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Abstract—One of the techniques used to detect faults in dynamic
systems is analytical redundancy. An important difficulty in apply-
ing this technique to real systems is dealing with the uncertainties
associated with the system itself and with the measurements. In
this paper, this uncertainty is taken into account by the use of in-
tervals for the parameters of the model and for the measurements.
The method that is proposed in this paper checks the consistency
between the system’s behavior, obtained from the measurements,
and the model’s behavior; if they are inconsistent, then there is
a fault. The problem of detecting faults is stated as a quantified
real constraint satisfaction problem, which can be solved using the
modal interval analysis (MIA). MIA is used because it provides
powerful tools to extend the calculations over real functions to
intervals. To improve the results of the detection of the faults, the
simultaneous use of several sliding time windows is proposed. The
result of implementing this method is SemiQUALitative TRACK-
ing (SQualTrack), a fault-detection tool that is robust in the sense
that it does not generate false alarms, i.e., if there are false alarms,
they indicate either that the interval model does not represent
the system adequately or that the interval measurements do not
represent the true values of the variables adequately. SQualTrack
is currently being used to detect faults in real processes. Some
of these applications using real data have been developed within
the European project Advanced Decision Support System for
Chemical/Petrochemical Manufacturing Processes and are also
described in this paper.

Index Terms—Constraint satisfaction problem, fault detection,
modal intervals, processes, redundancy, uncertain dynamic
systems.

I. INTRODUCTION

A FAULT is a malfunction in a system, which may have
consequences such as economic losses derived from

lower efficiency of the system or danger to the people or to the
environment. Many different techniques have been developed in
recent years, which are intended to detect and diagnose faults.
These techniques can be classified in different ways [1], [2]. For
example, a distinction can be made between model-based tech-
niques and techniques based on other kinds of knowledge, such
as heuristic approaches, statistical approaches, learning sys-
tems, artificial neural networks, etc. Two research communities
work on model-based techniques, namely, the fault-detection
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and isolation (FDI) community, formed by researchers with a
background in control systems engineering, and the principles
of diagnosis (DX) community, formed by researchers with a
background in computer science and intelligent systems. The
collaboration between these two communities to develop more
powerful tools for fault detection and diagnosis has been one
of the goals of the European Network of Excellence on Model
Based Systems and Qualitative Reasoning [3], particularly of
the Bridge task group.

Among the techniques developed by the FDI research com-
munity, there are classical methods such as state observers,
parity equations, and parameter estimation [4]–[7].

One of the methods to detect faults consists in comparing the
behavior of an actual system with the behavior of a model of
the system. This principle is called analytical redundancy and is
presented in Section II. Many techniques based on this principle
either do not take uncertainty into account or have difficulties
in considering uncertainty. In both cases, uncertainty is a source
of false alarms, i.e., due to uncertainty, alarms indicating the
presence of faults are activated when there are no faults. In
this paper, the uncertainties associated with the system itself
and with the measurements are taken into account by means of
intervals, thus eliminating this source of false alarms.

In Section III, the problem of detecting faults is stated as
a quantified real constraint satisfaction problem, which can
be solved using the modal interval analysis (MIA) [8], [9].
The sliding time windows, which are introduced in the same
section, reduce the necessary computational effort and improve
the fault-detection results. Finally, the proposed fault-detection
algorithm is presented.

This method is implemented in SemiQUALitative TRACK-
ing (SQualTrack), a software package to robustly detect faults
in uncertain systems, which is described in Section IV and
which has been applied in the European project Advanced
Decision Support System (DSS) for Chemical/Petrochemical
Manufacturing Processes (CHEM) [10] to detect faults in real
processes. Some of the results are shown in Sections V–VII.
Finally, Section VIII summarizes this paper and provides some
conclusions.

II. ANALYTICAL REDUNDANCY

An actual system or a part of it can be represented by a model
described by the following nonlinear discrete-time equation:

y(k)=f (y(k−1), . . . ,y(k−n),u(k−1), . . . ,u(k−m),p)
(1)

where y(k) ∈ R
ny , . . . ,y(k − n) ∈ R

ny represents the out-
puts of the system at instants k, . . . , k − n; f is a vector of
continuous functions; u(k − 1) ∈ R

nu , . . . ,u(k − m) ∈ R
nu

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on May 8, 2009 at 06:49 from IEEE Xplore.  Restrictions apply.



