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Abstract— A visual SLAM system has been implemented and
optimised for real-time deployment on an AUV equipped with
calibrated stereo cameras. The system incorporates a novel
approach to landmark description in which landmarks are
local submaps that consist of a cloud of 3D points and their
associated SIFT/SURF descriptors. Landmarks are also sparsely
distributed which simplifies and accelerates data association and
map updates. In addition to landmark-based localisation the
system utilises visual odometry to estimate the pose of the vehicle
in 6 degrees of freedom by identifying temporal matches between
consecutive local submaps and computing the motion. Both the
extended Kalman filter and unscented Kalman filter have been
considered for filtering the observations. The output of the filter
is also smoothed using the Rauch-Tung-Striebel (RTS) method
to obtain a better alignment of the sequence of local submaps
and to deliver a large-scale 3D acquisition of the surveyed area.
Synthetic experiments have been performed using a simulation
environment in which ray tracing is used to generate synthetic
images for the stereo system.

I. INTRODUCTION

Simultaneous localisation and mapping (SLAM) is an ap-
proach to localisation in which the vehicle uses relative obser-
vations of environment landmarks to incrementally construct
an environment map and simultaneously localise itself within
this map. Embedding this joint mapping and localisation
approach in a probabilistic framework it is observed that as
more observations are made the correlation between estimated
landmark positions increases. Consequently, in time the rela-
tive position of landmarks will be known with high accuracy,
and the localisation uncertainty of the vehicle relative to map
will be bounded by the map quality and sensor accuracy. This
approach to localisation is necessary in many environments
including underground and underwater as satellite-based GPS
is unavailable due to attenuation of the signals.

Almost any type of sensor can be incorporated into the
SLAM framework but vision-based systems are rapidly in-
creasing in popularity as they are passive, cheap, light-weight
and have a long range, high resolution, low power require-
ments, excellent object recognition capabilities and can also
provide motion estimates. However, until recently the strong
attenuation and scattering of light underwater has limited the
use of video and underwater vehicles have primarily utilised
acoustic technologies to sense their environment. Generally,
a Doppler Velocity Log (DVL) is used in conjunction with
an Inertial Navigation Unit (INU) to estimate the velocity

of the vehicle with respect to the seabed, Side Scan Sonar
(SSS) is used to acquire images of the environment and
acoustic cameras are used for monitoring. The most substantial
drawback of acoustic technologies is their cost, although their
size, weight and power consumption cannot be neglected.
Video cameras are significantly cheaper and provide high-
resolution images that are ideal for scientific exploration
and offshore structures inspection. Consequently, underwa-
ter vehicles have been developed that are able to acquire
video images from close range. These vehicles have excelled
in applications including docking, inspection and generating
maps of flat-terrain by aligning hundreds of images using
the photo-mosaicing technique. However, photo-mosaicing is
unsuitable for mapping environments of interest such as coral
reefs, hydrothermal vents, archaeologic sites and man-made
structures as they have significant 3D relief which results in
misalignments and artefacts that deteriorate the mapping [1].

Simultaneous localisation and mapping has been extensively
researched as a solution to this problem for land-based vehicles
and excellent results have been obtained both indoors and
outdoors. In the case of vision-based SLAM, most approaches
use a dense distribution of landmarks, each described by a
single 2D image feature. In an underwater scenario images
are generally corrupted by a more significant level of noise
and distortion, features can be sparsely distributed, and appear-
ance alone is often not discriminant. Therefore, a successful
underwater vision-based SLAM system must employ much
more robust features so that data association is possible in
these harsh conditions, and also take into account the likely
sparseness of maps. Unsurprisingly, only a few papers have
tackled vision-based SLAM underwater. Eustice et. al. [2]
proposed a system based on the Information filter with mea-
surements provided by inertial sensors and monocular video.
Mahon et. al. [3] proposed a system based on the extended
Kalman filter with measurements provided by a pencil beam
scanning sonar and monocular video. Finally, Saez et. al. [4]
proposed an offline system based on entropy minimisation with
measurements provided by a dense 3D stereo-vision system.

