
Proposal of a Parallel Architecture for a Motion Detection Algorithm

Viorela Ila, Rafael Garcia
Computer Vision and Robotics Group

Institute of Informatics and Applications
C/ Lluis Santalo S/N, 17071, Girona, Spain

{viorela,rafa}@eia.udg.es

Francois Charot
Institute de Recherche en Informatique

et en Systemes Aleatoires (IRISA)
Avenue du Gral. Leclerc,35042 Rennes, France

francois.charot@irisa.fr

Abstract

This paper proposes a parallel architecture for the esti-
mation of motion of an underwater robot. It is well known
that image processing requires a huge amount of computa-
tion, mainly at low-level processing where the algorithms
are dealing with a great number of data. In a motion es-
timation algorithm, correspondences between two images
has to be solved at the low level. In the underwater imag-
ing, normalised correlation can be a solution in presence
of non-uniform illumination. Due to its regular process-
ing scheme, parallel implementation of the correspondence
problem can be an adequate approach to reduce the compu-
tation time. Taking into consideration the complexity of the
normalised correlation criteria, a new approach using par-
allel organisation of every processor from the architecture
is proposed.

1. Introduction

A down-looking camera mounted on an underwater ve-
hicle provides rich information for its navigation system [5].
Correct robot navigation requires real-time performance of
tasks such as motion detection. Image processing tasks as-
sociated to motion detection algorithms use mathematical
techniques dominated by convolution, correlation, filtering
and least squares among others. Considering the size of the
image (768×576, 416×288 pixels), these tasks have a high
computational cost. Therefore, real-time execution of them
(25 frames per second) requires fast-processing systems. In
case of general purpose computers, achieving this perfor-
mance is a great challenge. The highest performance con-
cerning time of execution can be achieved by programming
the application at gate level. However algorithms in com-
puter vision are quite complicated and require high flexibil-
ity in the implementation. Reconfigurable computing com-
bines the advantages of both approaches: implementation
at a very low level and high flexibility and rapid prototyp-

ing [4].
Our work is focused on low level image processing algo-

rithms for motion estimation were a large amount of data
has to be processed. This paper explores the possibility
of hardware implementation of tasks such as interest points
detection and matching procedure. Correlation algorithms
have important properties like regularity and modularity.
Thus, they can be divided into computational blocks which
can be processed in parallel. There is an extensive literature
concerning array architectures applied to image processing,
especially in Block Matching Algorithms (BMA) for mo-
tion estimation [2, 8, 10]. Komarek et al. [8] described spe-
cific solutions for array architectures of full search BMA.
They propose four different alternatives for one and two di-
mensional array architectures. In the early nineties, various
VLSI designs were proposed for decreasing BMA compu-
tation time [1, 2]. While in full search BMA the image is
divided into blocks and the algorithm looks for matches of
every block in a frame, our approach is looking for cor-
respondences of interest points. These are scene features
which can be reliably found when the camera moves from
one location to another and lighting conditions change. On
the other hand, a more complex error measurement criteria
like normalised correlation [13] is applied.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the motion estimation algorithm and defines
real-time constraints. The detailed architecture will be de-
scribed in section 3. Finally, section 4 outlines conclusions
and future work.

2. Analysis of the motion estimation algorithm
for its parallelization

The goal of this algorithm is to estimate the motion of
an underwater robot. Correspondences between the cur-
rent image acquired by the camera and a reference image
have to be found in order to estimate the motion. This often
means detecting features in one image and matching them

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 11:56:55 UTC from IEEE Xplore. Restrictions apply.

in another. The selection of features may depend on the ap-
plication, although points are commonly used because they
can be easily extracted and are quite robust to noise [7].
However, matching those features in the second image is
normally a complex task. Underwater images are difficult
to process due to the medium transmission properties and
non-uniform illumination [6]. These aspects can provoke
undesired bad correspondences (outliers) which can intro-
duce errors in the motion estimation process. Some authors
have proposed a normalised correlation to reduce the influ-
ence of non-uniform illumination [13].

2.1. Corner detector

In our algorithm motion is estimated by computing the
planar homography between the current image Ic and a
previous reference image Ir. The first step in solving the
correspondence problem is the detection of a set of well-
contrasted points in the current image. Corner detector al-
gorithms consist of computing the image gradient compo-
nents Ix and Iy by convolving the current image with the
Prewitt masks. Benedetti et al. [2, 3] proposed a modified
version of the Tomasi-Kanade [11] algorithm which reduces
the computation and avoids floating-point. In this algorithm
a G matrix is considered.