476 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

represents the inputs at instants k − 1, . . . , k − m; and p ∈
R

np is a vector of parameters.
An analytical redundancy relation (ARR) is an algebraic

constraint deduced from the system model which contains only
measured variables. An ARR for (1) is

ỹ(k) = ŷ(k) (2)

where ỹ(k) is the measured output of the system at instant k
and ŷ(k) is the analytical output of the model at instant k

ŷ(k) :=f (ỹ(k−1), . . . , ỹ(k−n), ũ(k−1), . . . , ũ(k−m),p)
(3)

where ũ(k) is the measurement of the input at instant k.
An ARR is used to check the consistency of the observa-

tions with respect to the system model. Therefore, a fault is
detected when

ỹ(k) �= ŷ(k) (4)

or, equivalently

r(k) �= 0 (5)

where

r(k) = ŷ(k) − ỹ(k) (6)

is the so-called residual of the ARR.
The main problem is that the measured output ỹ(k) and

the computed output ŷ(k) are seldom the same because the
model is, by definition, inaccurate, i.e., it is an approximated
representation of the system. This is the consequence of the
uncertainties of the system and the procedure of systems’
modeling. Moreover, the measurements ỹ(k) and ũ(k) are
approximations to the real values of the variables y(k) and
u(k), respectively, due to uncertainties in sensors, namely,
noise, errors in the analog-to-digital conversion, bias, drift,
nonlinearities, inaccuracies due to calibration, etc.

Therefore, the uncertainty has to be considered. In some
methods, the uncertainty is taken into account when the behav-
ior of the actual system is compared with the behavior of the
model; hence, a fault is indicated when the difference is larger
than a threshold ε

‖r(k)‖ > ε. (7)

An important difficulty is to determine the size of ε. If it
is too small, faults are indicated even when none exists, i.e.,
there are false alarms. On the other side, if the threshold is
too large, the amount of missed alarms or undetected faults in-
creases. Hence, there is a need to develop robust fault-diagnosis
algorithms.

The robustness problem in FDI is thus defined as the
maximization of the detectability and isolability of faults,
together with the minimization of the effect of uncertainty and
disturbances, on the FDI procedure [11]. Two main approaches

have been proposed to solve the robustness problem. One, based
on an attempt to account for uncertainty in designing the resid-
ual, is known as active robustness in FDI. The second approach
is called passive robustness in FDI and consists in enhancing
the robustness of the fault-detection procedure at the decision-
making stage [5]. In this latter case, robustness can be achieved
by finding and using the most effective threshold. In this paper,
effective thresholds are found using intervals to bound the
uncertainty in parameters and measurements [12]–[15].

III. CONSISTENCY TEST

Applying the principle of analytical redundancy but taking
into account the uncertainty of measurements and parameters,
a fault is detected when

(
∀ỹ(k) ∈ Ỹ (k)

) (
∀ỹ(k) ∈ Ŷ (k)

)
r(k) �= 0 (8)

where Ỹ (k) is the range of possible values that the output
y(k) can take (it is obtained from the measurement ỹ(k) and
from the properties of the sensor) and Ŷ (k) is the range of
possible values of the output of the model, which is an interval
because the output of the model depends on interval inputs and
parameters.

Therefore, at each time step, the range of a function in a
parameter space has to be computed. Range computation is a
task related to global optimization [16], [17], which usually
requires considerable computational effort. The computational
cost can be lowered by computing this range in an iterative way
so that at each iteration, an outer approximation, closer to the
exact range than the one obtained in the previous iteration, is
obtained. This iterative procedure can stop when (8) is fulfilled
because the fault has already been detected.

The problem is that this iterative procedure never stops either
when there is no fault or when the fault cannot be detected using
this method, for instance, because there is a fault but

(
∃ỹ(k) ∈ Ỹ (k)

) (
∃ŷ(k) ∈ Ŷ (k)

)
r(k) = 0 (9)

due to dynamics.
A way to stop this procedure in this case is by computing

also an inner approximation to Ŷ (k). This is described in the
following.

Both approximations, the outer and the inner one, can
be computed using MIA. Considering the modal interval
∗-extensions r∗(k) of the residual functions r(k) to the proper
intervals Ŷ (k) and Ỹ (k), (8) is equivalent, in accordance with
the semantic theorems, to the interval relation

[0, 0] �⊆ r∗(k) (10)

and (9) is equivalent to the interval relation

[0, 0] ⊆ r∗(k). (11)

Remark that, in this case, r∗(k) is the range of r(k) for the
domains Ŷ (k) and Ỹ (k). Using the necessary inner and outer
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roundings of r∗(k), (8) is true if

[0, 0] �⊆ Outer (r∗(k)) (12)

and (9) is true if

[0, 0] ⊆ Inner (r∗(k)) . (13)

In this paper, the f ∗ algorithm, which will be described in
Section IV-C, is used to compute these approximations in an
iterative way. The execution is stopped either when (12) is
satisfied, hence a fault has been detected, or when (13) is true,
in which case the ARR is consistent and a faulty or healthy
behavior cannot be assured.

