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Abstract 

Human body composition is made up of mutually exclusive and exhaustive parts (e.g., 

%truncal fat, %non-truncal fat and %fat-free mass) which are constrained to sum to 

the same total (100%). In statistical analyses, individual parts of body composition 

(e.g., %truncal fat or %fat-free mass) have traditionally been used as proxies for body 

composition, and have been linked with a range of health outcomes. But analysis of 

individual parts omits information about the other parts, which are intrinsically co-

dependent because of the constant sum constraint of 100%. Further, body mass may 

be associated with health outcomes. We describe a statistical approach for body 

composition based on compositional data analysis. The body composition data are 

expressed as logratios to allow relative information about all the compositional parts 

to be explored simultaneously in relation to health outcomes. We describe a recent 

extension to the logratio approach to compositional data analysis which allows 

absolute information about the total of the compositional parts (body mass) to be 

considered alongside relative information about body composition. The statistical 

approach is illustrated by an example that explores the relationships between adults’ 

body composition, body mass and bone strength. 
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1. Introduction: Body composition is a composition!   

 

Body composition and its associations with health are widely researched. Studies 

have linked body composition with a multitude of health-related outcomes, including 
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cardiovascular health,1 inflammation,2 bone strength3 and mortality.4,5 Yet previous 

studies have considered individual parts of body composition as a proxy for overall 

body composition. For example, the part of %body fat has regularly been used as an 

explanatory variable, without including the remaining part of %fat free mass. Some 

studies have divided %body fat into %truncal fat and %non-truncal fat, and have 

regressed these two components against health-related outcomes.6,7 Other divisions of 

%body fat have included %android and %gynoid fat.8 Usually, all of the body 

composition parts cannot be included in the same statistical model. There is good 

reason for this – including all parts (e.g., %truncal fat, %non-truncal fat, %fat-free 

mass) as explanatory variables in the same regression model induces perfect multi-

collinearity and leads to singularity of the variance-covariance matrix and lack of 

convergence of estimators. 

 

Body composition data, as their name implies, are compositional in form. All 

compositional datasets are conceptualised in relative terms (percentages), and made 

up of mutually exclusive and exhaustive parts that add up to a total of 100%. This 

constant sum constraint imposes built-in relationships – if one part is relatively 

decreased, one or more other parts must be relatively increased to maintain the total of 

100%. For this reason, the set of constrained raw percentages are typically not used in 

traditional statistical models but they can be included as a set of logratios. The 

logratio approach was first described by John Aitchison in the 1980s,9 and has since 

developed into a well-defined and established branch of statistics called 

compositional data analysis (CoDA). The application of CoDA within health research 

is in its infancy, and is yet to be explored in the context of body composition data. To 

our best knowledge, only one study (Dumuid et al, 2019) has used the CoDA 

approach to analyse body composition.10 In Dumuid et al, body composition logratios 

were analysed as dependent variables, against 24-h activity composition logratios as 

independent variables. In this paper, we apply CoDA methods to body composition 

data analysed as explanatory variables. Section 2 reviews the logratio approach to 

compositional data. Section 3 considers including the absolute information of a body 

composition, Section 4 is a case study applied to real data.  A concluding Section 5 

discusses the results.  
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2. The logratio approach to body composition analysis 

 

Body mass can be divided into several mutually exclusive and exhaustive parts, as 

directed by the research question. Consider a body composition vector 𝒙 =

[𝑥1, 𝑥2, … , 𝑥𝐷] ∈  ℝ𝐷 with D positive parts (𝑥𝑖) expressed in kg. When these parts 

are expressed as percentages of body mass, the resulting vector is subject to a constant 

sum constraint of 100%. Because of this, the sample space of compositional data is 

represented by a (𝐷 − 1)-dimensional subset of the real space (𝑹𝐷), known as the 𝐷-

part simplex (𝑺𝐷). When the body composition vector 𝒙 is expressed as a set of 

logratios, it is transferred from the constrained simplex space to the unconstrained real 

space.9  This is important because it means traditional statistical techniques not 

suitably applied in the constrained space can be applied in a meaningful way. 

Several types of logratios have been defined. Two types of logratios are suitable for 

use in multiple regression models: isometric logratios (ILRs) and additive logratios 

(ALRs). Both sets of logratios (ILRs and ALRs) carry identical relative information 

and produce identical model-based predictions because they are related by a matrix 

product (proof in supplementary file). The ILRs have the advantage that when they 

are used in multiple regression models, individual beta coefficients can be interpreted. 

However, the practical meaningfulness of the interpretation of the ILR coefficients 

has been questioned.11 The ALRs have the advantage that they are simple to 

construct, but beta coefficients for individual ALRs cannot be interpreted.12 The 

decision to express the body composition vector 𝒙 as ILRs or ALRs will depend on 

whether the research question requires interpretation of individual beta coefficients 

(ILRs) or model-based prediction (ILRs or ALRs). 

 

2.1 Isometric logratios 

The ILR representation of compositional data deals with vectors of coordinates in RD-

1, this matching the dimension of 𝑺𝐷. To express compositional data as ILRs one can 

use the process called sequential binary partitioning (SBP).13 In a SBP the body 

composition vector is sequentially divided into two groups of parts, until only one 

part remains in each group. That is, Step 1 divides the composition into two groups of 
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parts, where one group is coded +1, and the other group is coded –1. The subsequent 

step further divides one of the groups from Step 1 into two groups, again coding the 

parts in one group with +1, and the parts in the other group with –1. Uninvolved parts 

are coded 0. After 𝐷 − 1 steps, the SBP process is finalised. The coding values from 

each step of the SBP process contribute one row in the (𝐷 − 1) × 𝐷 sign matrix, V, as 

below 

𝑉 =  [

𝑓1

𝑓2

⋮
𝑓𝐷−1

]  𝑤ℎ𝑒𝑟𝑒 𝑓𝑘
𝑇 =    [

𝑒𝑘1

𝑒𝑘2

⋮
𝑒𝑘𝐷

]  𝑓𝑜𝑟 𝑘 = 1, … , 𝐷 − 1 𝑎𝑛𝑑 𝑒𝑘𝑗  𝜖{−1,0, +1}, 𝑗 = 1, … , 𝐷.  

Each row of the sign matrix (V) defines the construction of one ILR. As there are 𝐷 −

1 rows in V, there will be 𝐷 − 1 ILRs. The first row corresponds to the first ILR. 

Subsequent rows of V define subsequent ILRs.  