In this paper we propose a solution to generate 3D maps
underwater using an AUV equipped with only stereo cameras.
The solution is based on the extended and unscented Kalman
filters and incorporates a novel approach to landmark descrip-
tion, data association and motion estimation. The performance
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of the system has been evaluated in synthetic environments and
the results suggest the approach is particularly well suited to
applications in tempered and tropical waters where visibility
is less restricted.

II. PROPOSED SOLUTION

A. Image pre-processing

Identifying landmarks underwater is complicated by the
highly dynamic lighting conditions, decreasing visibility with
depth and turbidity, and image artifacts such as aquatic snow.
Therefore, the video images are pre-processed to minimise the
influence these effects have on the 3D reconstruction and data
association. Firstly, a Homomorphic filter is used to normalise
the brightness across the greyscale image and compensate
for non uniform lighting patterns. Following this Contrast-
Limited Adaptive Histogram Equalization (CLAHE) is applied
to small regions of the image to enhance the contrast. A
further bilinear interpolation is performed to remove artificially
induced boundaries between regions. Finally, an Adaptive
Noise-Removal Filtering is carried out to remove the noise
produced by the equalization especially in those areas with
small variance (constant brightness). The resulting images are
brighter, better contrasted and normalised. This facilitates the
comparison of two images acquired at different times and
viewpoints, enabling the matching of image features. Applying
this process the number of features detected in the images is
increased by approximately ten times and features are much
better distributed in the image. In order to extract metrics from
the two images both cameras were calibrated to obtain the
intrinsic matrices KL and KR and the relative transformation
RTL = [RRL

RtL], where RRL and RtL are the rotation
and translation of camera L wrt camera R respectively. Lens
distortion is removed and both images are rectified.

B. Landmark Characterisation

Based on several surveys of feature descriptors [5], [6]
we choose to extract a mixture of SIFT and SURF fea-
tures from each pair of synchronised, pre-processed images
to obtain a dynamic trade-off between quantity, robustness
and computational complexity. These features are invariant to
image translation, scaling and rotation, and are not sensitive to
changes in illumination, affine/perspective distortion, addition
of noise, clutter and occlusion, which makes them ideal
for wide-baseline stereo matching. Both algorithms construct
a scale-space, Hessian for SURF and Gaussian for SIFT,
locate maxima (keypoints) within this scale space and then
generate a feature descriptor for each keypoint. On average
the algorithm required 104ms to construct a 6 octave Gaussian
scale-space and extract the maxima, compared to 31ms for
the equivalent Hessian scale space. Moreover, on average
each SIFT descriptor was generated in 1.9ms compared to
1.5ms for each SURF descriptor. Therefore, SURF is con-
siderably faster, although SURF also tends to return a lower
number of keypoints. Once features have been extracted from
each image their putative correspondences are identified by
computing the sum of squared differences (SSD) between

each pair of descriptors and applying gated nearest neighbour
matching. The time required for this matching is negligible,
however, these matches tend to include outliers. Because
the stereo system is calibrated the fundamental matrix, F
which describes the relative camera pose can be computed by
F = K−T

R
RRL T K−1

L where T is the skew matrix of the
translation vector RtL. The fundamental matrix defines the bi-
linear constraint mT

RFmL = 0 between the 2D homogenous
coordinates of corresponding image points mR and mL. In
words, this constraint enables us to map any point in one
camera to a corresponding line (epipolar line) in the opposite
camera which represents all possible locations at which the
same ray could be projected taking into account all possible
scene depths. Therefore, for each point we can compute the
deviation of its correspondence from the relevant epipolar line
and eliminate the majority of outliers by applying a simple
threshold. Note that it is preferable to be strict at this point and
remove some correct matches rather than accept false matches
as these will deteriorate the 3D reconstruction. Finally, we
compute the disparity between the remaining 2D points and
remove those whose disparity is larger than 3σ, where σ is the
standard deviation of the disparity distribution. This process
permits the removal of further outliers, since outliers generally
have large disparity discrepancies.