A. Window Consistency

Consider a discrete first-order model

y(k) = a y(k − 1) + b u(k − 1) (14)

where a and b are uncertain model parameters such that a and b
belong to the intervals A and B, respectively.

At step k, the range of Ŷ (k) has to be computed. Moreover,
at step k + 1, the range to be computed is Ŷ (k + 1), where

y(k + 1) = a y(k) + b u(k). (15)

Two situations must be distinguished in this case. A first case
is when the system is considered to be time variant, in which
the values of a and b at steps k and k + 1 can be considered
different.

1) ak �= ak+1.
2) bk �= bk+1.
In this case, the ranges of Ŷ (k) and Ŷ (k + 1) can be

computed independently.
A second case is when the system is considered time invari-

ant, i.e., there is uncertainty in the values of a and b but it is
known that these values are the same at steps k and k + 1. In
this case, there is a dependence between (14) and (15), which is
made explicit by substituting y(k) into y(k + 1)

y(k + 1) = a (a y(k − 1) + b u(k − 1)) + b u(k). (16)

In order to distinguish y(k + 1) of (16) from y(k + 1) of (15),
the concept of window length (w) is introduced

y(k + 1|k − 1) = a (a y(k − 1) + b u(k − 1)) + b u(k)
(17)

or, in general

y(k|k − w) = fw (y(k − w),u(k − w), . . . ,u(k − 1),p)
(18)

which constitutes a sliding time window.
This second case, time invariant systems, is more difficult to

handle than the first one and is the case considered in this paper.
The window consistency allows one to determine the con-

sistency of a set of system measurements (inputs and output)
between two sampling times with respect to the predicted

behavior in the same time interval. The distance between the
two considered sampling times is called the window length.
Then, for a window length w, in accordance with (8), a fault
is detected when(

∀ỹ(k)∈ Ỹ (k)
)(

∀ŷ(k|k−w)∈ Ŷ (k|k−w)
)

(
∀ũ(k−w)∈Ũ (k−w)

)
, . . . ,

(
∀ũ(k−1)∈Ũ (k−1)

)
(∀p ∈ P )rw(k) �= 0 (19)

where Ũ(k) is defined similar to Ỹ (k) and is the range of
possible values that the input u(k) can take (it is obtained from
the measurement ũ(k) and from the properties of the sensor)

rw(k) = ŷ(k|k − w) − ỹ(k) (20)

ŷ(k|k − w) =fw (ỹ(k − w), ũ(k − w), . . . , ũ(k − 1),p)

(21)

where (21) is the corresponding predicted behavior for a
window length of w.

Notice that for two different window lengths w1 and w2, it
can happen that with w1, the fault is not detected but that with
w2, the fault is detected. In this case, it can be assured that
there is a fault because detecting it with one window length
is a sufficient condition to assure it. Consequently, a fault is
detected if(

∀ỹ(k) ∈ Ỹ (k)
) (

∀ỹ(k|k − w1) ∈ Ỹ (k|k − w1)
)

(
∀ũ(k − w1) ∈ Ũ(k − w1)

)
, . . . ,

(
∀ũ(k − 1) ∈ Ũ(k − 1)

)
(∀p ∈ P )rw1(k) �= 0 ∨, . . . ,∨

(
∀ỹ(k) ∈ Ỹ (k)

) (
∀ŷ(k|k − wn) ∈ Ŷ (k|k − wn)

)
(
∀ũ(k − wn) ∈ Ũ(k − wn)

)
, . . . ,

(
∀ũ(k − 1) ∈ Ũ(k − 1)

)
(∀p ∈ P )rwn

(k) �= 0. (22)

The fault-detection results obtained using several window
lengths are generally better, i.e., there are less missed alarms,
than the ones obtained using a single window length, whatever
is the length in the latter case. The best window length not only
depends on the dynamics of the system but also on the type of
fault to be detected.

B. Fault-Detection Algorithm

The proposed fault-detection algorithm requires the follow-
ing from the user: a process model, the process data, the
uncertainty associated to the process model and to the process
data, the window lengths {w1, . . . , wn}, and a time (TimeOut)
to limit the computations carried out between two sample times.
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Fig. 1. Fault-detection algorithm.