We define 𝑅𝑘 , 𝑆𝑘 & 𝑇𝑘 as three mutually exclusive groups of parts 𝑥𝑗(𝑗=1,…,𝐷) of vector 

𝒙 with the following elements in  𝑓𝑘 

𝑅𝑘 =  {𝑥𝑗| 𝑒𝑘𝑗 = +1}, 𝑗 = 1, … , 𝑟𝑘  , 

𝑆𝑘 =  {𝑥𝑗| 𝑒𝑘𝑗 = – 1}, 𝑗 = 1, … , 𝑠𝑘  , 

and 𝑇𝑘 =  {𝑥𝑗| 𝑒𝑘𝑗 =  0}, 𝑗 = 1, … , 𝑡𝑘  , 

where |𝑅𝑘|=  𝑟𝑘 , |𝑆𝑘| = 𝑠𝑘 , |𝑇𝑘| = 𝑡𝑘 , and 𝑟𝑘 + 𝑠𝑘 + 𝑡𝑘 = 𝐷,for 𝑘 = 1, … , 𝐷 − 1. 

The k-th step of the SBP divides the parts 𝑅𝑘 + 𝑆𝑘 into two groups, one containing 𝑅𝑘 

parts (coded +1), the other containing 𝑆𝑘 parts (coded –1). The geometric means of 

groups of parts are defined as 

𝑥𝑅𝑘
=  (∏ 𝑥𝑗𝑥𝑗𝜖𝑅𝑘

)
1

𝑟𝑘⁄
 and 𝑥𝑆𝑘

=  (∏ 𝑥𝑗𝑥𝑗𝜖𝑆𝑘
)

1
𝑠𝑘⁄

 .  1 

 

The ILRs  𝑧𝑘 (𝑘=1,…,𝐷−1) are constructed as the logratio of 𝑥𝑅𝑘
 to 𝑥𝑆𝑘

, therefore the k-

th ILR is defined as 

𝑧𝑘 =  √
𝑟𝑘⋅𝑠𝑘

𝑟𝑘+𝑠𝑘
 ln (

𝑥𝑅𝑘

𝑥𝑆𝑘

) , 𝑘 = 1, … , 𝐷 − 1 ,      2 
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where √
𝑟𝑘⋅𝑠𝑘

𝑟𝑘+𝑠𝑘
 is a normalising constant, as described in Egozcue et al.13 The ILR 

coordinates, 𝑧𝑘 (𝑘=1,…,𝐷−1), take the same values regardless if the body composition 

vector 𝒙 is expressed in its original units (kg) or in percentages, providing the relative 

information of body composition. 

The ILRs can be thought of as a set of balances, where the groups of parts in the 

numerator are interpreted in relation to the groups of parts in the denominator.13 There 

are many different ways that parts can be grouped together to create ILRs. The 

research question and theoretical knowledge must inform the SBP process and 

formation of ILRs so that estimates are directly interpretable. When the set of ILRs is 

used in statistical models, such as in multiple linear regression models, the beta 

coefficients corresponding to the ILRs reflect the estimated change in outcome when 

the groups (i.e., the geometric mean) of parts in the numerator are increased at the 

expense of the groups (i.e., the geometric mean) of parts in the denominator, whereas 

the other logratios remain constant.14 Relative changes in geometric means of groups 

of parts may not always be relevant to the research question. For example, the 

research may aim to estimate the effect of exchanging one part for one other part 

while keeping the remaining parts constant. Such an aim cannot be addressed by 

interpreting individual ILR coefficients. Instead, model-based predictions from either 

ILRs or ALRs are required.15 

2.2 Additive logratios 

The ALR are a set of logratios a, defined as 

 

𝒂 = [𝑎1, … , 𝑎𝐷−1] =  𝑎𝑙𝑟(𝒙) =  [ln (
𝑥1

𝑥𝐷
) , ln (

𝑥2

𝑥𝐷
) , … , ln (

𝑥𝐷−1

𝑥𝐷
)].        3 

 

It is important to note that the ALR are asymmetric and not isometric, because the 

same part (𝑥𝐷) is in the denominator of all logratios. The ALRs do not retain 

distances and angles in the Aitchison geometry, which imposes some limitations on 

their use in statistical applications.16 In addition, the individual regression parameters 

𝛽1, 𝛽2, … , 𝛽𝐷−1 cannot directly be interpreted as the estimated change in the response 

variable when one ALR is changed independently of the remaining ALRs. This is 

because it is impossible to vary one ALR independent of the remaining ALRs, since 
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the part 𝑥𝐷 is present in all ALRs. Thus, direct interpretation of regression parameters 

is not meaningful. 

2.3 Prediction with logratio regression models 

When using logratio regression models for prediction, the focus is not on interpreting 

individual regression beta coefficients. As relevant to the research question, predicted 

values of a health outcome can be compared across different body compositions. For 

example, predicted bone strength for high %body fat and low %fat-free mass could be 

compared to predicted bone strength for low %body fat and high %fat-free mass. In 

addition, the set of logratio regression parameters can be used to calculate the 

estimated outcome for incrementally differing body compositions across an empirical 

range (i.e., a predictive grid). Interpolation between the predicted points on the grid 

creates a response surface. This is a particularly useful approach for 3-part predictive 

compositions, as the relationship between body composition and an outcome can 

easily be visualised in a 2-dimensional ternary plot. Predictive models are assessed by 

predictive error, i.e. comparing measured outcomes to predicted outcomes in the 

sample data, via cross validation or with separate training and validation datasets. 

 

3. Body composition data analysis: CoDA with a total 

The logratio approach allows inclusion of all the body parts in the same model. This 

is important to comprehensively examine the relationship between body composition 

and health outcomes. However, this approach assumes that body composition is 

purely relative data. In CoDA, absolute values (mass in kg) are irrelevant, as the 

information is relative and the results are the same when the data are expressed in 

percentages. However, it is likely that both relative and absolute information is 

important to health. In particular, body mass varies in the population, and this 

variation may explain some variance in health outcomes. To enable the inclusion of 

both relative and absolute information in the same statistical model, an extension of 

the logratio approach is required. 

 

Recently, a statistical framework for compositional data that extends CoDA in order 

to also consider the absolute information, tCoDA, was introduced by Pawlowsky 

Glahn et al.17 In Coenders et al,14 the authors showed that including an additional term 
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for the sum of the log-transformed vector together with the set of logratios to 

regression models enabled both relative and absolute information to be considered, 

independently of each other. In the case where the body composition vector is 

considered explanatory, the term for absolute information (𝑡𝑖) should be computed as 

the normalised multiplicative total of all 𝐷 absolute values, defined as 

𝑡𝑖 =  
1

√𝐷
ln(𝑥𝑖1𝑥𝑖2 ⋅⋅⋅ 𝑥𝑖𝐷) =

1

√𝐷
(ln(𝑥𝑖1) + ln(𝑥𝑖2) +⋅⋅⋅ +ln (𝑥𝑖𝐷)).             5 

where 𝑥𝑖1, 𝑥𝑖2,⋅⋅⋅, 𝑥𝑖𝐷 are the absolute values (kg) of each body part. In the case of 

body composition, the total term 𝑡𝑖 can be considered as a proxy for the total absolute 

mass of a participant. 