Once the set of correct correspondences has been obtained
their 3D structure can be determined using a linear triangu-
lation. Firstly the points are converted to metric coordinates
m̂L = K−1

L mL and m̂R = K−1
R mR. Following this we

compute matrix Ai for every correspondence i as follows:

Ai =


0 −1 ŷLi 0
−1 0 x̂Li 0

(−R2 + ŷRiR3)− ty + ŷRitz
(−R1 + x̂RiR3)− tx + x̂Ritz

 (1)

where RRL = (R1 R2 R3)T and RtL = (tx, ty, tz)T . Finally,
the singular value decomposition of matrix Ai is computed so
that Ai = UiDiV

T
i . The 3D point Mi before normalisation

and wrt camera L corresponds to the fourth column of Vi [7].
Finally, we remove isolated 3D points since they introduce
large residues in the re-observations of landmarks. The whole
process permits the acquisition of a local 3D surface of the
imaged seabed measured wrt the current vehicle position.

These 3D points and their corresponding 2D points and
feature descriptors are then stored together as a local submap.
During this step the 3D points are transformed to the coordi-
nate system of the vehicle using a fixed transformation so that
each local submap can contain features observed from different
sensors all referenced to a single coordinate system. In this
implementation we represent landmarks as a single, complete
local submap and use the centre of gravity of the cloud of 3D
points as an anchor point in the global map. Therefore, each
landmark has an arbitrary shape (non-geometric landmarks)
and combines many robust SIFT or SURF features, which
results in extremely distinctive and very robust landmark
descriptions. To the best of our knowledge no existing SLAM
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implementation utilises a similar approach, and almost all
employ significantly less descriptive features such as edges,
contours or individual geometric descriptors.

C. Data Association

Low overlap imagery is common for AUVs due to the
fact that vehicle speeds are moderate, video frame rates are
usually low, and attenuation, scattering and limited illumina-
tion restrict visibility and dictate that the vehicle must stay
relatively close to the seabed which reduces the effective
field of view for each image. Taking this into account and
also the fact that landmarks are represented by large sparsely
distributed submaps, it is reasonable to assume that usually
only one landmark will be visible at any point in time. As a
result the current approach to data association simply involves
identifying the maximum likelihood match between the current
observation and the set of map landmarks based on both the
3D points and 2D descriptors.

Firstly, the 2D descriptors of the current observation are
compared to the set of map landmarks that are estimated to
be in the vicinity of the vehicle. The vicinity is determined as
a function of the camera field of view (range and aperture),
and the uncertainty of the vehicle position and landmark
positions. The 2D descriptor matching also utilises the gated
nearest neighbour algorithm based on the SSD and generally
produces outliers due to the changes in viewpoint and indis-
tinct descriptors associated with surfaces such as sand, mud
and rock. Consequently, the epipolar constraint is applied to
remove outliers in the same manner as described previously.
However, in this case the fundamental matrix is unknown
and depends on the rotation and translation relative to the
first observation of the landmark. Therefore, the algorithm
attempts to robustly estimate the fundamental matrix using
the normalised 8-point algorithm and least median squares
(LMedS) method [8]. When the LMedS estimation completes
the set of inliers according to the epipolar constraint is known
and the algorithm registers the corresponding 3D points using
the method proposed by Mian et. al. [9] to recover the relative
transformation. Consider two 3× n matrices M and S which
contain the corresponding 3D points and their associated
gravity centers m̂ and ŝ. The method computes M̂ and Ŝ by
subtracting m̂ and ŝ from every point in M and S respectively,
which shifts the center of gravity to the origin. Following this
K = ŜM̂T /n is computed and a singular value decomposition
is performed to obtain K = UAV T and from this the rotation
matrix R1 = V UT . If det(R1) > 0 the desired rotation matrix
R = R1, otherwise:

R = V

 1 0 0
0 1 0
0 0 det(V UT )

 UT (2)

The translation vector t is t = m̂ − Rŝ. Using this rotation
and translation the stored landmark gravity center can be
transformed into the current vehicle frame. The compatibility
of the landmark and observation can also be evaluated based

on the least mean squared (LMS) registration error in addition
to the number of inliers.