First of all, the algorithm builds the corresponding ARRs
for each window length {rw1 = 0, . . . , rwn

= 0}. At each step,
internal and external approximations to the range of each ARR
have to be computed.

As the necessary computing effort to deal with a larger
window length wn is bigger than for a shorter one w1, when
wn > w1, the algorithm starts, at each time point, using the
shortest window length. If it detects a fault, the algorithm
returns “Faulty” and stops, thus saving computing effort. If
this window does not detect fault, the algorithm proceeds with
the next one and so on. If none of the ARRs is proven to be
inconsistent, the algorithm returns “Perhaps.”

This algorithm, which is shown in Fig. 1, also does not report
a fault when it is inconclusive because the timeout is reached.
This is because the proposed approach prioritizes to avoid false
alarms to missed alarms.

IV. SQUALTRACK

This technique for fault detection has been implemented as a
software tool called SQualTrack.

The inputs of this tool are an Input File describing the model
of the system to be analyzed and input data coming from the
process.

The input data are the values of the variables at each sam-
pling time collected by the sensors. These values are precise
but inaccurate, as the uncertainties of the measurements are not
considered. These values are converted to intervals, which are
imprecise but should be accurate, by using information coming
from the manufacturer of the sensor and from the operators of
the process.

The modeling procedure usually involves approximations,
simplifications, linearizations, etc. These uncertainties are
taken into account by giving interval values to the parameters
of the model.

The model, the interval values of its parameters, and other
parameters (such as the vector of window lengths) are intro-
duced in the Input File.

SQualTrack processes the Input File and the input data and
provides numerical and graphical results. Different modules
can be distinguished in the implementation of SQualTrack:

1) a parser;
2) a symbolic algorithm, which builds the analytical redun-

dancy relations (ARRs) for each window length;
3) a communication process interface (CPI) which can read

input data from a text file or from a real process;
4) an algorithm to compute approximations of the semantic

extensions of a continuous function (f ∗);
5) the fault-detection algorithm sketched in Section III-B.

These modules are described in the following and shown
in Fig. 2.

SQualTrack has been completely developed in C++ to opti-
mize the numerous computations that have to be performed.

A. Parser

In order to provide SQualTrack with a friendly user interface,
which allows one to introduce the problems in an easy way, a
parser has been developed.

In computer science, parsing (formally named syntax analy-
sis) is the process of analyzing an input sequence (read from
a file or a keyboard, for example) in order to determine its
grammatical structure with respect to a given formal grammar.
A parser is a computer program that carries out this task.

In SQualTrack, the parser interprets the Input File, where the
model of the system is described and the interval values of the
parameters of the model are introduced. It is based on the Spirit
framework [18].

B. ARR Construction

The output of the parser is a binary tree corresponding
to the model of the system with a window having a length
of one. Then, it is necessary to automatically generate the
binary tree for the ARRs corresponding to each one of the
introduced window lengths. This task is carried out through
the manipulation of the binary tree obtained with the parser.
The implemented algorithm crosses over the binary tree and
looks for the different occurrences of the output variable. Then,
it recursively substitutes these occurrences by the same binary
tree but with the corresponding indexes for the new introduced
variables and occurrences. For example, given the following
generic first-order model

y(k) = a y(k − 1) + b u(k − 1) (23)

where y(k) and y(k − 1) are the output variable at time instants
k and k − 1, respectively, u(k − 1) is the input variable, and
a and b are model parameters, the graphical representation of
the binary tree corresponding to the right-hand-side part of the
model equation is shown in Fig. 3, where the subindexes repre-
sent the occurrences of the variables. Then, the corresponding
binary tree for a window having a length of four is shown
in Fig. 4.
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Fig. 2. SQualTrack modules.

Fig. 3. First-order model representation.

Fig. 4. First-order model representation for a window length of four.

C. f ∗ Algorithm

Computing the range of a continuous function involving
interval variables is a difficult task due to the overestimation
of the interval evaluation caused by the multiincidences of
variables in a certain condition of monotony.

One way to deal with this problem is combining MIA and
branch-and-bound techniques [16]. Even if classical interval
analysis (IA) could be used for such a purpose, MIA performs

better, since it provides a more powerful mathematical frame-
work for computing, in an efficient way, an inner and an outer
approximation to the range of a continuous function.