 

3.1 Using tCoDA with isometric logratios 

The tCoDA ILR multiple linear regression model for n observations (𝒙𝑖 , 𝑦𝑖), 𝑖 =

1,2, … , 𝑛, is 

𝑦𝑖 =  𝛽0 + ∑ 𝛽𝑗𝑧𝑖𝑗
𝐷−1
𝑗=1 + 𝛽𝐷𝑡𝑖 + 𝜀𝑖 , 

with intercept 𝛽0, regression parameters 𝛽1, 𝛽2, … , 𝛽𝐷and error 𝜀 ∼ 𝑁(0, 𝜎2), 

independently,14 and 𝑧𝑖𝑗 and 𝑡𝑖 are defined as earlier. 

 

The regression parameters for the individual ILR coordinates can be interpreted as 

estimated change in the outcome y when the respective balance of one group of parts 

to another is changed, while the remaining balances and multiplicative total is kept 

constant. For the remaining balances to be kept constant, the parts in the numerator all 

increase in the same proportion, while the parts in the denominator all decrease in the 

same proportion. To ensure multiplicative total is kept constant, the increases in the 

numerator are compensated for by the decreases in the denominator. The regression 

parameter 𝛽𝐷 indicates the estimated change in the outcome when body composition 

is kept constant but the multiplicative total changes. 

 

3.2 Using CoDA with a total (tCoDA) for prediction 

As in CoDA, the tCoDA multiple linear regression model will predict identical values 

for 𝑦𝑖 regardless of whether ILRs or ALRs are used to represent the relative 

information of the body composition.14  
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For example, considering an ALR tCoDA regression model, for a 3-part predictive 

body composition [truncal fat; non truncal fat; fat free mass] of [6 kg; 18 kg; 36 kg], 

the estimated outcome y would be calculated as 

 

𝑦̇[6;18;36] =  𝛽0 + 𝛽1 ⋅ ln ( 
6

36
) + 𝛽2 ⋅ ln (

18

36
) + 𝛽3 ⋅  

𝟏

√𝟑
ln(6 ⋅ 18 ⋅ 36). 

 

By using 𝑡𝑖 as defined above, the absolute information (multiplicative total of parts, 

i.e., kg) can be varied by the application of a constant, 𝑘, while the relative 

information (the set of logratios) will remain unchanged when 𝑘 is applied: 

 

𝑦̇[6;18;36] =  𝛽0 + 𝛽1 ⋅ ln ( 
6 ⋅ 𝑘′

36 ⋅ 𝑘′
) + 𝛽2 ⋅ ln (

18 ⋅ 𝑘′

36 ⋅ 𝑘′
) + 𝛽3 ⋅

𝟏

√𝟑
ln(6 ⋅ 18 ⋅ 36 ⋅ 𝑘), 

 

where 𝑘′ = (𝑘)1/3 . This enables the association between health and the absolute 

information to be examined, while keeping the relative information (the body 

composition) constant. The regression parameter corresponding to the total term 𝛽3 in 

the above example can be interpreted as the independent effect of 𝑡𝑖. An example of 

when this situation may occur empirically is during certain kinds of sports training 

(e.g., distance swimmers) where both high fat and high muscle are needed. When the 

athlete stops swimming, weight loss could occur without necessarily altering body 

composition.  

 

Conversely, the association between health and changes to the relative information 

(the body composition) can be examined, while keeping the multiplicative total 

amount constant. An example of this situation may be observed during ageing, when 

body mass may remain static while body composition changes (bone and muscle are 

replaced by fat). 

 

While the two situations above may be of interest, it is possible that they are 

uncommon in real life. It may be expected that as people’s body mass varies, so does 

their body composition. Expected changes in body composition for increasing body 

mass could be determined from a separate regression model, and used as new data for 

predictions from the tCoDA model. Higher order terms (e.g., quadratics) and 
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interactions between body composition and multiplicative total could be explored and 

included in the prediction models. 

 

The extended logratio approach for tCoDA is applied to real data in Section 4. 

 

4. Example: The associations between adults’ body composition and bone 

strength  

The example uses data from the Child Health CheckPoint,18 a cross-sectional study 

nested within the Longitudinal Study of Australian Children (LSAC).19 Parents and 

guardians of participating children were invited to be involved in the study. Table 1 

shows that there were much higher participation rates among female 

parents/guardians (mothers) than male (fathers). Data were collected from adult 

participants between February 2015 and March 2016. Ethical approval for the study 

was received from The Royal Children’s Hospital (Melbourne) Human Research 

Ethics Committee (HREC33225) and the Australian Institute of Family Studies Ethics 

Committee (AIFS14-26). Written informed consent was obtained.  

 

4.1 Measures 

This study includes bone strength and body composition data from adult participants 

who were able to attend one of CheckPoint’s mobile ‘Comprehensive’ Assessment 

Centres set up in seven major Australian cities. At these centres, bone strength was 

assessed by two scans of the dominant lower leg (Stratec XCT 2000L pQCT scanner, 

Pforzheim, Germany). The images were processed by Stratec XCT 2000 software 

(Version 6.20C), which calculated various bone strength measures. In this example, 

we quantify bone strength with the polar stress-strain index, a composite score 

describing bone strength derived from multiple measures incorporating the density of 

the bone and its geometrical parameters (area, cortical thickness etc). Details 

regarding the bone strength measure can be found elsewhere.20 For analysis, polar 

stress-strain index was standardised to a z-score, with higher values indicating better 

bone strength. Body mass (in kg) and body composition were measured using four-

limb bioimpedance analysis scales (InBody230, Biospace, Seoul, Korea).21 Body 

composition was operationalized as three body parts; %truncal fat, %non-truncal fat 

and %fat-free mass. Covariates of age and sex were derived from a questionnaire. 

Composite family-level socioeconomic position was represented by a z-score 
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previously constructed by LSAC and comprising information about occupation, 

household income and education.22 A total of 1090 participants provided complete 

data and were included in the subsequent analyses. Characteristics of included 

participants are shown in Table 1. 

 

Table 1: Participant characteristics 

Measures Summary Statistics (n = 1090) 

Covariates Arithmetic means (SD) 

Age (y)a  44.5 (5.0) 

Socioeconomic position z-score 0.3 (1.0) 

SEIFA (socioeconomic score) 1032 (58) 

  

Sex  n (%) 

  Female 939 (86) 

  Male 151 (14) 

  

Body Composition (kg) Arithmetic means (SD) 

  Truncal fat  12.7 (5.3) 

  Non-truncal fat 11.9 (5.1) 

  Fat-free mass 49.2 (9.1) 

  

Body Composition (%) Arithmetic means (SD) 

  Truncal fat  16.8 (4.7) 

  Non-truncal fat 15.7 (4.4) 

  Fat-free mass 67.5 (8.9) 

  

Body Composition (%) Closed geometric meansb 

  Truncal fat  16.4 

  Non-truncal fat 15.4 

  Fat-free mass 68.2 

  

 Arithmetic means (SD) 

Body mass (kg) 73.8 (14.8) 
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Total termc 5.0 (0.5) 

  

Bone strength: Polar Stress-Strain Index (mm3) 2565 (584) 

SEIFA: Socio-Economic Indexes for Areas; Index of Relative Social Disadvantage 

Score, capturing area-based inequality. The score is standardised to have a national 

(Australian) mean of 1000 and SD of 100. Higher score indicates higher 

socioeconomic status.  aAge range = 28.8 to 68.8 years. bCompositional descriptive 

statistics include the centre (geometric means of parts, normalised to sum to 100%. 

