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Abstract— Considering the difficulty in the insulin dosage
selection and the problem of hyper- and hypoglycaemia episodes
in type 1 diabetes, dosage-aid systems appear as tremendously
helpful for these patients. A model-based approach to this
problem must unavoidably consider uncertainty sources such
as the large intra-patient variability and food intake. This
work addresses the prediction of glycaemia for a given insulin
therapy face to parametric and input uncertainty, by means
of modal interval analysis. As result, a band containing all
possible glucose excursions suffered by the patient for the given
uncertainty is obtained. From it, a safer prediction of possible
hyper- and hypoglycaemia episodes can be calculated.

I. INTRODUCTION

Diabetes mellitus is a metabolic disease that is accom-
panied by elevated plasma glucose levels comprising all
forms of acute or chronic hyperglycaemia. This is so due
to the lack of insulin secretion by the β-cells in the islets of
Langerhans in the pancreas (type 1 diabetes) or a reduction
in its efficiency to promote transport of glucose into the cells
(type 2 diabetes).

Since the Diabetes Control and Complications Trial [1],
euglycaemia has been established as the control objective for
patients with type 1 diabetes, except if some contraindica-
tion exists. However, there still lacks a universal, efficient
and safe system able to normalize the glucose levels of
patients. The intensive insulin therapy required to achieve the
glucose control objectives, based on the injection of basal
and bolus insulin to “emulate” its physiological secretion,
has as counter-action an increase in the risk of severe
hypoglycaemia with all their consequences.

Although several rules do exist for the calculus of the
bolus insulin dose, and even these ones have been lately
incorporated for automatic calculus in some insulin pumps,
trial-and error adjustments of the therapy must be carried out.
Considering the difficulty in the insulin dosage selection and
the problem of hyper- and hypoglycaemia episodes, dosage-
aid systems appear as tremendously helpful for patients with
type 1 diabetes.
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Such a system must rely on accurate enough predictions of
glycaemia. However, there exists a large intra-individual and
inter-individual variability in the patients’ behavior. Other
important source of uncertainty is the food intake (grams of
carbohydrates) since it is difficult to have a precise estimation
from a mixed meal.

This makes necessary the development of prediction tools
able to consider different sources of uncertainty (input,
parameters, initial state). In this work, modal interval analysis
has been applied for the plasma glucose prediction face to
uncertain food intake and patient parameters such as insulin
hepatic and peripheral sensitivity. As result, upper and lower
envelopes of all the possible glucose excursions suffered by
the patient, as predicted by the model, are obtained. This
prediction can be used by patients to evaluate the result of
different insulin therapy decisions, and evaluate the risk of
hypoglycaemia and hyperglycaemia within the framework of
a dosage-aid system.

II. GLUCORREGULATORY MODEL

Simulation of an insulin therapy involves modelling sub-
cutaneous insulin absorption, carbohydrates digestion and
absorption, insulin pharmacokinetics and pharmacodynamics
(PK/PD), and glucose metabolism. The relationship among
these processes is shown in Figure 1.

Fig. 1. Model overview.

In this work, the models presented in [8], for subcutaneous
insulin absorption, and [5], for the rest of the components of
the model, have been combined to represent the glucorregu-
latory model. In both cases, experimental validation results
have been reported in the literature.

Subcutaneous insulin absorption. Given and insulin
therapy, i.e. a set of basal and bolus insulin doses and
injection times, this model calculates how the injected in-
sulin appears in blood (exogenous insulin flow). The model
in [8] has been selected since it comprehends long- and
intermediate-acting insulin preparations, used as basal in-
sulin, as well as rapidly- and short-acting (regular) insulin,
used as bolus insulin. The reader is referred to [8] for a
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detailed description of this model. As result, the exogenous
insulin flow, Iex(t) = Ibolus

ex (t) + Ibasal
ex (t) is obtained.

Carbohydrates digestion and absorption. This model
describes the carbohydrates catabolism to monosaccharide
(mostly glucose) taking place during meal digestion, as well
as intestinal absorption. The model considered here is that
described in [5], where the glucose absorption rate UG is
represented by

UG(t) =
DGAGt exp(−t/tmax,G)

t2max,G

(1)

being DG the amount of carbohydrates ingested, AG is car-
bohydrate bioavailability and tmax,G is the time-of-maximum
appearance of glucose in plasma.