MIA (for a complete introduction, see [8] and [19]) is a
completion of the IA, not only in a lattice and an arithmetic
sense, as the extended intervals of Kaucher [20], but a logical
completion as well. This way, it provides tools to verify logical
formulas such as the ones in (8) and (9) and, therefore, to
tackle problems which can be stated by means of similar logical
formulas.

The starting point is to associate a logical quantifier to a
classic interval. Thus, a modal interval X is defined as a couple
X = (X ′,∀) or X = (X ′,∃), where X ′ is its classic interval
domain, X ′ ∈ I(R), and the quantifiers ∀ and ∃ are a selection
modality. The set of the modal intervals is represented by
I∗(R). The modal intervals of the type X = (X ′,∃) are called
proper intervals or existential intervals, and the intervals of the
type X = (X ′,∀) are called improper or universal intervals. A
modal interval can be represented using its canonical coordi-
nates in the form

X = [a, b] =
{

([a, b]′,∃) , if a ≤ b
([b, a]′,∀) , if a ≥ b.

(24)

For example, the interval [2, 5] is equal to ([2, 5]′,∃), and the
interval [8, 4] is equal to ([4, 8]′,∀).

Lattice operations (meet and join), arithmetic operators, and
modal interval extensions f ∗ and f ∗∗ for a continuous function
f , which are a generalization of the range of f over a classic
interval, can be defined over the modal intervals.

Two key results, named semantic theorems, give logical
interpretation to these semantic extensions.

Theorem 4.1 (∗—Semantic Theorem): Let be X ∈ I∗(Rn)
and Z ∈ I∗(R); then

f ∗(X) ⊆ Z ⇔ ∀
(
xp,X

′
p

)
Q(z, Z) ∃ (xi,X

′
i) z = f(xp, xi).

(25)
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Fig. 5. Objective function.

Theorem 4.2 (∗∗—Semantic Theorem): Let be X ∈ I∗(Rn)
and Z ∈ I∗(R); then

f ∗∗(X) ⊇ Z ⇔ ∀ (xi,X
′
i) Q (z, Dual(Z))

∃
(
xp,X

′
p

)
z = f(xp, xi) (26)

where Dual([a, b]) = [b, a].
Both semantic theorems make equivalent a logical formula,

with intervals and functional predicates where the universal
quantifiers precede the existential ones, to an interval inclusion.

Although functions f ∗ and f ∗∗ are optimal in the semantic
sense, these theorems do not explicit the process of computation
of the interval Z which fulfills f ∗(A) ⊆ Z or f ∗∗(A) ⊇ Z, i.e.,
intervals which are an outer estimate of f ∗ or an inner estimate
of f ∗∗. To find these estimates, an algorithm has been developed
[21], [22].

The basic concept consists of bisecting, in a intelligent
manner, the variable space by studying the monotonic nature
of the function with respect to each of its variables. Then, by
applying some theorems from MIA, which are also based on
the monotony study, it is possible to obtain better results in the
evaluation.

For example, consider the continuous function

f(x, y) = x2 + y2 + 2xy − 20x − 20y + 110 (27)

with its real variables ranging in the domains x ∈ [0, 6] and
y ∈ [2, 8], which is shown in Fig. 5.

The maximum value of f is 74, and the minimum value,
ten, is taken in all the points of the domain belonging to the
line x + y = 10. Therefore, the exact range of this function
is f([0, 6], [2, 8]) = [10, 74], whereas the range obtained by
interval natural extension, which means replacing real variables
by interval variables and real operators by their interval coun-
terparts, is [−166, 266]. It can be seen that a huge overestimate

TABLE I
RESULTS OF THE f∗ ALGORITHM

is produced due to the multiincidences of the variables and the
nonmonotonic nature of the function with respect to them. By
applying the proposed algorithm [23] (with a PENTIUM M
760, 2 GHz), the results after a specific time are the ones of
Table I. These results show seven significative digits conve-
niently rounded to maintain the corresponding semantics of the
inner and the outer approximations.

The run time of the f ∗ algorithm increases with the number
of variables and the required precision. However, for fault
detection, a close approximation to the range of the residual r
is not necessary because the execution can finish when [0, 0] ⊆
Inner(r) or [0, 0] �⊆ Outer(r).

D. CPI

SQualTrack is presented in two different versions, one for
working with offline data and another for working with online
data. The CPI of these versions is different.

1) Offline CPI. The offline version of the SQualTrack solver
obtains the required process data from a text file. This
version is part of the Modal Intervals Software and can
be freely downloaded [23].