Descriptive statistics for dispersion are not univariate such as standard deviations, 

they are multivariate and are presented in a variation matrix (Table 2). cMultiplicative 

total term defined as 𝑡 =  
1

√3
ln(𝑡𝑟𝑢𝑛𝑐𝑎𝑙 𝑓𝑎𝑡 (𝑘𝑔) ∙  𝑛𝑜𝑛 − 𝑡𝑟𝑢𝑛𝑐𝑎𝑙 𝑓𝑎𝑡(𝑘𝑔) ∙ 𝑓𝑎𝑡 − 𝑓𝑟𝑒𝑒 𝑚𝑎𝑠𝑠(𝑘𝑔)) 

 

4.2 Descriptive exploration of body composition and body mass  

The body composition data are plotted in a ternary diagram below (Figure 1). The 

centre (compositional sample mean) is represented by a black dot, surrounded by 50, 

90 and 95% Gaussian prediction ellipses. The distribution of datapoints suggests that 

as the proportion of fat-free mass increases in the sample (moving towards the peak of 

the triangle), the proportion of truncal and non-truncal fat decrease in almost equal 

proportions. The main variability is between %fat-free mass and both truncal and non-

truncal fat. At a constant percentage of fat-free mass, the variation between truncal 

and non-truncal fat is at most about 5%. At low proportions of fat-free mass (<50%), 

the datapoints veer towards non-truncal fat, suggesting that those with low %fat-free 

mass have relatively more %non-truncal fat compared with %truncal fat. In other 

words, people with a lot of fat tend to store fat in their limbs rather than on their 

trunk, possibly because their trunk fat stores are already “full”. 
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Figure 1. Relative information for body composition among n=1090 adults. Black dot 

= compositional centre, surrounded by 50, 90 and 95% Gaussian prediction ellipses. 

 

The almost equal variation in %truncal and %non-truncal fat is reflected in the 

variation matrix (Table 2), which is calculated as the variance in the logratio of two 

parts. The closer to zero the variance is, the more proportional the values in the two 

parts are. The variation matrix value for %truncal fat and %non-truncal fat is only 

0.01, much smaller than the other values of 0.19 and 0.18.  

 

Table 2. Body composition variation matrix 

 Truncal fat Non-truncal fat Fat-free mass 

  Truncal fat  0   

  Non-truncal fat 0.01 0  

  Fat-free mass 0.19 0.18 0 

Values are calculated as the variation in the logarithm of one body part relative to one 

other body part. Large variances indicate high differentiation in variation between the 

two parts (low-proportionality), whereas low variances indicate high proportionality 

between parts. Zero variance indicates perfect proportionality, i.e., one part varies 

exactly the same as the other. 
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Figure 2. Body composition ALRs. Linear regression lines shown in blue.  

FFM=fat-free mass; NTF=non-truncal fat; TF=truncal fat. 

 

The high proportionality between %truncal and %non-truncal fat can be visualised by 

plotting pair-wise logratios against each other (Figure 2).  

 

Figure 2A shows that as truncal fat increases relative to fat-free mass, non-truncal fat 

also increases (almost proportionately) in relation to fat-free mass. The flattening at 

the top suggests an upper limit to %truncal fat (about 50% of body mass). This may 

be because the trunk must contain a lot of non-fat material, e.g., the axial skeleton, the 

organs, most of the blood and stomach contents. The proportionality between 

%truncal and %non-truncal fat can also be seen by the relatively flat regression line in 

Figure 2B. As the proportion of fat-free mass increases relative to non-truncal at, 

there is no clear difference in the proportion of truncal vs non-truncal fat. 
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Figure 3. Exploration of patterns in body composition data. Panel A:Sex distribution; 

Panel B: SES distribution, N.B., scale truncated at -3 at the lower end as only eight 

observations had a z-score of <-3; Panel C: Age distribution; Panel D: Body mass 

distribution. FFM=fat-free mass; NTF=non-truncal fat; TF=truncal fat; 

SES=socioeconomic status. 

 

Figure 3A suggests that there are distinct sex differences in body composition; 

females (red) have higher proportions of non-truncal fat, and lower proportions of fat-

free mass compared with males (blue). Note, this needs to be considered with caution 

as there were only 151 (14%) males in the sample (Table 1). Figure 3D shows that 

people with low body mass appear to have lower proportions of truncal fat and higher 

fat-free mass than those with high body mass. This suggests that as adults put on 

weight, it is linked with an increase in fat. There do not appear to be clear differences 

according to socioeconomic status (Figure 3B) or age (Figure 3C), however most 

participants were of high socioeconomic status and of younger age with little 

variation in the sample (Table 1). 
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Figure 4. Body composition of pairwise logratios against body mass (kg). TF=truncal 

fat; FFM=fat-free mass; NTF=non-truncal fat. Blue line represents fitted loess curve. 

 

Plots of pairwise logratios against body mass (Figure 4) show that with increasing 

body mass, truncal fat and non-truncal fat increase relative to fat-free mass (Plot A 

and B). At low body mass (<60 kg), on average the non-truncal fat exceeds that of 

truncal fat (Plot C). The two types of fat are balanced at about 60 kg body mass, after 

which non-truncal fat exceeds truncal fat. As body mass increases, truncal fat 

increases relative to non-truncal flat, but the relationship appears to plateau and 

becomes less clear as there are fewer data for those with body mass >100 kg. 

 

Figure 5. Body mass (kg) against age, socioeconomic status (SES z-score) and sex. 

Blue line in Panels A and B represents fitted loess curve. 
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Body mass and age do not show any clear relationship (Figure 5A), while there 

appears to be a slight negative relationship between mass and socioeconomic status 

(Figure 5B). It can be clearly seen that males tend to have higher body mass than 

females (Figure 5C). 

 

 4.3 Relationship between body composition, body mass and bone strength 

 

Exploratory plots suggest body composition is associated with bone strength. In a 

ternary diagram (Figure 6), better bone strength (blue) is observed at higher 

proportions of fat-free mass (>65%) where %truncal fat (5-25%) exceeds %non-

truncal fat (5-15%). The best bone strength zone (circled) coincides with the 

distribution of male participants, and the area of highest body mass (Figure 3). In the 

analysis of body composition against bone strength it would seem important to 

account for sex and body mass, as better bone strength at high proportions of fat-free 

mass may be due to being male and/or having a higher body mass. 