Insulin PK/PD and glucose metabolism. Insulin phar-
macokinetics, either basal or bolus, is considered of first-
order. Plasma insulin concentration, I(t), is thus described
as

dI(t)
dt

=
Iex(t)

VI
− keI(t) (2)

where Iex(t) is the exogenous insulin absorption rate above-
described, ke is the fractional elimination rate and VI is the
insulin distribution volume.

Plasma insulin concentration is considered to affect on
glucose transport from plasma to the tissues, hepatic glucose
production and peripheral glucose disposal [5]. These actions
are modelled as first-order processes:

dx1

dt
= −ka1x1(t) + kb1I(t)

dx2

dt
= −ka2x2(t) + kb2I(t)

dx3

dt
= −ka3x3(t) + kb3I(t) (3)

where x1 represents the effects of insulin on glucose distri-
bution/transport, x2 represents the effect on glucose disposal
and x3 the effect on endogenous glucose production; kai,
i = 1, . . . , 3 are deactivation rate constants and kbi, i =
1, . . . , 3 activation rate constants. It will be considered here
an alternative parameterization where kb1

ka1
= SIT , kb2

ka2
=

SID and kb3
ka3

= SIE .
Finally, glucose metabolism is represented as the two-

compartment system [5]

dQ1(t)
dt

= −F c
01(t) − x1(t)Q1(t) + k12Q2(t) −

−FR(t) + UG(t) + EGP0(1 − x3(t))
dQ2(t)

dt
= x1(t)Q1(t) − (k12 + x2(t))Q2(t)

G(t) =
Q1(t)
VG

where Q1 and Q2 represent the masses of glucose in the
accessible and non-accessible compartments, k12 represents
the transfer rate constant from the non-accessible to the ac-
cessible compartment, VG represent the distribution volume
of the accessible compartment, G is the glucose concentra-
tion and EGP0 represents endogenous glucose production

extrapolated to the zero insulin concentration. F c
01 is the

total non-insulin-dependent glucose disposal, and FR is the
renal glucose clearance above the glucose threshold of 9
mmolL−1. Contrary to [5], these ones are modelled by the
functions:

F c
01(t) =

f01

9
(G(t) − 4.5 −

√
(G(t) − 4.5)2 ) + f01

FR(t) =
0.003VG

2
(G(t) − 9 +

√
(G(t) − 9)2 )

Table I lists the model parameters used for the different
components of the model, taken from [4], [5], patient n=2.

TABLE I

PARAMETERS OF THE GLUCORREGULATORY MODEL

Symbol Quantity Value Unit

AG Carbohydrate (CHO)
bioavailability

0.8 unitless

tmax,G Time-to-maximum of
CHO absorption

40 min

VI Insulin distribution
volum

0.12 L/Kg

ke Insulin elimination
from plasma

0.138 1/min

ka1 Deactivation rate 0.0157 (12)* 1/min
ka2 Deactivation rate 0.0231 (27) 1/min
ka3 Deactivation rate 0.0143 (6) 1/min
SIT Insulin sensitivity of

distribution/transport
18.7×10−4

(11)
min−1 per mUL−1

SID Insulin sensitivity of
disposal

6.1 × 10−4

(8)
min−1 per mUL−1

SIE Insulin sensitivity of
EGP

379 × 10−4

(2)
mUL−1

k12 Transfer rate 0.0871 (8) 1/min
f01 Non-insulin-

dependent glucose
flux

0.0075 (2) mmol /(kg min)

VG Glucose distribution
volume

0.13 (1) L/kg

EGP0 EGP extrapoled
to zero insulin
concentration

0.0143 (2) mmol /(kg min)

*Accuracy of a parameter estimate expressed as a fractional standard deviation (%).