G =

N∑
k=1

(Ik
x)2

N∑
k=1

(Ik
xIk

y)2

N∑
k=1

(Ik
xIk

y)2
N∑

k=1

(Ik
y)2

 =

(
a b
b c

)

(1)
The algorithm, first calculates a(i, j), b(i, j) and c(i, j);
then

Pλt
(i, j) = (a − λt)(c − λt) − b2 (2)

is found. Every pixel having:

Pλt
(i, j) > 0 and a(i, j) > λt (3)

is retained, where λt is the imposed lower bound for the
solutions of the equation (2).

The last step of the algorithm discards any pixel which
is not a local maximum of Pλt

(i, j). N interest points are
selected considering the highest values for Pλt

(i, j). In this
approach the complexity is considerably reduced and does
not require any floating point operation.

2.2. Correspondence problem

Once interest points are detected in the current image, we
search for correspondences in the reference image. Quite
often local gray-level correlation is applied to detect match-
ings in the pair of images. A correlation algorithm provides,
for each interest point pc = (xc, yc) of the current image, its

corresponding match pr = (xr, yr) in the reference image.
The correlation score is defined as the covariance between
the grey levels of a region defined by the correlation win-
dow in the current image and the same region defined in
the reference image. The algorithm searches for all can-
didate windows inside the correspondent search window.
A normalised correlation criteria C, which assures the re-
sult is not altered in presence of nonuniform illumination is
showed in equation (4). This criteria was applied to under-
water images [5] where nonuniform illumination is always
present.

C =

α∑
−α

α∑
−α

(Ic(xc+i,yc+j)−Ic(xc,yc))(Ir(xr+i,yr+j)−Ir(xr,yr))

(2α+1)2
√

σ2(Ic)·σ2(Ir)

(4)
where α = (n − 1)/2; n × n is the size of the correlation
window. Ic(xc, yc) and Ir(xr, yr) are the average intensity
and σ2(·) defines the variance of both correlation windows.
The algorithm compares the correlation score of each pixel
within the search window and selects the highest one.

As the amount of interest points increases, the correla-
tion approach becomes very time consuming. For this rea-
son we propose a breaking down of criteria C for its par-
allelization. We can observe that there are five sums to be
computed in equation (4): sum1, sum2, sum3, sum4 and
sum5.

sum1 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j)

sum2 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j)2

sum3 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j) · Ir(xr + i, yr + j)

sum4 =
α∑

i=−α

α∑
j=−α

Ir(xr + i, yr + j)2

sum5 =
α∑

i=−α

α∑
j=−α

Ir(xr + i, yr + j)

(5)
Then, equation (4) becomes:

C =
sum3− 1

(2α+1)2
·sumc·sum5

1
(2α+1)2

·
√

[(2α+1)2·sumr−sum2
c]·[(2α+1)2·sum4−sum2

5]

(6)
This breaking down simplifies the parallel implementation
while each Processing Element (PE) of the architecture ex-
ecutes in parallel the computation of these five sums. Fur-
thermore, the Post Processing Plement (PPE) performs the
remaining computation.

Finding correspondences is the most time consuming
part of our algorithm. Let us consider N interest points de-
tected in the current image. For every interest point, we are
searching for [(2p + 1) − 2α]2 possible correspondences,
where p = (q − 1)/2 and q × q is the search window of
size. Considering the braking down of the correlation cri-

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 11:56:55 UTC from IEEE Xplore. Restrictions apply.

Prewitt

sum sum sum

Comp P t

P > 0

a > t

Max. Sup.

Ix² Ixy Iy²

20 20 20

a b c
24 24 24

a P t

48

w. gen.

++

+ +

+ +

+ +

--

XX X

+

+

+

+

+

+

+

+

w. gen.

image

SPE SPE SPE SPE

N corners

x 8

y 8

P t

48

Prewitt

Sum

D
e

la
y

B
lo

c
k

…

Figure 1. Corner detector Block Diagram. Pre-
witt mask DFG. Summing DFG.

teria in five sums as described in equation (5), two accu-
mulations and three multiplication-accumulations have to
be computed for every pixel from the correlation window.
Gathering these sums by means of correlation criteria, see
equation (6), twelve additional computation steps for every
candidate block are necessary. The complexity of the corre-
spondence problem becomes at frame-rate fr:

Op = [(3∗2+2)∗(2α+1)2+12]∗[(2p+1)−2α]2∗Np∗fr

(7)
For Np = 200, α = 7, p = 14, at a frame-rate of 25 frames
per second we have Op � 2036 GOPS (Giga Operations Per
Second). Our approach tries to reduce this complexity by
means of a parallelization of the correspondence problem.
Real-time feature detection is also achieved.