 

Figure 6. Distribution of bone strength z-score across body composition data. 

FFM=fat-free mass; TF=truncal fat, NTF=non-truncal fat. 
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Figure 7. Bone strength vs body mass (kg), as observed in the sample. Datapoints 

coloured according to body composition; Panel A: %TF (Truncal fat); Panel B: 

%NTF (Non-truncal fat); Panel C: %FFM (Fat-free mass). 

 

The scatter plot of body mass against bone strength scores show that as body mass 

increases, bone strength also increases (Figure 7). In each panel, the datapoints are 

coloured according to the percentage of a different part of the body composition. The 

figure suggests that whatever the body mass, lower proportions of fat (red colours, 

Figure7A and B) are associated with better bone strength, while higher proportions of 

fat-free mass (blue colour, Figure 7C) are associated with better bone strength. One 

datapoint appears to be an outlier, having very high, but still feasible, bone strength 

(z-score > 5). The impact of this outlying observation will require consideration in 

subsequent analyses.  

 

Regression models 

The relationships between body composition, body mass and bone strength were 

explored using the tCoDA approach. In this section we demonstrate both the 

interpretation of individual regression coefficients (using ILRs) and model-based 

prediction (using ILRs or ALRs). It is important to stress that due to the cross-

sectional nature of this study’s data, the ensuing analysis explore associations and do 

not attempt to infer causality. We describe potentially causal relationships which are 

plausible in real life, but cannot be easily tested in controlled experimental trials 
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because they would require invasive treatments such as bariatric surgery or 

liposuction.  

 

Using linear regression models, body composition logratios and the multiplicative 

total term were regressed against bone strength z-score, with adjustment for sex, age 

and socioeconomic status. Initial models included interaction terms between sex and 

body composition/body mass, but these were dropped from the final models as they 

were insignificant. Interaction between body composition and body mass was 

significant but in this case it was dropped as it did not improve the predictive 

performance of the model. Model performance was evaluated using 10-fold cross-

validation (caret23 package in R). The average R-squared and prediction error rate of 

the ten iterations are presented in Table 3. 

 

Table 3. Linear regression models: prediction error rates from 10-fold cross 

validation; mean (SD). 

Independent variables 
R squared 

Root mean 

squared error 

Mean absolute 

error 

ILRs only 23.51 (7.57) 87.71 (7.38) 68.83 (4.29) 

ILRs and total 64.10 (5.46) 59.93 (4.7) 46.56 (3.11) 

ILRs, total and covariates 65.29 (4.28) 59.10 (5.35) 46.40 (3.12) 

ILRs, total and covariates, and 

interaction between ILRs and total 65.28 (4.73) 59.03 (5.28) 46.10 (3.25) 

Values are expressed in percentages. ILR = isometric logratios. 

 

4.4 Interpretation of ILR coefficients 

The ILRs were created using a SBP that divided parts into groups of interest. The 

SBP divided fat from non-fat in the first ILR and divided between fat parts in the 

second ILR (Table 4).  

 

Table 4. Specifically selected Sequential Binary Partition (SBP) 

 
Truncal fat  

Non-truncal 

Fat 

Fat-free 

mass 

ILR1 –1 –1 +1 

ILR2 +1 –1 0 

ILR = isometric logratio. 
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The following ILRs were created from the SBP in Table 4: 𝐼𝐿𝑅𝑠 = [√
2

3
ln

𝐹𝐹

√𝑇𝐹∙𝑁𝑇𝐹
,

√
1

2
ln

𝑇𝐹

𝑁𝑇𝐹
] , where FF = fat-free mass, TF = truncal fat and NTF = non-truncal fat.  

 

The set of ILRs was used to represent body composition in the following multiple 

linear regression model which also included the recommended multiplicative term for 

absolute body mass: 

𝑧𝐵𝑜𝑛𝑒𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ̇ =  𝛽0̇ +  𝛽̇1√
2

3
ln

𝐹𝐹

√𝑇𝐹∙𝑁𝑇𝐹
+ 𝛽̇2√

1

2
ln

𝑇𝐹

𝑁𝑇𝐹
+  𝛽̇3

1

√3
ln(𝑇𝐹 ∙ 𝑁𝑇𝐹 ∙

𝐹𝐹) + 𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 𝑆𝐸𝑆. 

 

The set of ILRs (i.e., body composition) was significantly associated with bone 

strength (MANOVA statistic for the set of logratios: Sum Sq = 87.7, F = 126.8, p < 

0.001). Model parameters are shown in Table 5. 

 

Table 5. Model parameters of the ILR tCoDA regression model for the relationship 

between body composition and bone strength 

Term Beta SE 

Standardised 

beta t p 

(Intercept) -16.04 0.66 0.00 -24.4 <0.001 

ILR1 (FFM vs remaining)a 3.48 0.13 1.22 26.4 <0.001 

ILR2 (TF vs NTF) -0.75 0.29 -0.06 -2.6 0.009 

Multiplicative totalb 2.35 0.09 1.20 27.4 <0.001 

Age (y) 0.01 0.00 0.04 2.3 0.02 

Sex (Female) -0.38 0.08 -0.13 -4.6 <0.001 

z-SEP 0.04 0.02 0.04 2.3 0.02 

ILR = isometric logratio; tCoDA = Compositional Data Analysis with a total; 

FFF=fat-free mass; TF=truncal fat; NTF=non-truncal fat; SEP = socioeconomic 

position. aILR defined as 𝐼𝐿𝑅 = [√
2

3
ln

𝐹𝐹𝑀

√𝑇𝐹∙𝑁𝑇𝐹
, √

1

2
ln

𝑇𝐹

𝑁𝑇𝐹
]. bTotal defined as 𝑡 =

 
1

√3
ln (𝑇𝐹(𝑘𝑔) ∙  𝑁𝑇𝐹(𝑘𝑔) ∙ 𝐹𝐹𝑀(𝑘𝑔)). Model adjusted R-squared = 0.65. 

 

The beta estimate for ILR1 (Table 5) indicates that as fat-free mass increases at the 

expense of truncal fat and non-truncal fat (in equal proportions), bone strength 

increases (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝛽̇=1.22, p < 0.001). As described in Coenders et al,14 this 
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beta is associated with the effect of multiplying fat-free mass by a constant (𝑎 > 1), 

while simultaneously multiplying truncal and non-truncal fat by the constant 
1

√𝑎
. This 

is how ILR2 and the total term can be kept constant while ILR1 is varied. The 

differences in body composition represented by ILR1 (exchanging fat-free mass for 

both truncal and non-truncal fat, equally) appears to be the most commonly observed 

situation in this sample. 

 

The beta estimate for ILR2 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝛽̇=-0.06, p < 0.009) indicates that bone 

strength decreases as truncal fat increases at the expense of non-truncal fat. 