2) Online CPI. In the context of the CHEM project [10], an
online version of the SQualTrack solver has been imple-
mented. This version of the solver is provided with a CPI,
developed within the CHEM project, which allows the
communication with the process and with other software
tools devoted to solving other supervision tasks (e.g.,
diagnosis and rescheduling). This version has been used
in the applications described in this paper.

E. Numerical and Graphical Outputs

In order to provide a friendly output to the user, SQualTrack
represents the results at the graphical user interface.

The graphical output of the software is shown in different
figures in the following sections, for instance, in Fig. 7. The
upper graph shows the approximations (inner and outer) for
the output variable together with the measured output, which is
plotted with brighter colors than the approximations in order to
distinguish them. Note that often, the inner and outer approxi-
mations cannot be distinguished in the graphic because they are
very close.

As all these signals are represented by intervals, it is easy
to see if the outer approximation intersects or not with the
measured output which is equivalent to testing (12). Then, it
is possible to visually detect faulty behavior and, in this case,
see if variables exceed or fall below their expected values.
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Fig. 6. Flowsheet of the steam-generator pilot plant.

The graph in the center of Fig. 7 shows a bar when a fault
is detected, i.e., when the intersection between the interval
measurement and the external approximation is void. Finally,
the lower graph indicates the longest window length that has
been used at each time step to compute the approximations.
Therefore, although the approximations at each time step may
be computed using different window lengths, they are rep-
resented in a single figure. Due to this, the approximations
sometimes seem to widen or tighten significantly from step
to step.

SQualTrack also generates a numerical output, which con-
sists of a text file containing the time step, the output variable,
the inner and outer approximations of the f ∗ computation, a
Boolean variable representing the detection of the fault, and
the longest length of window which has been used at each
time step.

V. APPLICATIONS

SQualTrack is being applied to academic and to real
processes. The application procedure follows these steps.

1) Select the critical components to be monitored.
2) Identify which subsystems are more affected by the

critical components.
3) Verify that the input and output variables of the selected

subsystems are measured. If not, additional sensors may
be required.

TABLE II
STEAM-GENERATOR UNCERTAINTY

4) Obtain models of the selected subsystems from the
physical equations or by identification methods.

5) Process the models to put them in a suitable form to be
included in the software tool.

Once these steps have been completed, the tool is ready to
be used.

This paper describes some applications within the European
project CHEM [10]. The aim of this project is to develop and
implement an advanced DSS for process monitoring, data and
event analysis, and operational support in industrial processes.
The system integrates innovative software tools in a synergistic
way, thereby improving safety, product quality, and operational
reliability, as well as reducing the economic losses due to faulty
states, mainly in chemical and petrochemical processes.

One of the main tasks of this project is situation assessment
of uncertain processes, which includes fault detection. This task
is undertaken from different points of view. One is the model-
based approach, which is the approach used by SQualTrack.

To test the different techniques that have been developed,
several partners of the project provide industrial processes
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Fig. 7. Boiler leakage.

and pilot plants, including the Fluid Catalytic Cracking plant
owned by the French Institute of Petroleum and located in
Lyon (France); the steam-generator pilot plant owned by the
Laboratoire d’Automatique et d’Informatique Industrielle de
Lille (France); and the flexible chemical pilot plant PROCEL,
owned by the Universitat Politècnica de Catalunya and located
in Barcelona (Catalonia, Spain). Some of the results obtained
by applying SQualTrack to fault detection in some of these
processes are presented in the following.

VI. STEAM-GENERATOR PILOT PLANT

A. Process Description

The steam generator is a scale model of a power plant.
It is a complex nonlinear system that reproduces the same
thermodynamic phenomena as the real industrial process. As
shown in the flowsheet of Fig. 6, this installation consists of
four main subsystems: a receiver with feedwater supply, a boiler
heated by a 60-kW resistor, a steam flow system, and a complex
condenser coupled with a heat exchanger.

The feedwater flow is circulated via two feed pumps con-
nected in parallel. Each pump is controlled by an on–off con-
troller to maintain a constant water level in the steam generator.

The heat control depends on the pressure in the boiler; when
this pressure falls below a minimum value, the heater resistor
delivers maximum power, and when the accumulator reaches
a maximum pressure, the electrical feed to the heater resistor
is switched off. The expansion of the generated steam is re-
alized by three valves connected in parallel: V6 is a manual
bypass valve, simulating the bypassing of the steam flow to
the condenser; V2 is a controlled position valve; and V1 is
automatically controlled to maintain proper pressure to the
condenser. In an industrial plant, the steam flows to the turbine
to generate power; however, at the test rig, the steam is con-
densed, stored in a receiver tank, and then returned to the steam
generator.