3. Proposal of a Parallel Architecture

3.1. Corner detector hardware implementation

The current image is read from memory and the goal of
the corner detector is to provide the memory address of N
interest points of the image. The first step in corner detec-
tion is the computation of the image gradient components Ix

and Iy by convolving the current image with a set of 3 × 3
Prewitt masks. Benedetti et al. [3] proposed an implemen-
tation based on two FIFOs and two buffers used to delay
the incoming pixel. The left column of Figure 1 shows the
block diagram corresponding to each step in corner detec-
tion. The Data Flow Graph (DFG) for the image convolu-
tion with the Prewitt masks and summing elements inside
a 3 × 3 window are shown on the right side of Figure 1.
The computation of matrix G implies summing the corre-
spondent values of a = I2

x, b = Ix · Iy and c = I2
y for

every pixel in an m × m window, selected experimentally

to be 3 × 3. The next step consists of computing Pλt
from

equation (2) and rejects the values which do not satisfy the
conditions of equation (3). Non-maximum suppression is
carried out using a 3×3 window. In order to retain N pixels
with the highest value of P , a pipeline of N Sort-Processing
Elements (SPE) is proposed. One SPE compares the input
pixel value with the one stored in its buffer and retains the
bigger one. An external signal can empty the SPEs buffers
at the end of each frame.

The delay introduced by the corner detector is impor-
tant, since we are interested in the memory address of the
N corners instead of their value of cornerness. Every 3 × 3
window generator introduces a latency of two lines and
two pixels. The delay introduced by the computation of
Pλt

is shown in equation 8 and depends on the image size
(Mi×Ni), pixel sampling time (ts) and the number of time-
cycles for the computational blocks from Figure 1: Prewitt
(tP), Sum (tS) and Compute Pλt

(tC).

TPλ
= [3 · (2 · Mi + 3) + Pc + Sc + Cc] · ts (8)

3.2. Parallel implementation of the correspondence
problem

For every interest point we are looking for correspon-
dences in the reference image. When mapping an algorithm
into an array of processors, the problem is to access multi-
ple data to feed all the processing elements (PE) at the same
time. Yang et al. [10, 12] proposed a solution which con-
sists of a local data exchange between PEs. This approach
uses a two memory access for reference image (r1, r2) and
one for current image (c), see Figure 2. Once read from
memory, the data are broadcasted to every PE. Buffers are
used to delay data and multiplexers to switch between data.
For high utilization efficiency of the architecture, the size of
the search window must depend on the size of the correla-
tion window, according to equation p = 2α. The number
of PEs is also determined by the size of the correlation win-
dow and is equal to (2α + 1). A schematic representation
of the specific hardware architecture is shown in Figure 2.
One PE is in charge of the parallel computation of the five
sums defined in equation (5). Two accumulations and three
multiplication-accumulations are executed in parallel (Fig-
ure 3(a)). For a given interest point, the necessary time to
search for the computation of the five sums of equation (5)
is defined by:

Tp = [(2α + 1)2 + 2α] ∗ (2α + 1) ∗ ∆t (9)

where ∆t is the time required for one computational level.
After Tp seconds, the post processing element can compute
the correlation criteria from equation (6). The DFG for this
computation is shown in Figure 3(b). Hardware implemen-
tation of square roots and division operations is crucial for

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 11:56:55 UTC from IEEE Xplore. Restrictions apply.