D. Visual Odometry

The data association algorithm described previously in-
volves a registration of the set of observed 3D points with
a map landmark, which provides an estimate of the relative
rotation and translation between the first and current ob-
servation of the landmark. Note that for small motions the
rotation and translation estimate obtained will be quite noisy
as we are estimating unconstrained 6DOF motion. However,
by recording the estimated position and pose of the vehicle
when the landmark is created we have demonstrated that it is
possible to perform fairly robust inter-frame motion estimation
with almost no additional computational burden. Due to the
fact that at least 8 correspondences are required for the
fundamental matrix estimation, continuous visual odometry
that is independent of the Kalman filter state is not always
attained. This limitation arises from the fact that when an
insufficient number of features are matched it is not possible
to recover the motion during this period. Consequently, while
this motion estimation approach can significantly reduce the
error in the estimation of the vehicle location and pose due
to its high accuracy, estimates are overconfident due to the
inherited error after the non-observation period.

E. Video Velocity Log

The motion of the vehicle relative to the scene is also
estimated by analysing the spatial differences between related
pixels in consecutive video frames. Consider a three dimen-
sional point in the scene P = [x, y, z], the velocity V of a
relative motion between P and the camera is defined as:

V = −T − ωP (3)

where T is the translational component and ω is the rotational
component of the motion. The motion field v is defined as:

v = f
ZV − VzP

Z2
(4)

where f is the focal length of the camera. From these two
equations we can compute the components of the motion field:

vx =
Tzx− Txf

Z
− ωyf + ωzy +

ωxxy

f
− ωyx2

f
(5)

vy =
Tzy − Tyf

Z
+ ωxf − ωzx−

ωyxy

f
− ωxy2

f
(6)

We remove the dependence on the rotational component by
compensating for rotation using measurements from other
sensors and hence only estimate the translational component.
For considering the case when Tz 6= 0 we introduce the point
p0 = [x0, y0]T with x0 = fTx

Tz
and y0 = fTy

Tz
. In this case we

have:
vx = (x− x0)

Tz

Z
(7)

vy = (y − y0)
Tz

Z
(8)
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Therefore, the motion vectors radiate from a common origin
p0 when the motion is a pure translation in the z direction.
Note that when Tz = 0 the equations become:

vx = −f
Tx

Z
(9)

vy = −f
Ty

Z
(10)

Therefore, in this case all the motion vectors are parallel. The
motion vectors for a large number of pixels (optical flow) are
computed using the pyramidal implementation of the Lucas-
Kanade feature tracker, which is available in the OpenCV-
library. This method uses the spatial intensity gradient and
a Newton-Raphson iteration to find matches between feature
points. For the available frame rate and speed of the AUV
the shift between consecutive images is small which means
the algorithm is computationally efficient. Once the motion
vectors are obtained they are converted to metrics using the
intrinsic parameters of the camera estimated from the camera
calibration. External estimates of the angular velocities ωx,
ωy and ωz are then used to compensate for the rotational
components of Equations 5 and 6 and the rate of change of
the depth Tz is provided by an altitude sensor. Finally, the
translation velocity of each vector is computed by solving for
Tx and Ty and the median is used for the final estimation.