III. INTERVAL SIMULATION

The simulation of a model with particular real values
of the parameters, starting from any initial state, yields
trajectories across time of the output variables. When the
quantities involved in the simulation take values inside
intervals of variation, the set of trajectories determine a plane
band bounded by two envelopes. At each time step of the
simulation, the envelopes, i.e. the possible maximum and
minimum values of the variable, have to be determined. This
is a range computation problem. The function whose range
has to be determined is defined by the interval model of the
system and the parameter space is determined by the interval
values of the parameters, the input and the initial state. The
simulation of an interval model provides intervals (ranges)
which can be estimates of the envelopes. A way to compute
these estimates is by means of interval arithmetic.

Interval arithmetic [7], [6] considers the whole range of
possible instances represented by an interval model. The
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computations of the natural extension of a real function is
done by substituting real numbers by intervals and real oper-
ations by their interval extensions. An important property is
monotonic inclusion: given f , a real function, and fR(X)
its natural extension to interval X , then x ∈ X implies
f(x) ∈ fR(X).

In consequence, the natural extension is very useful to
compute the range of a function because it guarantees on the
result. Unfortunately, it does not provide the exact estimate
in a general case. This comes from the multi-incidence
problem: interval arithmetic considers each instance of a
variable in the syntax tree of a function as being independent
of each other, leading to an overestimation of the actual
range.

In this paper, the interval model is studied using Modal
Interval Analysis (MIA) [2], allowing to compute a tight
(sometimes exact) enclosure of the envelope that includes
all the possible behaviors of the system.

Using modal intervals, each interval function to be eval-
uated is automatically analyzed and put, if possible, in its
optimal form (the expression is rewritten a such a way that
the exact range is obtained). Then, the Modal Interval Library
IvalDB computes the exact range. In case optimality cannot
be reached, the f∗ algorithm [3] is launched. This algorithm
takes benefit of many optimality and coercion theorems from
Modal Interval Theory to compute tight approximations of
the range by using branch-and-bound techniques.

A. Carbohydrates digestion and absorption

The glucose absorption model presents uncertainties be-
cause the patients generally do not know the exact amount
and composition of their meals, which they have to estimate.
In addition, the absorption time depends on the patient and
the composition of the meal, and therefore it is also an
approximation.

It will be thus considered that DG = [DG, DG], AG =
[AG, AG] and tmax,G = [tmax,G, tmax,G] in (1). Then, the
corresponding absorption interval model is

[UG(t), UG(t)] =

=
t ∗ [DG, DG] ∗ [AG, AG] ∗ exp(−t/[tmax,G, tmax,G])

[tmax,G, tmax,G]2

where ∗ denotes the interval product and exp(·) and (·)2 are
the interval counterparts of the corresponding real functions.
As in this equation, tmax,G appears twice (it is multi-
incident) and (1) do not verify the monotonicity conditions
to obtain an optimal computation by means of optimality
theorems of MIA, an optimal computation of the range of
the glucose absorption rate, [UG(t), UG(t)], is not possible.
Then, the f∗ algorithm must be used to obtain tight upper
and lower envelopes of UG.

B. Insulin pharmacokinetics and pharmacodynamics

The insulin pharmacokinetics model (2) is easy to compute
as the only parameter that can be considered as interval is
ke. In this case, the computations of I(t) are straightforward

using IvalDB. Insulin pharmacodynamics (3) is a more com-
plex interval model, as uncertainty is in many parameters.

In case only insulin sensitivity parameters are considered
as intervals, SIT = [SIT , SIT ], SID = [SID, SID] and
SIE = [SIE , SIE ], then the discrete interval model

X1(t + 1) = X1(t) ∗ (1 − t ∗ ka1) + t ∗ SIT ∗ ka1 ∗ I(t)
X2(t + 1) = X2(t) ∗ (1 − t ∗ ka2) + t ∗ SID ∗ ka2 ∗ I(t)
X3(t + 1) = X3(t) ∗ (1 − t ∗ ka3) + t ∗ SIE ∗ ka3 ∗ I(t)

is optimal because the insulin sensibilities appear only once
in each equation. As result of the interval computation, the
states X1, X2, and X3 will be interval states.

In case uncertainty is also considered in the deactivation
parameters, Kai = [kai, kai], i = 1, . . . , 3, the interval
model (3) is not optimal. Upper and lower bound for Xi

are obtained using the f∗ algorithm.