T
im
in
g
C
o
n
tr
o
l

DFF

DFF

PE

0

PE

1

PE
2 +1

MUX

MUX

MUX

DFF

c

r1

r2

·

·

·

·

·

·

P
P
E

C
o
m
p
a
ra
to
r
M
o
d
u
le

DFF

·
·
·

Figure 2. Schematic representation of PE
based architecture data-flow.

c r

delay delay

sum1 sum2 sum3 sum4 sum5

Acc Acc Acc Acc Acc

× × ×

C

sum1 sum2 sum3 sum4 sum5

--

× ×× × ×

×

-

×

/

delay

sqrt

(2 +1)² (2 +1)² (2 +1)²

(a) (b)

Figure 3. (a) PE Data-Flow Graph. (b) Post PE
Data Flow Graph.

the delay introduced by PPE element. The square root al-
gorithm provides an integer part of the square root end a
reminder. 32 clock cycles are necessaries for this compu-
tation. Considering the high number of bits used for the
radicand representation, a non-restoring square proposed by
Li [9] root method is an optimal selection for reducing the
space on the FPGA. The last step of the algorithm compares
all the error measurements corresponding to every candi-
date match. The result of the algorithm is the coordinates of
the pixel with the highest value for the correlation score.

4. Conclusion and future work

This paper describes a real-time and parallel implemen-
tation of two high-cost computational tasks from a motion
estimation algorithm. We propose a real-time feature detec-
tor which provides N interest points from the current image.
An efficient array of processing elements is in charge of
the computation of the correlation algorithm. Future work
consists of optimal implementation of the post-processing
element. Taking into consideration the evolution of recon-
figurable device’s technology in the last few years this al-
lows to increase the complexity of our design. New pow-
erful devices with characteristics such as a million of logic

gates, memory resources for on-chip storage, fast multipli-
ers, large number of input/output pins, etc., are available on
the market at low prices. The goal of this work is to ad-
vance in developing a system for motion estimation of an
underwater robot.

References

[1] P. Baglietto, M. Maresca, A. Migliaro, and M. Migliardi.
Parallel implementation of the full search block matching
algorithm for motion estimation. In Proceedings of the In-
ternational Conference on Application Specific Array Pro-
cessors, pages 182 –192, 24-26 July 1995.

[2] A. Benedetti and P. Perona. Real-time 2-D feature detection
on a reconfigurable computer. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
pages 586 –593, 23-25 June 1998.

[3] A. Benedetti, A. Prati, and N. Scarabottolo. Image convolu-
tion on FPGAs: the implementation of a multi-FPGA FIFO
structure. In Proceedings on Euromicro Conference 1998.,
pages 123 –130 vol.1, Aug. 1998.

[4] A. DeHon and J. Wawrzynek. Reconfigurable computing:
what, why, and implications for design automation. In De-
sign Automation Conference, pages 610–615, 1999.

[5] R. Garcia, X. Cufı́, and V. Ila. Recovering camera motion in
a sequence of underwater images through mosaicking. In
First Iberian Conference on Pattern Recognition and Im-
age Analysis, Lecture Notes in Computer Science , no. 2652,
pages 255–262, 2003.

[6] R. Garcia, T. Nicosevici, and X. Cufı́. On the way to solve
lighting problems in underwater imaging. In IEEE OCEANS
Conference (OCEANS), pages 1018–1024, Mississipi, 2002.

[7] C. Harris and M. Stephens. A combined corner and edge
detector. In Proceedings of the Fourth Alvey Vision Confer-
ence, pages 147–151, Manchester, 1988.

[8] T. Komarek and P. Pirsch. Array architectures for block
matching algorithms. IEEE Transactions on Circuits and
Systems, 36:1301 –1308, 10 , Oct 1989.

[9] W. Li and W. Chu. A new non-restoring square root algo-
rithm and its vlsi implementations. In 1996 IEEE Interna-
tional Conference on Computer Design: VLSI in Computers
and Processors, pages 538 – 544, 7-9 Oct. 1996.

[10] M.-T. Sun and K.-M. Yang. A flexible VLSI architecture
for full-search block-matching motion-vector estimation. In
Proceedings of the IEEE International Symposium on Cir-
cuits and Systems, pages 179 –182 vol.1, 8-11 May 1989.

[11] C. Tomasi and T. Kanade. Detection and tracking of point
features. Cmu-cs-91-123, Carnegie Mellon University, Apr.
1991.

[12] K.-M. Yang, M.-T. Sun, and L. Wu. A family of VLSI
designs for the motion compensation block-matching algo-
rithm. IEEE Transactions on Circuits and Systems, pages
1317 –1325, Oct. 1989.

[13] Z. Zhang, R. Deriche, O. D. Faugeras, and Q.-T. Luong.
A robust technique for matching two uncalibrated images
through the recovery of the unknown epipolar geometry. Ar-
tificial Intelligence, 78(1-2):87–119, 1995.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 11:56:55 UTC from IEEE Xplore. Restrictions apply.

	footer1:

