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Abstract- This article presents recent WMR (wheeled mobile
robot) navigation experiences using local perception knowledge
provided by monocular and odometer systems. A local narrow
perception horizon is used to plan safety trajectories towards the
objective. Therefore, monocular data are proposed as a way to
obtain real time local information by building two dimensional
occupancy grids through a time integration of the frames. The
path planning is accomplished by using attraction potential
fields, while the trajectory tracking is performed by using model
predictive control techniques. The results are faced to indoor
situations by using the lab available platform consisting in a
differential driven mobile robot.
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I. INTRODUCTION

Autonomous robot navigation without GPS is an
interesting research topic faced by navigators [1]. Therefore,
indoor WMR (wheeled mobile robot) navigation using
computer vision techniques are normally based on
environment description. The data analysis can be considered
as a map when it is provided enough information to reach
robot localizations. Normally, navigation based on maps
includes geometric environmental information. The first
research was developed using 2D environment models
consisting of a free or occupied grid [2]. The virtual potential
field idea improved performance by using objective attraction
and obstacle repulsion forces [3]. Therefore, WMR
navigation strategies should be planned so that obstacle
collisions are avoided during navigation towards the
objective. The meaningful navigation idea consists of
providing feasible and expected visual landmarks, thereby
allowing the robot's map position to be calculated using
information about recognized landmarks. Localization of the
WMR using machine vision system computation is done by
using sensor information from where landmark detection is
correlated with the corresponding map position. Then, the
robot position and orientation are estimated using the
previous data. WMR localization can be considered as
absolute or incremental [4]. Incremental navigation methods
consider the initial robot coordinates as known; machine
vision system information is used as a way to improve the
robot's positioning. Otherwise, absolute navigation methods

would not know the initial robot coordinates. When absolute
localization is used, the navigation system should build a
correspondence between the WMR's perception information
and the database. Estimations based on sensor uncertainty
probability allow better robot localization. The ambiguities
can be solved by using statistical methods [5]. The
incremental localization can use three different techniques:
localization based on geometrical representation, localization
based on topological space representation, or localization
based on landmark detection [6],[7] and [8]. The different
presented methods differ in the map representation however
all share the need of landmark search and detection that allow
computing the robot localization. Furthermore, other research
work studying natural agents has presented a new robot
navigation paradigm. Hence, corridor planning for natural
agents has been presented as a new and useful robot control
and planning framework using low level obstacle avoidance
and simple control [9]. Butler has developed a system in
which innate local navigation animal abilities are combined
with a very simple imposed path-like structure to produce a
desired overall motion. The developed research showed that
local animal abilities such as control and perception can be
combined with a very simple imposed path-like structure to
produce the desired overall motion. Hence, path-planning in
partially unknown environments should be short enough to
allow local reactive behaviours; consequently long trajectory
planning should be flexible in order to deal with short term
uncertainties while the global task is accomplished. This
article explores this challenge as a navigation strategy for the
available WMR platform PRIM that consists in a differential
driven one with a free rotating wheel [10]. Hence, in this
work, local animal abilities are performed by using a simple
perception system, which consists of a monocular camera and
an odometer system. Moreover, the field of view is
constrained to the WMR neighbourhood; thus only few
seconds of trajectory planning can be done. The simple
corridor structure is faced up by using local attraction
potential fields; where MPC (model predictive control)
techniques are used to perform accurate trajectory tracking.
Therefore, an example in indoor scenarios and the path
followed is reported.
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and pose knowledge, and assuming projective perspective. The
Figure 1 shows the robot configuration studied in this work.
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Fig. 1 Robot Configuration

The angles~ f3 and qJ are related to the vertical and
horizontal field of view, and the tilt camera pose, respectively.
The vertical coordinate of the camera is represented by H.

Fig. 2. Free of obstacles local on-robot map. The green cells depict
the available floor coordinates. The red coordinates show the non
available cells due to the mobile robot physical dimensions.
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The Ki and ~ are parameters used to cover the image pixel
discrete space. Thus, Rand C represent the image resolution
through the total number of rows and columns. It should be
noted that for each row position, which corresponds to scene
coordinates Yj, there exist C column coordinates xi,j' The above
equations provide the available floor coordinates when no
obstacle is detected, see Figure 2.