B. Testing Scenario

The values of the measured variables are collected once per
second. These data are grouped in “scenarios,” which include
data from normal and abnormal situations, such as unusual
events or incidents. Among these, there are scenarios with
problems in the sensors (poor calibration and failures), in the
actuators, or in the process itself.

The faulty scenario that is considered consists of opening
valve V10 for a time, causing leakage in the boiler.
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Fig. 8. Flowsheet of PROCEL.

C. Model From Mass Balance

A model of the boiler is obtained from a mass balance

dM

dt
= F3 − F10 (28)

where M is the mass inside the boiler, F10 is the output mass
flow, and F3 is the input mass flow.

The corresponding difference equation obtained using the
explicit Euler discretization is

M(k + 1) = M(k) + (F3(k) − F10(k)) Ts. (29)

As the monitored variable M is not directly measurable,
it is estimated using the following:

M = Vsteamρsteam + Vliquidρliquid (30)

where Vliquid is the volume of liquid calculated from the level
which is highly uncertain due to the bubbles in the boiling
water, ρliquid is the liquid water density, which is a function of
the pressure inside the boiler and obtained from tables of steam
properties, Vsteam is the volume of steam (given by Vsteam =

TABLE III
PROCEL UNCERTAINTY

Vboiler − Vliquid), and ρsteam is the steam density (also given
by the steam tables).

Table II shows the uncertainty associated with each measure-
ment. The relative error er corresponds to the sensor precision,
and the absolute error ea corresponds to the error introduced
by the truncation of the digital scale which is used. To obtain
the interval X associated with a measurement x, the following
is used:

X = [x(1 − er) − ea, x(1 + er) + ea] . (31)
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Fig. 9. Additional input flow to reactor 1.

D. Test Results

Fig. 7 shows the main window of the fault-detection tool
for the test scenario. In this case, the sample time is 1 s,
and the time windows, of lengths 10, 50, 100, and 200 s,
are used.

The fault began at 240 s and ended at 360 s and is detected
from 353 to 448 s using a window of 200 s. Due to dy-
namics, the differences between the behaviors of the healthy
and the faulty systems when there are small faults are small and
undistinguishable from the usual differences due to uncertainty.
To amplify these differences, long windows are needed. In this
case, shorter windows do not detect the fault, and only the 200-s
one does it.

On the other hand, it is not necessary to use long windows to
detect large faults. Short windows also detect the faults, needing
a much lower computing effort.

An added difficulty in this case is that the level in the boiler is
controlled so that a pump is switched on when the level is below
a predefined level. Fig. 7 shows that when the fault appears, the
level decreases, then increases for a while because the pump is
on, and then decreases again due to the leakage, and finally, the
fault is detected because the level is too low, taking into account
that the pump has been on.

VII. PROCEL PILOT PLANT

A. Process Description

PROCEL comprises three tank reactors, three heat exchang-
ers, and the necessary pumps and valves to allow for changes
in the configuration. The PROCEL equipment is fully con-
nected, and the associated instrumentation allows for changing
of the configuration by software. Fig. 8 shows a flowsheet of
PROCEL.

The example shown in this paper is based on a part of the
process, the temperature in reactor 1.

B. Testing Scenarios

Three faulty scenarios affecting reactor 1 are considered.

1) An additional input flow. The fault consists of opening
valve VE2 during a time period to simulate an addi-
tional input flow that is not taken into account, i.e.,
a perturbation.

2) A leakage. Valve VE4 is opened during a time period.
3) Heating resistor 1 shutdown.

For scenarios 1) and 2), a model obtained from the mass
balance of reactor 1 is sufficient. The monitored variable is the
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Fig. 10. Reactor 1 leakage.

volume of liquid in reactor 1. For scenario 3, a model obtained
from the energy balance is required. The monitored variable is
the temperature of reactor 1.

C. Model From Mass Balance

The volume variation inside reactor 1 is

dVR1

dt
= (F1 + F2 + F3) − F4 (32)

where VR1 is the volume of liquid in the reactor; F1, F2, and
F3 are the volumetric input flows; and F4 is the volumetric
output flow. It is assumed that there is a relative error of 3%
for VR1 and 5% for F1, F2, F3, and F4 (Table III summarizes
these uncertainties). The corresponding difference equation is

VR1(k + 1)=VR1(k)+(F1(k)+F2(k)+F3(k)−F4(k)) Ts

(33)

where Ts is the sample time.
As VR1 is easily obtainable from the measurements of the

level, the ARR consists of comparing the value of VR1 com-
puted from (33), which is an interval, with the value computed
from the measurements of the level, which also is an interval.

