able.

- Sa represents the substrate concentration in the

feeding.

- Yc/s is the yield coefficient and it is assumed that

it is known and constant.

- The measurable state is the substrate concentration

S(t).
- µ(t) represents the growth rate of the biomass,

and it is a nonlinear function of the variable S(t)
described by

µ(t) = µm
S(t)

Ks + S(t)
(3)

µm is the maximum growth rate and Ks is the saturation

constant.
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The interval method presented in this paper uses discrete-

time models, in this case a discretization is obtained by using

a first order approximation, where Ts is the sample time:

xxx(t + Ts) ≃ xxx(t) + Ts ggg(xxx(t),uuu(t), θθθ), (4)

Thus, from (2), the following discrete-time model can be

obtained:

Ĉ(k+1) = Ĉ(k)+Ts(µ(k)Ĉ(k)−D̃(k)Ĉ(k)) + w1(k)

Ŝ(k+1) = Ŝ(k)−Ts

„

µ(k)

Yc/s

Ĉ(k)−D̃(k)(Sa−Ŝ(k))

«

+w2(k)

S̃(k) = Ŝ(k) + v(k)
(5)

where, wi(k) is the perturbation vector at time k, and

it takes into account, for example, an error due to the

discretization procedure. v(k) is the measurement noise of

the interval measurement S̃(k).

In the simulation, D(t) is selected as a rectangular wave

varying between 0.1 and 0.27 with a period of 30 hours. The

sample time, Ts, is equal to 3 minutes. The feasible ranges

of parameter variation, i.e. experimental considerations in

practice are given by µm ∈ [0.2, 0.53] and Ks ∈ [0.5, 5.1].

The nominal values of model parameters used as well as

the yield coefficients are obtained from real applications and

are given by [7] (see Table I):

Nominal Values

µm = 0.38h−1

Ks = 5g/l
Yc/s = 0.07

Yp/s = 0.44

Sa = 100g/l

TABLE I

PARAMETERS AND YIELD COEFFICIENTS: NOMINAL VALUES

2) Fault detection results:

Considered faults are modeled as a single parameter

change in the process parameters µm and Ks. Two faulty

scenarios are considered.

The fault detection results (see Table II) are obtained

by using BC4 consistency technique and a sliding window

length equal to 100 samples (5h).

Scenario Faulty
parameter

Nominal
range

Faulty
value

Fault
occurrence
time (h)

Detection
time (h)

(i) µm [0.36,0.41] 0.3 70 70.05

(ii) Ks [4.90,5.10] 3.1 70 70.35

TABLE II

FAULT DETECTION RESULTS

In Fig. 2 and Fig. 3, obtained results for both fault

scenarios are shown. “FD” indicates there is a fault and a

“NF—FND” means there is not a fault or one could not be

detected. As shown in figures, there is no false alarm in the

absence of a fault.

0 20 40 60 70

NF|FND

FD

Time (h)

F
a

u
lt
 d

e
te

c
ti
o

n
Fig. 2. Scenario (i). Fault in parameter µm detection.

0 20 40 60 70

NF|FND

FD

Time (hour)

F
a
u
lt
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e
te

c
ti
o
n

Fig. 3. Scenario (ii). Fault in parameter Ks detection.

3) Fault isolation results:

Once the fault is detected, the fault isolation algorithm

starts. Since the parameters of this case study are µm, and

Ks, two CSP must be solved. For the first, the set of initial

domains of the parameters is: (µp
m,K0

s ), and for the last

one (µ0

m,Kp
s ). When no consistent region is found in the

feasible range of parameter variation, a fault associated with

a value change of the refined parameter can be discarded.

Obtained results for fault isolation in both of the scenarios,

are summarized in Table III.

Scenario Faulty
parameter

Feasible
range

Faulty
value

Estimate
range

Isolation
time (h)

(i) µm [0.20, 0.53] 0.3 [0.282,0.314] 70.70

(ii) Ks [0.50, 5.10] 3.1 [2.890,3.250] 75.20

TABLE III

FAULT ISOLATION RESULTS
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Test Isolation Results

Test 1:
Using the
nominal range
of Ks and
refining the
feasible range
of µm

70.05 75 80

0.2

0.36

0.41

0.53

Time (h)

µ
m

 (
h

−
1
)

Consistent values for µm

Test 2:
Using the
nominal range
of µm and
refining the
feasible range
refining Ks

70.05     70.70 75 80

0.5

4.9
5.1

Time (h)

K
s (

g
/l)

Consistent values for Ks

TABLE IV

SCENARIO(I). FAULT ISOLATION RESULTS

Notice that in both scenarios the estimate range of the

faulty parameter, after almost 10 hours of detecting the fault,

includes the considered faulty value.

In Table IV and Table V, the results of the isolation test

are presented in a more detailed way.

• Faulty parameter µm

Since there is no consistent region of Ks in its feasible

range of variation, the fault is not in the parameter Ks and

it can be discarded at time 70.70h (See Table IV).

• Faulty parameter Ks

Since there is no consistent region of µm in its feasible

range of variation, the fault is not in the parameter µm and

it can be discarded at time 75.20h (See Table V).

4) Isolation time:

Even taking into account uncertainty in measurements,

parameters, and model errors, the isolation time in both

scenarios obtained by means of the proposed in this papers

approach, is of the same order of magnitud like the ones

found in [7], for similar faulty scenarios, by using an

approach non-based on interval calculations. It could be said

Test Isolation Results

Test 1:
Using the
nominal range
of Ks and
refining the
feasible range
of µm

70.35 75.20 80

0.2

0.36

0.41

0.53

Time (h)

µ
m

 (
h

−
1
)

Consistent values for µm

Test 2:
Using the
nominal range
of µm and
refining the
feasible range
of Ks

70.35 75 80

0.5

4.9
5.1

Time (h)

K
s (

g
/l)

Consistent values for Ks

TABLE V

SCENARIO(II). FAULT ISOLATION RESULTS

the two approach isolation speed are comparable between

them and smaller than the speed isolation of other approaches

based on adaptive observers.

IV. CONCLUSIONS AND FUTURE WORKS

The proposed isolation approach bring relevant informa-

tion for the design and reconfiguration of fault tolerant

control (FTC), such as fault magnitude and isolation time.

Interval calculations bring to the approach independence

from assumptions of monotony made in other approaches

based on observers.

Through the case study, consistency techniques are shown

to be particularly efficient to solve the isolation problem

when a fault can be represented as parameter deviations.

The isolation method performance is satisfactory in com-

parison with other methods based on observers, specially

taking into account the isolation speed.

As part of future work, we would like to investigate

how the work presented in this paper can be extended for

diagnosis of multiple faults (or faults which change more

than one parameter simultaneously).
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