The available information provided by the camera is
considered as a local horizon where the trajectory is planned.
Hence, a local map with free obstacle coordinates is provided.
It is noted that low resolution scene grids are used in order to
speed up the computing process. It is also suggested to speed
up the computing process based on a previously calculated
LUT, (look up table), with the scene floor coordinates
corresponding to each pixel.

II. LOCAL PERCEPTION HORIZON

A. Introduction

Nowadays camera systems have a set of advantages when
are compared with other range systems. Hence, they allow a
richer scene description while the prices are decreasing and
computing power is increased. The computer vision techniques
applied to WMR have solved the problem of obstacle detection
by using different methods as stereo vision, optical flow or
DFF (depth from focus). Stereo vision systems seem to provide
the easiest cues to infer scene depth [11]. The optical flow
techniques used in WMR result in several applications as i.e.
structure knowledge, obstacle avoidance, or visual servoing
[12]. The DFF methods are also suitable for WMR. For
example, three different focused images were used, with almost
the same scene, acquired with three different cameras [13]. In
this work, it is supposed that available obstacle positions are
provided by using computer vision systems.

In this context, the allowed navigation control signals
should achieve the obstacle avoidance politics as well as the
final desired coordinates. Scientific community has developed
several studies in this field. Based on the dynamic window
approach with available robot speeds, the reactive avoidance
collisions, safety stop and goal can be achieved using the
dynamic constraints of WMR [14]. Some approaches on
mobile robots propose the use of potential fields, which satisfy
the stability in a Lyapunov sense, in a short prediction horizon
[15]. This paper proposes the use of the visual information as a
dynamic window where the collision avoidance and safety stop
should be planned. Thus, local visual data are used to plan
safety trajectories that approach the WMR to the desired
configuration that acts as an attraction potential field.

The use of sensor information as a useful source to build
2D environment models consists of a free or occupied grid was
proposed in [2]. The occupancy grid knowledge has been used
for static indoor mapping with a 2D grid [16]. In this work it is
proposed the use of the local narrow visual information
available from the camera as a local map that has enough
information to achieve an objective configuration. The
occupancy grid can be obtained in real time by using computer
vision methods and odometer data. Hence, once the local
information is obtained, it is proposed an algorithm that
computes the visual local desired coordinates as well as the
trajectory to be reached. The research developed assumes
indoor environments as well as flat floor constraints. However,
it can be also applied in outdoor environments. This section
firstly presents the local map relationships with the camera
configuration and poses. Then, the navigation strategy is
presented, which uses the monocular perception data as a
horizon of perception where the objective configuration acts as
an attraction potential field. Finally, some physical and
dynamical constraints are analyzed as well as local minimal
failures.

B. The scene perception

The local visual data provided by the camera are used to
plan a feasible trajectory and to avoid the obstacle collision.
The scene available coordinates appear as an image, where
each pixel coordinates correspond to a 3D scene coordinates.
Hence, scene coordinates can be computed using camera setup
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C. Attraction potential fields and local cell selection

The local visual data provided by the camera are used to
plan a feasible trajectory. The occupancy grid is obtained as a
binary image, in which the obstacle blob areas and maximal
size coordinates are computed. Using these data, the local
visual desired coordinates are computed by considering the
maximum geometric size of the closer obstacle and the
objective coordinates that act as an attraction potential field. In
this context the WP (wide-path) and the closer obstacle
significant vertex are considered. When the selected position,
due to the physical size of WMR, falls outside the available
field of view, a turning action towards the direction of the
desired coordinates is performed by commanding an available
cell within the closer Y column. Otherwise, when no obstacle
is found, the procedure consists in selecting the optimal
approaching cell.

It is relevant to be aware of the narrow field of view
considered in this research. In this sense, a new advancing
trajectory will produce a new environment description. In the
human case it can be understood as an "enlighten my steps
strategy" (as i.e. by using a small torch when we are exploring
an unfamiliar dark place). It should be pointed the importance
of selecting effective potential fields. The problem is
formulated as finding the optimal cell that brings the WMR
close to the desired coordinates (Xd' y<tJ by searching for the
closest local desired coordinates (X'd' y,<tJ within the available
local coordinates (xij' y). In this sense, perception is
considered as a local receding horizon in which the trajectory
is planned. The local desired cell is obtained by minimizing a
cost function J that should act as a potential field corridor.
Thus, the cost function is minimized by attracting the robot to
the desired objective through the free available local cell
coordinates. Due to the narrow field of perception, the robot
should orient towards the goal. Hence, the Otg value depicts the
maximal angle that can be attained within the available local
grid. Thus, first, the orientation error towards the goal should
be minimized:

If ata~YYxI ) =e > ex d 19
tl

Once the WMR is oriented towards the goal, when no
obstacles are met, the Euclidean distance is proposed as
approaching potential field:

If atan(Y;(J = lid ~lilg

] 2 (i 1 .i) = min ((Xi.i - Xd r+ (y j - YdrY /2
( 4)
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When obstacles are met, the left and right closer obstacle
vertex coordinates, increased by the robot WP (wide-path), are
tested within expression (4). Thus, the vertex that produces
minimal cost function is selected. The desired local coordinates

are considered as final points, until not any new optimal local
desired coordinates are provided.

D. Local minimalfailures and constraits

The local minimal failures will be produced when a
convergence criterion is not satisfied. Thus, the local visual
information cannot provide with closer optimal desired
coordinates, because obstacles are blocking the trajectory to the
goal. In these situations, obstacle contour tracking may be
proposed. Hence, local objectives for contour tracking are used,
instead of the goal coordinates, as the source for obtaining a
path until the feasible goal trajectories are found. The Figure 3
shows an example with local minimal failures. It is seen that at
A, the optimal trajectory is a straight line between A and E.
However, an obstacle is met at B, and local minimal failure is
produced at B. When this is produced, no trajectory can
approach to the desired goal, (xcJ, y tiJ. Then, obstacle contour
tracking is proposed between Band C. Once C is attained,
local minimization along coordinates Yj is found and the
trajectory between C and D is planned. From D to E local
minimums are reached until the final goal is achieved. It should
be noted that once B is reached, the left or right obstacle
contour are possible. However, the right direction will bring the
robot to an increasing Yj distance. The robot follows the desired
goals except when the situation of obstacle contour tracking is
produced, and then local objectives are just the contour
following points that can be commanded as attraction potential
fields. Hence, it is proposed the use of effective attraction
fields as well as feasible maps and landmarks to provide local
objective coordinates that can be used for guiding the WMR to
reach the final goal coordinates.

Fig. 3. Example with local minimalfailures

The physical robot size reduces the horizon of available
coordinates by the path width of WMR, as it is shown in Figure
2. Some important WMR dynamic aspects, as reactive and stop
distances, are also considered. The dynamic reactive distance
should be enough to plan safety trajectories; it is related to the
robot dynamics and the processing time for each frame. Thus,
by using the three models corresponding to the WMR PRIM,
three different dynamic reactive distances are found. The Table
I shows these concepts, when it is supposed mobile obstacles
until O.5m/s and a perception speed of4 frames each second.
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Table 1. Reactive criterion and minimal allowable distances

Safety Obstacle Robot Minimal
Model stop reactive displacement allowable

disL distances distances
Low velocities 0.085m 0.125m 0.038m 0.248m

(0.15 mls)
Medium 0.178m O.125m 0.075m 0.378m

Velocities
(0.3 m/s)

High Velocities 0.310m O.125m 0.1 13m 0.548m
(0.45 mls)

Hence, the allowed visual trajectory distance will set the speed
that can be reached. The next section introduces the MPC
techniques used that guarantee a convergence to the visual
local desired coordinates until is not commanded the next goal
position.

III. TRAJECTORY TRACKING AND LOCAL MODEL
PREDICTIVE CONTROL

A. Introduction

The minimization of path tracking error is considered as a
challenging subject in mobile robotics. The main objective of
highly precise motion tracking consists in minimizing the
error between the robot and the desired path. Real-time
implementation of MPC (model predictive control) in the
mobile robotics has been developed using global vision
sensing [17]. In [18], MPC based optimal control was studied,
which is useful for cases when nonlinear mobile robots are
used under several constraints. In general, real-time
implementation is possible when a short prediction horizon is
used. By using MPC, the idea of receding horizon can deal
with the local sensor information. MPC is based on
minimizing a cost function related to the objectives for
generating the optimal inputs. The LMPC (local model
predictive control) is proposed to use the available visual data
in the navigation strategies for the goal achievement [19]. It is
defined the cost function as follows:

[X(k +nlk)- x/dYP[X(k +nlk)- x/d]