III. EKF-SLAM AND UKF-SLAM
The SLAM algorithm, models, and customised filter func-

tionality were implemented within the well defined hierarchi-
cal framework of the Bayes++ open source library as this
enables rapid switching between fundamentally similar state
based filters such as the extended Kalman filter and unscented
Kalman filter. In addition, the Bayes++ library performs auto-
matic checks to detect numerical failures and ill conditioned
matrices and also maintains the symmetry of matrices which
ensures the algorithm does not continue to trust state estimates
that are undoubtedly incorrect. A Kalman filter is essentially
composed of three steps: Prediction, Observation and Update.
In this implementation the filter inputs are the visual odometry
estimates and landmark re-observations provided by the stereo
vision system. The full filter state xk has the following form:

x̂k =
[

v̂ m̂0 . . . m̂N−1x

]T

where v̂ =
[
Ex EΘ

]
and Ex and EΘ are 3 element vectors

containing an estimate of the absolute position (x,y,z) and
orientation (roll,pitch,yaw) of the vehicle with respect to Earth
{E}. Once the ith landmark is observed the state is augmented
with the 3 element vector mi containing the absolute position
of the landmark with respect to Earth. Note that for simplicity
the Earth frame is located at the initial position of the vehicle.
Accordingly, the full EKF covariance Pk has the form:

Pk =
[

Pvv Pvm

PT
vm Pmm

]
(11)

Due to the structure, size and distribution of landmarks, the
number of landmarks contained in the filter is significantly

lower than typical SLAM implementations and provides con-
siderable reductions in prediction and observation update times
for comparatively sized maps.

A. Prediction Update

The predictions updates are based on a non-linear constant
velocity prediction model, which provides a generic, platform
independent solution. Only the vehicle position and orientation
are affected by the prediction model so the update can be
performed in linear time using the augmented state approach.
In this case, the prediction update of the state is trivial and
can be expressed as:

x̂k|k−1 =
[

fv(v̂k−1|k−1, uk)
m̂

]
(12)

where v̂k−1|k−1 is the current estimate of the 6 vehicle states
contained within x̂k−1|k−1, the function fv(v̂k−1|k−1, uk)
is the augmented state function which models the motion
kinematics and uk = 0 as there are no control inputs. The
augmented state version of the covariance prediction has linear
complexity in the number of landmarks and has the form:

Pk|k−1 =
[
∇fvPvv∇fT

v + Qk ∇fvPvm

PT
vm∇fT

v Pmm

]
(13)

where ∇fv is the Jacobian (linear approximation) of fv()
evaluated at the estimate v̂k−1|k−1. The constant velocity
parameter and the zero mean uncorrelated Gaussian process
noises wk which affect the motion observation and have
covariance Qk are fixed, determined offline and stored in
a configuration file. Note that these process noises define
the reaction of the filter to sudden changes of the ground
truth orientation/velocity of the vehicle and require tuning for
different vehicles and scenarios.

B. Observation Updates

The observation updates are based on a model which
represents the geometry of the measurements obtained by the
stereo-vision system at the real pose of the vehicle, together
with the predicted measurements provided by the current filter
state. To simplify the process and utilise a common model for
all sensor measurements, all observations are pre-transformed
to a common vehicle frame {V } using fixed transformations.
We consider that all landmarks are stationary and due to our
data association process only a single landmark is observed
at a given instant in time. The stereo camera noise has been
experimentally demonstrated to be approximately Gaussian in
the range of interest, which justifies the use of a Kalman filter.

Visual odometry observations are already relative to the
Earth frame (Earth frame is fixed at the initial position of
the vehicle) and consequently only a simple linear observation
model is required for odometry updates. However, care must
be taken to ensure that the roll, pitch and yaw angles remain
in the range [−π π] and that the innovation is computed
correctly around the ±π boundary. Landmark observations are
considerably more complicated due to the fact that landmarks
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are observed in the camera frame but are stored in the
Earth frame. From the current estimate of the six vehicle
states v̂k|k−1 we compute the transformations ETV and V TE

which describe the estimated transformation from the vehicle
to world, and world to vehicle respectively. The predicted
observation ẑi,k for a single landmark mi is then given by:

ẑi,k = h(v̂k|k−1, m̂i,k−1) = V TE

[
m̂i,k−1

1

]
(14)

The difference between the modelled and predicted mea-
surements zk − ẑi,k is known as the innovation vector, and
is the basis of minimisation. Accordingly, the estimate of
the state vector and its corresponding covariance matrix are
updated by computing:

x̂k|k = x̂k|k−1 + Wk[zk − ẑi,k] (15)

Pk|k = Pk|k−1 −WkSkWT
k (16)

where the innovation covariance matrix Sk is given by:

Sk = ∇hPk|k−1∇hT + Rk (17)

and the optimal Kalman gain Wk is given by:

Wk = Pk|k−1∇hT S−1
k (18)

where ∇h is the Jacobian (linear approximation) of h()
evaluated at the estimate x̂k|k−1. The additive, zero mean
uncorrelated Gaussian observation noises ok which affect the
observations and have covariance Rk are constant and are
specified in a configuration file.

When a new landmark is observed the state and covariance
is expanded using the augmented state approach, which re-
quires the implementation of an inverse landmark observation
model. In this model the estimated position of a new landmark
mj is given by a function g(v̂k|k, zk) which is essentially the
inverse of h(v̂k|k−1, m̂i,k−1):

m̂j,k = g(v̂k|k, zk) = ETV

[
zk

1

]
(19)

and the addition of the landmark to the state vector is trivial:

x̂k|k =
[

v̂k|k m̂ g(v̂k|k, zk)
]T

(20)

Computing the Jacobian ∇g of g() at v̂k|k the new landmark
is added to the covariance matrix by computing:

Pk|k =


Pxx PxΘ Pxm Pxx∇gT

PT
xΘ PΘΘ PΘm PxΘ∇gT

PT
xm PT

Θm Pmm Pxm∇gT

∇gPxx ∇gPT
xΘ ∇gPT

xm ∇gPxx∇gT + Rk


(21)

where Pxx and PΘΘ are the 3x3 sub matrices of the covariance
matrix which correspond to the x, y, z position, and roll,
pitch, yaw angles respectively, and Rk is the covariance of the
additive, zero mean uncorrelated Gaussian observation noises.

IV. RAUCH-TUNG-STRIEBEL SMOOTHER

The Kalman filter uses all measurements up to the current
iteration to estimate the state at the current iteration. In
contrast, the Rauch-Tung-Striebel (RTS) smoother is a post-
processing filter which applies a forward and backward pass
filter to the complete set of measurements. The output of the
RTS has been shown to improve the accuracy of the stochastic
map solution as well as providing smoother trajectories [10].
The RTS smoother was designed for fixed size state vectors
and consequently the RTS fixed-interval smoother was adapted
to work with the growing stochastic map by fixing the size of
the state vector to the size of the stochastic map on the last
iteration. Therefore, once the Kalman filter has finished, we
set k equal to the last iteration (n − 1) and work backwards
until we reach the starting point at k = 1. In each iteration
the predicted smoother state is computed by:

ˆ̃xk+1|k = f(x̂k|k, uk) (22)

and the predicted covariance matrix by:

ˆ̃Pk+1|k = ∇fPk|k∇fT + Qk (23)

Then, the smoother gain matrix J(k) is computed by:

Jk = Pk|k∇fT ˆ̃P−1
k+1|k (24)

and, finally the filtered state and covariance are given by:

x̃k|k = x̂k|k + Jk

(
x̃k+1|k+1 − ˆ̃xk+1|k

)
(25)

and
P̃k|k = Pk|k + Jk

(
P̃k+1|k+1 − ˆ̃Pk+1|k

)
JT

k (26)

where the smoother is initialised so that x̃(n|n) = x̂(n|n) and
P̃ (n|n) = P (n|n). Therefore, the final output of the system
is a aligned sequence of partial reconstructions that together
represent a large-scale 3D acquisition of the surveyed area.

V. EXPERIMENTAL RESULTS

In the experiment we have simulated a virtual 3D scenario
of an underwater environment composed by a 3D surface
which can be either introduced by an user or imported. The
user can select a real underwater (or aerial) image which
is stuck on the 3D surface conforming a virtual 3D scene
but yet with a real texture. Note that the texture is deformed
according to the shape of the surface. Then the user is asked to
introduce the trajectory of the vehicle in 6 degrees of freedom.
The algorithm interpolates the introduced trajectory generating
the navigation data. At every vehicle position, the two virtual
cameras render both images by means of ray tracing simulating
image acquisition. Zero-mean Gaussian noise (σ = 0.01rad.)
has been added to vehicle orientation. Velocity may suffer
error propagation and hence a biassed Gaussian noise (µ =
0.05m/s, σ = 0.08m/s) has been considered.

The experiment shows how the SLAM approach is able
to readjust vehicle trajectory even in the presence of large
bias (see Fig. 1). Fig. 2 shows the interpolated and resampled
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Fig. 1. SLAM Results (from left to right and up to left). Fig.a: Ground
truth 3D surface and vehicle trajectory in 6-DOF; Fig.b: Discrepancy of the
estimated vehicle trajectory with respect to ground truth. The figure shows
how the discrepancy is reduced while any landmark is re-observed during the
journey; Fig.c: the filtered trajectory (red) compared to ground truth (green)
obtained by the EKF-SLAM algorithm (trajectory jumps are not due to filter
inconsistency but to the fact that we are detecting few landmarks to simplify
data association); and Fig.d: the smoothed trajectory (red) compared to ground
truth (green) obtained by the RTS.

surface obtained by the EFK-SLAM algorithm and by the post-
processing of the RTS smoother, demonstrating qualitatively
and quantitatively that our approach obtains an accurate align-
ment of the 3D surfaces even in the presence of large noises
and biases.

VI. CONCLUSIONS

This paper has presented a novel EKF-SLAM system which
should be capable of operating in real-time on a slow moving
AUV equipped with a calibrated stereo-vision system. The
map constructed by the system contains a set of landmark
submaps which are described by a set of observed 3D points
and their associated SIFT/SURF descriptors. Consequently, the
final global map represents a large-scale 3D reconstruction of
the seabed consisting of hundreds of aligned partial recon-
structions. By utilising such distinctive landmark descriptions
the system is also able to employ maximum likelihood data
association based on the 3D points and 2D descriptors with
little risk of incorrectly associating landmarks. The set of
consecutive 3D point correspondences are also registered to
measure their compatibility and determine the relative rotation
and translation between the first and current observation of
the landmark. These relative motion estimates are then used
to perform landmark-based visual odometry. To the best of
our knowledge, this paper is the first that proposes EKF-
SLAM to deal with the 3D reconstruction of the seabed
using only vision. Analysis of the computational cost of the
algorithm for the virtual scenarios suggests real-time operation
should be achievable, however, it would be wise to optimise
the feature extraction and incorporate submapping to bound
computation time for larger scale maps. Currently we are

Fig. 2. Alignment of the 1398 local maps corresponding to 93,275 3D points
(from left to right and top to bottom): The surface aligned by the EKF-SLAM:
3D view (Fig.a) and Top view (Fig.b); The discrepancy to ground truth shown
in Fig. 1 is µ = 4.28m. and σ = 2.80m. The surface aligned by the RTS-
smoother: 3D view (Fig.c) and Top view (Fig.d). The discrepancy to ground
truth shown in Fig. 1 is µ = 0.84m. and σ = 0.78m.

improving the visual odometry by introducing overlapping
landmarks and active navigation techniques and investigating
how this influences the robustness of the data association and
map sparseness.
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