D. Model From Energy Balance

The temperature variation inside reactor 1 is

dTR1

dt
=

F1(T1 − TR1)
VR1

+
F2(T2 − TR1)

VR1

+
F3(T3 − TR1)

VR1
+

PH − GR1(TR1 − Tamb)
ρR1cpR1VR1

(34)

where TR1 is the temperature of the liquid in the reactor and,
therefore, the output of this subsystem. The inputs are the flows
F1, F2, and F3 and the corresponding temperatures T1, T2,
and T3. It is assumed that there is a relative error of 5% for
TR1, T1, T2, and T3.

The parameters of the model are the volume of liquid VR1,
the ambient temperature Tamb (Tamb = [18, 20] + 273.15 K),
the heater power PH (with a relative error of 10%), the thermal
conductance of the wall GR1 (approximately 0.01 W/K), the
density of the liquid ρR1 (water), and its specific heat cpR1.
These uncertainties are summarized in Table III. Moreover, a
digital variable indicating if the heater is on or off is required.
This variable is already included in the data sets.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on May 8, 2009 at 06:49 from IEEE Xplore.  Restrictions apply.



486 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Fig. 11. Reactor 1 heater shutdown.

The corresponding difference equation is

TR1(k + 1) = TR1(k)

+
TsF1(k) [T1(k) − TR1(k)]

VR1(k)

+
TsF2(k) [T2(k) − TR1(k)]

VR1(k)

+
TsF3(k) [T3(k) − TR1(k)]

VR1(k)

+
Ts [PH(k) − GR1(TR1(k) − Tamb)]

ρR1cpR1VR1(k)
. (35)

As TR1(k) is directly measurable, the ARR consists of com-
paring the computed value of TR1(k) with its measurement.

E. Test Results

Figs. 9–11 show the main window of the fault-detection
software when it is used to detect faults for each of the test
scenarios.

In all the graphs, note that the horizontal axes indicate
samples, not time, and that the sample time is 3 s.

For scenario 1 (additional input flow), the fault began at
sample 55 and ended at sample 73. It is detected from sample
63 until sample 112.

For scenario 2 (leakage) the fault began at sample 272 and
ended at sample 343. It is detected from sample 318 until
sample 477.

For scenario 3 (heater shutdown) the fault began at sample
581 and ended at sample 617. It is detected from sample 610
until sample 640.

VIII. CONCLUSION AND FUTURE WORK

This paper has presented a method based on analytical re-
dundancy to detect faults in dynamic systems with parametric
uncertainties. The systems’ uncertainty is represented using
interval models, and the uncertainty associated with the mea-
surements is also represented by intervals. The consistency
between the interval model and the interval measurements is
checked by error-bounded estimations of the value of a variable;
therefore, a fault is detected when the interval measurement
does not intersect with the external estimation. The number
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of missed alarms is reduced by using several window lengths
simultaneously, considering that a fault is detected when there
is any inconsistency in any time window. Therefore, this
method increases the detection of faults compared with the use
of a single window length and, at the same time, minimizes the
computations required.

The method uses a branch-and-bound algorithm, which com-
putes error-bounded estimations. The use of MIA significantly
contributes to the overall algorithm efficiency. It guarantees the
absence of false alarms due to the fault-detection scheme itself.
If there are false alarms, they indicate either that the interval
model does not represent the system adequately or that the
interval measurements do not represent the true values of the
variables adequately.

This method has been implemented in SQualTrack and has
been applied to several real processes within the European
project CHEM. SQualTrack can be used either off- or online.
This paper describes some of these applications.

SQualTrack can also be used for fault isolation. The most
classical diagnosis technique consists in using several ARRs
and fault signatures. SQualTrack can be used to evaluate these
ARRs by simultaneously running several instances of SQual-
Track, one per ARR. The binary vector defined by the fault-
detection results is the observed fault signature of the system
(set of symptoms) to be compared with the theoretical fault
signature matrix (in which each cell represents if a given fault
has an effect or not over a given ARR) [24].

More advanced techniques for fault diagnosis use other in-
formation, apart from the binary one, such as the sign of the
symptom, the order of the symptom appearance, or the size of
the residual [25]–[27]. SQualTrack provides all this information
so it can be used in combination with these techniques. This use
of SQualTrack is a research topic for the future.
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