J(n,m)= mi~ + f[X(k +ilk)-X/dX/OY Q[X(k+ilk)-X/dX/O] (5)
{ v=m-l}

U(k+ilk J j=O i=1

+ IUT(k + ilk)RU(k + ilk)
j=O

The first term of (5) refers to reaching the local desired
coordinates, ~d=(Xd,Yd, ()~. The second one is related to the
distance between the predicted robot positions and the

trajectory segment X1dXlO given by a straight line between

the initial robot coordinates XIO=(XIO,YIO, ~o) from where the
local perception frame was acquired, and the desired local
position Xtd=(Xld,Yld, ~~ belonging to the local perception. The
last one is related to the input signals denoted as U. The
parameters P, Q and R are weighting parameters that express
the importance of each term.
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B. LMPC algorithms ans simulation results

By using the ideas previously introduced, it is presented
here the LMPC algorithms that can be run in the following
steps:

• Read the actual position.
• Minimize the cost function and obtain a series of

optimal input signals.
• Choose the first obtained optimal input signal as the

command signal.
• Go back to the first step in the next sampling period.

Minimizing the cost function is a convex optimization
problem [20]; it is caused by the trigonometric functions used
in the odometer system. The use of interior point methods can
solve the above problem. Among many algorithms of
optimization, the gradient descent algorithm was implemented
in this work. To obtain the optimal solution, some constraints
on the inputs are considered:

• The signal increment is kept fixed within the control
horizon.

• The input signals remain constant during the remaining
interval of time.

The above considerations can reduce the computation
time and result in the smooth behaviour of along the
prediction horizon [21]. Thus, the set of available inputs is
reduced to one value. In order to reduce the search for an
optimal signal value that minimizes the LMPC cost function,
the possible input sets are considered as a bi-dimensional
array. The array is decomposed into four zones. The search
consists in analyzing the central points of each zone. It is
considered only the region that offers the better optimization,
where the algorithm is repeated for each sub-zone, until no
sub-interval can be found. Once the algorithm was proposed,
several simulations were carried out to verify its effectiveness,
and then to make improvement. Thus, when only the desired
coordinates are considered and the motors have different gain,
the inputs can minimize the cost function by shifting the robot
position. This problem can be easily solved by considering a
straight-line trajectory from the current point of the robot to
the final desired point. Thus, the trajectory should be included
in the LMPC cost function. The prediction horizons between
0.5s and Is were proposed and the computation time for each
LMPC step was set to less than 100ms, running in an
embedded PC of 700MHz. The computing time for the
complete search of an optimal input is between 13 and 14 ms
when m=3 and n=5. Where m is the control horizon, and n is
the prediction horizon. In the case of using gradient descent
method, the computing time is set to less than Ims.

C. LMPC experimental results

The trajectory tracking performance is improved by the
adequate choice of a cost function that is derived from (5) and
consists of a quadratic function containing some of the
following four parameters to be minimized:
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• The squared Euclidean approaching distance between the
local desired coordinates, provided by the on-robot
perception system, and the actual robot position.

• The squared trajectory deviation distance between the
actual robot coordinate and a straight line that goes from
the robot coordinates, when the local frame perception was
acquired, and the local desired coordinates belonging to
the referred frame ofperception.

• The third parameter refers to changes allowed to the input
signal.

• The last parameter consists in the squared orientation
difference that is used only when the desired orientation is
greater than a selected threshold. In this case, other
parameters of the cost function are not used.

One consideration that should be taken into account is the
different distance magnitudes. In general, the approaching
distance could be more than one meter. However, the
deviation distance has its magnitude normally in the order of
em, which becomes effective only when the robot is
approaching to the final desired point. Hence, when it is tried
to reduce further the deviation distance to less than 1em, it is
proposed to increase the weight value for the deviation
distance in the cost function. The trajectory tracking accuracy
is an important aspect to be considered. In this context, the
odometer system performance was analyzed by measuring the
accuracy of the system. It was done by commanding long
trajectories along lab corridors. After calibrating the odometer,
the results showed that a commanded trajectory of 22m
provided averaged final distance errors of less than 0.5m, and
angular orientation errors of less than 5°. Hence in this
research, it is analyzed local trajectories of less than 1.5m
accordingly with the narrow visual perception provided. Thus,
the odometer system errors can be neglected when local
traj ectories are considered. Therefore, the odometer system is
locally used to compute LMPC trajectory tracking errors. The
tested trajectories are obtained from the available set of local
map coordinates as shown in Figure 2.

The LMPC results are analyzed when different trajectories
tracking are commanded, as it is depicted in Figure 4. Denote
E1 as the average final error, E2 the maximal average tracking
error, E3 the average tracking error and E4 the standard
deviation of average tracking error. Table 2 presents the
statistics concerning about the error obtained in cm testing the
trajectories shown in Figure 4. It can be seen that the accuracy
of trajectory tracking, when straight line is commanded, has a
deviation error of 0.54cm. However, when a turning action is
performed, the error in straight line tracking is bigger as
consequence of the robot dynamics when it is moving
forward. Hence, the forward movement consists in usually a
steering action. Figure 4 gives a clue about what is happening.
Thus, the major turning angle will produce the major deviation
distance. Usually, it is very difficult to reduce the approaching
distance to zero, due to the control difficulty of dead zone for
the WMR and to the fact that the final target is considered in
the present work as being reached by the robot when the
Euclidean approaching distance is less than 5cm.
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Fig. 4. Different trajectories

Table 2. Point to point trajectory tracking statistics

From (0,0) to 4.4cm 0.9cm 0.54cm 0.068cm
(0,130)

From (0,0) to 3.8cm 3.9cm 2.3cm 0.82cm
(34,90)

From (0,0) to 4.5cm 5.3cm 3.9cm 1.96cm
(25,40)

Other interesting results consist in testing the LMPC
performance when the trajectory is composed of a set of points
to be tracked. Due to the narrow perception system used only
continuous movement in advancing sense is implemented. The
trajectory tracking strategy with continuous movement, for a
set of points (0,0), (25,50), (25,100), (0,150) and (0,200), is
represented in Figure 5. In this case, the reported larger
trajectory deviation is due to the WMR's mechanical
dynamics.

10 15
Tune(.)

... i.H;·~f:~
o 5 10 15

1'ime(.)
_ Right

Left

Fig. 5. A specific trajectory

IV. NAVIGATION RESULTS

In this section is tested the previously introduced navigation
strategy. It should be noted that due to some false positive
detection problems, reported in [22], the robot is positioned
from local desired point to local desired point and then the
frame is acquired. Therefore, frames containing false positives
can be discarded and the path planning strategy can be
successfully tested. Figure 6 reports an experiment, which
consists in changing the WMR configuration from (0, 0) to (0,
650 cm) in a 3m wide corridor in which multiple obstacles
have been placed to test the reactive behavior and flexibility.
The experimental results show that local reactive navigation
can accomplish with a more global desired goal by using the
presented strategy.
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in some cases stopping the robot is not a bad strategy as i.e.
when the interaction human-WMR is pursued.
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Fig. 6. Trajectory in a 3m wide corridor

Therefore, LMPC and local monocular perception are used to
control and to obtain approaching trajectories towards the
desired configuration by the mean of artificial attraction
potential fields. Finally, the problem of wheel slippage should
be mentioned. However, in this work the final error reported,
by using the Euclidean distance, was less than 25cm in the
experiment shown. In this sense, the methodology presented
allows autonomous WMR navigation with a certain degree of
freedom, where the use of landmarks can minimize dead
reckoning problems. However, considering the results
obtained a complete environment map can be avoided. Of
course, we did more experiments in indoor environments that
we don't place in the paper for lack of available space.

V. CONCLUSIONS

The research reported have provided remarkable successes
even considering the perception limitations explored in this
work. Potential field attraction points have shown their
effectiveness dealing with reactive behaviours in structured
indoor environments. Trajectory tracking performance using
LMPC techniques has provided good results, with final
position local errors less than 5cm. Moreover, contractive
constraints have assured a convergence criterion towards the
different commanded points. Hence, satisfactory results can be
obtained with trajectories of nearly 20m or even longer.
Therefore, a new navigation paradigm has been explored in
which local navigation in partially unknown environments can
be performed with a certain degree of freedom, when effective
attraction potential fields are commanded.

The future work is mainly addressed to improve the
present sensorial system. Therefore research will be focused
on the use of a tessellated probabilistic representation within a
local occupancy grid framework by using the floor model and
time integration image sequences. Thus, it is expected to
remove some false obstacles detected. Moreover, the use of
obstacle models can be considered as a clue in order to find
natural landmarks that can provide a way to minimize dead
reckoning drawbacks and provide feasible WMR localizations
along larger scenarios where a map description is necessary.
Local minimal failures caused usually by dynamic moving
objects (as human movement) should be also analyzed,
especially when effective potential fields are selected. Hence,
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