C. Glucose subsystem.

The output of the carbohydrates digestion and absorption
subsystem, UG, as well as the computed states from the
insulin subsystem, Xi, will be interval arguments of the
glucose subsystem. So, even in the case uncertainty in the
parameters of the glucose subsystem is not considered, it
becomes an interval model and interval methods should be
used to compute its evolution.

Additional parameters of the glucose system that have
been considered as intervals are EGP0, f01, and k12. In the
general case, it is not possible to get exact computations and
the f∗ algorithm should be always used. Exact computations
are obtained for Q2 using IvalDB, while f∗ algorithm is
needed to compute Q1

Q1(t + 1) = −F c
01(t) ∗ t + Q1(t) ∗ (1 − t ∗ X1(t)) +

+t ∗ (k12 ∗ Q2(t) − FR(t) + UG(t) +
+EGP0 ∗ (1 − X3(t)))

Q2(t + 1) = Q2(t) ∗ (1 − t ∗ (k12 + X2(t))) +
+t ∗ X1(t) ∗ Q1(t)

G(t) =
Q1(t)
VG

D. Initial states.

To run the interval simulation of the whole system, initial
states and inputs should be given. In this work, three days
has been simulated for the given therapy. Starting from a real
initial state, it will be considered that at the beginning of the
third day the interval values of the states do represent the set
of possible initial states the patient may have.

IV. RESULTS

To show the feasibility of the interval approach, a virtual
patient with nominal parameters as described in previous
sections has been considered. For this patient, the following
typical one day routine has been implemented:

• Food intake: 50 gr CHO at 6:40; 17 gr CHO at 10:00;
137 gr CHO at 12:20 and 100 gr CHO at 19:30
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• Basal dosage (Protaphane c©): 8IU at 6:20 and 7 IU at
19:10

• Bolus (Actrapid c©): 5IU at 6:20; 9IU at 12:15 and 6 IU
at 19:20

Different scenarios have been considered:
• Scenario 1: 10% variation in the carbohydrates digestion

and absorption model parameters (DG, AG and tmax,G).
• Scenario 2:

– 2a) 10% variation in the insulin PK/PD parameters
(SID and SIE);

– 2b) Scenario 2a with 20% variation in the insulin
PK/PD parameters;

– 2c) Scenario 2a with 8IU instead of 9IU at 12:15.
• Scenario 3: 10% variation in both, carbohydrates di-

gestion and absorption model parameters and insulin
PK/PD parameters.

Figures 2 to 4 show upper and lower bands of the plasma
glucose for a 24 hours period (third simulated day).
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Fig. 2. Envelopes obtained for 10% variation in DG, AG and tmax,G.
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Fig. 3. Envelopes obtained for Scenarios 2a (solid line); 2b (dotted line)
and 2c (dashed line).

As it may be observed, consideration of uncertainty reveals
the chance of suffering a severe hypoglycemia around 5
p.m. as well as two hyperglycaemias around 2 p.m. and
9 p.m. Hypoglycaemia risk can be reduced significantly by
decreasing in 1 IU the bolus dose at 12:15 without affecting
too much the hyperglycaemias.

V. CONCLUSIONS AND FUTURE WORKS

Modal interval analysis has successfully been applied to
the prediction of glucose excursions in patients with type 1
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Fig. 4. Envelopes obtained for 10% variation in DG, AG, tmax,G, SID

and SIE .

diabetes face to uncertain information. Uncertain parameters
such as hepatic and peripheral insulin sensitivities as well as
food intake have been considered for the prediction of the
effects of a given insulin therapy on glycaemia. As result, a
band containing all possible glucose excursions suffered by
the patient for the given uncertainty is obtained.

By considering intra-patient variability and uncertainty
in the food intake, a safer prediction of possible hyper-
and hypoglycaemia episodes induced by the tested insulin
therapy can be calculated, leading to a reduction in the
number of false-negatives.

Currently, the methods here developed are being integrated
in a model-based decision-aid system for the suggestion of
bolus insulin doses and injection time which minimize the
risk of postprandial hyper- and hypoglycaemia in patients
with type 1 diabetes.
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