Specifically, this beta is associated with the effect of multiplying truncal fat by a 

constant (𝑎 > 1), while multiplying non-truncal fat by 
1

𝑎
. In this way, ILR1 and the 

total term are kept constant while ILR2 is varied. This situation may not commonly 

occur in the population sampled in this study, as %truncal and %non-truncal fat tend 

to co-vary in the same direction (Figure 1, Figure 2 and Table 2). 

 

Another option is to explore the relationship between bone strength and each of the 

parts, relative to the remaining parts. The ILR1 (FFM vs remaining) created by the 

SBP from Table 4 represents fat-free mass, relative to the remaining parts. Other 

SBPs are needed to create ILR1s that represent truncal fat (Table 6) and non-truncal 

fat (Table 7), each relative to the remaining parts.  

 

Table 6. Sequential Binary Partition (SBP) for truncal fat, relative to remaining parts 

 Truncal fat  Non-truncal Fat Fat-free mass 

ILR1 (TF vs remaining) +1 –1 –1 

ILR2  0 +1 –1 

ILR = isometric logratio; TF = truncal fat. 

 

Table 7. Sequential Binary Partition (SBP) for non-truncal fat, relative to remaining 

parts 

 Truncal fat  Non-truncal Fat Fat-free mass 

ILR1 (NTF vs remaining) –1 +1 –1 

ILR2 –1 0 –1 

ILR = isometric logratio; NTF = non-truncal fat. 
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The two sets of ILRS created by the SBPs from Table 6 and 7 were regressed against 

bone strength z-score in two further linear models. The multiplicative total and 

covariates were also included in the models. Table 8 shows the beta estimates for 

ILR1 from all three regression models, where ILR1 represented one part relative to 

the remaining parts. Note the first row of Table 8 for ILR1 (FFM vs remaining) is 

identical to the second row in Table 5. Regression coefficients for the multiplicative 

total and covariates are identical across all the models, and can be found in Table 5. 

The findings suggest %fat-free mass is most beneficially associated with better bone 

strength, and that %truncal fat appears more detrimentally associated than %non-

truncal fat (when absolute mass is kept constant). 

 

Table 8. Parameters from tCoDA regression models on bone strength 

Model 

Isometric logratio Beta SE 

Standardised 

beta t p 

Model 1 ILR1 (FFM vs remaining) 3.48 0.13 1.22 26.4 <0.001 

Model 2 ILR1 (TF vs remaining) -2.39 0.26 -0.46 -9.1 <0.001 

Model 3 ILR1 (NTF vs remaining) -1.09 0.25 -0.20 -4.3 <0.001 

       
From all Models Multiplicative total 2.35 0.09 1.20 27.36 <0.001 

ILR1 = first isometric logratio; TF = truncal fat, NTF = non-truncal fat; FF = fat-free 

mass. Models adjusted for age, sex and socioeconomic position. 

 

Interpretation of coefficient for multiplicative total 

The beta coefficient for the multiplicative total can be interpreted as the estimated 

association of changing absolute total multiplicative mass by one unit, whilst keeping 

body composition constant. While this scenario may be unexpected in empirical 

situations among adults, the hypothetical situation assists us to disentangle the 

influence of absolute and relative information. It may also be of interest for cross-

sectional comparisons and in younger populations where body mass may be more 

likely to increase due to skeletal growth rather than fat deposition. 

 

The beta for multiplicative total body mass was positive and significant (standardised 

𝛽̇ = 1.20, p < 0.001; Table 5), suggesting that if body mass were to increase 

independent of changes in body composition, this would be associated with greater 
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bone strength. The value of the beta for body mass cannot be interpreted as estimated 

change in bone strength when body mass is increased by one kg, as the term for body 

mass is derived by multiplying together the values of absolute mass in each part. 

Instead, the beta estimate for body mass represents the association of multiplying 

absolute values (kg) of all body parts (truncal fat, non-truncal fat and fat-free mass) 

simultaneously with the same constant (𝑎 > 1). As each part is multiplied by the same 

constant, relative information (body composition) remains unchanged, meaning the 

logratios can be kept constant as body mass varies.  

 

Diagnostic checks of ILR regression model 

Diagnostic checks of the model fit suggested the linear multiple regression model 

provided a good fit to the data (Figure 8). As noted earlier, observation 15 appeared to 

be an outlier. The observed bone strength score for this participant was very high, but 

the Residuals vs Leverage plot suggested the influence of this observation was within 

acceptable limits, so the participant was retained for the analyses. 

 

Figure 8. Model diagnostic plots for linear regression model. 
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Exploration of the variance inflation factors of the four ILR models revealed very 

high values for the first ILRs and the multiplicative total (generalized variance 

inflation factors (VIFs) for ILR1 (TF vs remaining) = 8.1; ILR1 (NTF vs remaining) 

= 6.5; ILR1 (FFM vs remaining) = 6.7; multiplicative total = 6.0). 

 

Figure 9. Correlation between the first ILR and multiplicative total. 

ILR=isometric logratio. ILR_TF=truncal fat vs remaining parts; ILR_NTF=non-

truncal fat vs remaining parts; ILR_FFM=fat-free mass vs remaining parts. 

 

 

Correlation between the multiplicative total and the first ILR from each set of 

coordinates was high, particularly for the ILR of truncal fat vs remaining (Pearson’s r 

= 0.87, p<0.001) and fat-free mass vs remaining (Pearson’s r = -0.82, p<0.001) 

(Figure 9), consistent with Fig. 3D. 

 

Co-dependency between explanatory variables may lead to inflated variability in the 

beta coefficients (as reflected in the model VIFs), thus the interpretation of the 

regression coefficients for the first ILR and multiplicative total should be considered 

with caution. However, it is reassuring that the regression coefficients corroborate 

with patterns observed in our exploratory analyses (Figures 3D and 7). As models 

with high collinearity between explanatory variables can still perform well for 

prediction purposes, for this particular sample a predictive approach may be better 
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suited to explore the relationships between body composition, body mass and bone 

strength. 

 

4.5 Predictive approach 

 

In this section, we use the tCoDA model (with ALRs or ILRs) to predict the 

associated difference in bone strength for a number of hypothetical situations. Firstly, 

we predict bone strength for varying body composition, without changing the absolute 

body mass. Secondly, we predict bone strength for varying body mass, without 

changing body composition. These two situations, although interesting for certain 

populations, may not reflect common circumstances for this population. In our final 

hypothetical situation, we predict bone strength for varying body mass and varying 

body composition, based on their association in the sample. 

 

Varying body composition, constant body mass 

We estimated the difference in bone strength associated with the substitution of 5 

percentage units of body mass between two body compartments (one-for-one 

isocompartmental substitution). The results from isocompartmental substitution allow 

the estimated effects of exchanging the same absolute proportion of mass from one 

part to another to be evaluated side-by-side. The substitution analyses was done by 

predicting bone strength for two scenarios: (1) average body composition, and (2) a 

body composition where 5% had been taken from one part (e.g., truncal fat) and given 

to another (e.g., fat-free mass), and (3) finding the difference between the two bone 

strength predictions. Body mass and all covariates were kept constant in the 

prediction models. Findings for all possible 5% one-for-one isocompartmental 

substitutions are in Table 9. 

 

Note, the situation where 5% is reallocated between some body composition parts 

(e.g., %truncal and %non-truncal fat while keeping %fat-free mass constant at the 

mean value) is at the extremes of what might be feasible or physiologically possible 

in this population of adults (see Figure 1). A more commonly observed reallocation 

may be between %fat-free mass and both %truncal and non-truncal fat (equally), and 

predictions could also be calculated for this situation using the same method. 

However, one-for-one reallocations of mass may be expected in other populations 
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(growing children, elderly with increasing frailty). In any case, our cross-sectional 

data do not provide information on within-person reallocations of mass. Longitudinal 

data are required to model how changes in body composition and body mass are 

associated with health-related outcomes. Instead, our analyses model population-level 

differences.  

 

Table 9. Difference in estimated bone strength z-score when 5% units of mass are 

reallocated between body parts 

  

95% Confidence 

Interval 

Substitution Difference Upper Lower 

TF, NTF -0.1 -0.3 0.0 

TF, FF -0.7 -0.8 -0.6 

NTF, TF 0.4 0.3 0.5 

NTF, FF -0.5 -0.6 -0.4 

FF, TF 0.8 0.7 0.9 

FF, NTF 0.5 0.4 0.6 

TF = truncal fat, NTF = non-truncal fat, FF = fat-free mass. Substitutions of 5% body 

mass are relative to the mean body composition (%TF = 16.4, %NTF = 15.4, %FF = 

68.3). Body mass kept constant. Analyses additionally adjusted for age, sex, and 

socioeconomic status. 

 

The largest differences (up to 0.8 SD) in bone strength were associated with 

substitutions between fat-free mass and truncal fat. This is congruent with inference 

from the ILR regression coefficients, suggesting fat-free mass and truncal fat are most 

important in the association between body composition and bone strength (Table 8). 

The results also suggest that adding %non-truncal fat at the expense of %truncal fat 

would be associated with stronger bones, even though in practice the two usually 

move more or less synchronously in the same direction. 

 

The model was used to predict bone strength over the body composition values 

observed among the participants. The total term and all covariates were kept constant. 

The predicted bone strength scores were plotted on a ternary surface, superimposed 

over their predictive body composition. The values of predicted bone strength were 

colour-coded along a heat-gradient so the weakest bones were red and the strongest 
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bones were blue. Figure 10 presents the association between body composition and 

bone strength, independent of body mass. 

 

Figure 10. Response surface of predicted bone strength z-score overlaid on body 

composition ternary plot (body mass kept constant). Analyses additionally adjusted 

for age, sex and socioeconomic status. Best (blue) and worst (red) body compositions 

for bone strength are identified. 

 

The gradient of response surface in Figure 10 suggests that at any given body mass, 

the relationship between bone strength and body composition is predominantly driven 

by the proportion of fat-free mass relative to both truncal and non-truncal fat. The 

higher the proportion of fat free mass (and lower non-truncal and truncal fat), the 

better the bone strength. The gradient is slightly skewed toward the right bottom 

vertex of the triangle, suggesting the proportion of truncal fat is more strongly 

associated than the proportion of non-truncal fat. Within the range of sampled body 

compositions, there were about 5 standard deviations difference in estimated bone 

strength between the best and worst body compositions. 

 

Varying body mass, constant body composition 

The same regression model was used to predict bone strength for varying body mass 

(in 10 kg increments) expressed as the multiplicative total, keeping body composition 

and covariates constant. A response curve was generated by smoothing between bone 

strength predicted for incremental differences in overall body mass (Figure 11). Note, 
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there were few observations at body masses >100kg, meaning we have less certainty 

in these predictions. 

 

 

Figure 11. Estimated difference in bone strength when absolute body mass is changed 

around the mean body mass (keeping body composition constant). Analysis 

additionally adjusted for age, sex, and socioeconomic position. 

 

Varying body composition and body mass 

In real life, changes in body composition may not be independent of changes in body 

mass, so the scenarios modelled above may not represent commonly occurring 

situations. To explore how body mass (kg) was associated with body composition in 

this sample, body composition logratios (outcomes) were regressed against the 

summative total (kg) (explanatory). Diagnostic plots showed that a quadratic term for 

body mass was a better fit to the data, which was confirmed by lower RMSEs for the 

quadratic models compared to the linear models. The null hypothesis of no 

relationship was rejected, as body mass was a significant predictor of the set of 

logratios (MANOVA SumSq=0.51, F=185, p<0.001). This suggests the situation 
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modelled above (increasing body mass while keeping the body composition constant) 

is unlikely to happen in real life for people represented by this sample (i.e., 

predominantly mothers, mean age of 45 years (SD=5, range=29 – 69)). 

 

To describe how body composition was associated with body mass we used the 

multivariate regression model to predict body composition logratios for a sequence of 

body masses ranging from 40-120 kg. The predicted logratios were expressed in 

percentage units (Table 10) and plotted relative to the sample mean body composition 

(Figure 12). 

 

Table 10. Predicted body composition for increasing values of body mass 

Body mass (kg) %Truncal Fat % Non-truncal fat % Fat-free mass 

40 8 11 81 

50 11 13 76 

60 14 14 72 

70 16 15 69 

80 18 16 66 

90 19 17 63 

100 20 18 61 

110 21 19 60 

120 21 21 58 

 Body composition estimated from regression model with squared term for body mass 

(log-transformed). 
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Figure 12. Estimated body composition for varying body mass (squared term). 

TF=truncal fat; NTF=non-truncal fat; FFM=fat-free mass.  

 

As body mass increases in the sample, %fat-free mass tends to be replaced with 

%truncal fat and to a slightly lesser extent, %non-truncal fat. At high body masses 

(>100 kg), there is flattening of the estimated differences in body composition (Figure 

12A) and datapoints are closer together (Figure 12B), indicating that the hypothetical 

situation of changing body mass whilst keeping body composition constant may be a 

reasonable representation among those with high body mass. However, as previously 

mentioned, caution must be exercised when interpreting results at high masses as 

there were few observations >100 kg. Using the predicted body compositions 

(expressed as logratios) from Table 10, and the corresponding body mass (expressed 

as the multiplicative total), we used the original regression models to estimate bone 

strength (adjusted for age, sex and socioeconomic status). Thus, both relative and 

absolute information were varied.  

 

 

Figure 13. Plot A: Estimated bone strength for varying body masses, at population-

estimated body compositions. Plot B: Estimated bone strength for varying body 

compositions, at population-estimated body mass. All analyses adjusted for age, sex 

and socioeconomic status. FFM=fat-free mass; TF=truncal fat; NTF=non-truncal fat. 
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At a glance, the relationship between body composition and bone strength (plotted in 

Figure 13B) appears to contradict the relationship shown in Figure 10. This is because 

estimates in Figure 10 assume a constant body mass at the sample mean value, but 

body mass varies in Figure 13. When body mass is allowed to vary along with body 

composition, the positive relationship between body mass and bone strength is 

reflected in Figure 13B, and masks the relationship between body composition and 

bone strength. Body composition is still associated with bone strength (%fat-free 

mass positively, and %non-truncal and %truncal fat negatively) because the positive 

association with body mass is largely attenuated in Figure 13A when compared with 

Figure 10 (where body composition is kept constant at the mean value).  

 

 

Figure 14. Relationship between body mass and bone strength, and the association of 

body composition across body mass. Panel A is coloured according to %truncal fat 

(TF); Panel B according to %non-truncal fat (NTF) and Panel C according to %fat-

free mass (FFM). 

 

The relationship between body composition at each level of body mass can be 

visualised by plotting estimated bone strength for every possible body composition at 

40, 60, 80, 100 and 120 kg (Figure 14). A very clear positive gradient can be seen for 

%fat-free mass and bone strength, and a negative gradient for %truncal fat. There is 

also a negative gradient for %non-truncal fat but it is less clear, suggesting that the 
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relationship with bone health is more closely related to the values of %fat-free mass 

and %truncal fat than %non-truncal fat. 

 

 

5. Comments 

Body composition is a widely studied exposure in health research. To date, studies 

have largely analysed the health associations of each part separately. We present an 

approach (tCoDA) that enables all body parts to be included in the same model 

simultaneously, and that takes into account body mass. The tCoDA approach allows 

exploration of associations between health and body composition independent of 

body mass, and of health with body mass independent of body composition. This 

makes it possible to disentangle relative and absolute information, and to better 

understand how body composition and overall mass are associated with health 

outcomes. 

 

The analyses suggest that if the findings were to reflect causal relationships, body 

mass may be a key determinant of adults’ bone strength. This finding is supported by 

the mechanostat model.24 The model predicts that increasing overall body mass will 

induce an adaptive response in the bones, which are continuously remodelling. Bones 

will respond to increased mechanical loads by increasing bone mass and improving 

the quality of bone microarchitecture.  

 

We found that although higher mass was associated with better bone strength, the 

body composition also had important associations with bone strength. At any given 

body mass, higher proportions of fat-free mass relative to truncal and non-truncal fat 

were associated with better bone strength. This may be because higher fat-free mass 

likely represents relatively more muscle mass, meaning bones are being loaded by 

muscle action (functional strain) as well as static strain from body mass, leading to 

stronger bones (mechanostat hypothesis).  The skeletal load from fat is limited to 

static strain. In addition, higher proportions of fat may influence endocrine function, 

leading to dysregulation of bone formation.24 In relation to the distribution of body 

fat, we found the associations of %truncal fat to be slightly more detrimental to bone 

strength than those of %non-truncal fat, but both these parts appeared to vary 

together, i.e., those with high %truncal fat also had high %non-truncal fat.  
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While our interest is in exploring associations for which causality is plausible and 

would be important, our cross-sectional data cannot confirm cause and effect. We 

adjusted our models for several potential confounders, however there still may be 

residual confounding due to other factors, for example, the 24-hour activity 

composition (physical activity, sedentary time and sleep). Future work could explore 

the application of graphical models (directed acyclic graphs) and counterfactual 

approaches to estimate causal effects.  

 

We describe in this paper the basic principles of compositional data analysis, 

specifically tCoDA, for body composition data linked with health outcomes. There is 

an opportunity to further explore other applications of compositional data analysis for 

body composition data, such as cluster analysis, non-linear models and considering 

body composition as an outcome. The example presented in this paper used a 3-part 

body composition operationalized by distribution of fat, but other ways of 

compartmentalising body mass may be of interest (e.g., skeletal, muscle and visceral 

tissue). Future work may explore means of visualising body compositions with more 

than three parts, and how to account for potential sources of error (such as 

measurement uncertainty) in the analysis. Our main goal is to motivate research in the 

application of compositional data analysis in body composition research. 

 

The tCoDA approach enables a comprehensive exploration of the associations 

between body composition, body mass and health outcomes. Its application has the 

potential to provide sound evidence to advise health interventions and guide public 

health policy. 

 

ACKNOW 

J.A. Martín-Fernández was supported by the Spanish Ministry of Science, Innovation 

and Universities under the project CODAMET (RTI2018-095518-B-C21, 2019-

2021). 

 

 

 

 

References 



 33 

1. Bello NA, Cheng S, Claggett B, et al. Association of weight and body 

composition on cardiac structure and function in the ARIC study 

(Atherosclerosis Risk in Communities). Circulation: Heart Failure. 

2016;9(8):e002978. 

2. Koster A, Stenholm S, Alley DE, et al. Body fat distribution and inflammation 

among obese older adults with and without metabolic syndrome. Obesity. 

2010;18(12):2354-2361. 

3. Shapses SA, Cifuentes M. Body weight/composition and weight change: 

effects on bone health. In: Nutrition and Bone Health. Springer; 2015:561-

583. 

4. Santanasto AJ, Goodpaster BH, Kritchevsky SB, et al. Body composition 

remodeling and mortality: the health aging and body composition study. The 

Journals of Gerontology: Series A. 2017;72(4):513-519. 

5. Chang S-H, Beason TS, Hunleth JM, Colditz GA. A systematic review of 

body fat distribution and mortality in older people. Maturitas. 2012;72(3):175-

191. 

6. Kim J, Kwon H, Heo B-K, et al. The Association between fat mass, lean mass 

and bone mineral density in premenopausal women in Korea: A cross-

sectional study. Korean Journal of Family Medicine. 2018;39(2):74. 

7. Rokoff LB, Rifas-Shiman SL, Switkowski KM, et al. Body composition and 

bone mineral density in childhood. Bone. 2019;121:9-15. 

8. Kang SM, Yoon JW, Ahn HY, et al. Android fat depot is more closely 

associated with metabolic syndrome than abdominal visceral fat in elderly 

people. PloS one. 2011;6(11):e27694. 

9. Aitchison J. The statistical analysis of compositional data. Journal of the 

Royal Statistical Society: Series B (Methodological). 1982;44(2):139-160. 

10. Dumuid D, Wake M, Clifford S, et al. The association of the body 

composition of children with 24-hour activity composition. The Journal of 

Pediatrics. 2019;208:43-49. e49. 

11. Greenacre M. Towards a pragmatic approach to compositional data analysis. 

Economics Working Papers 1554 2017; 

https://ideas.repec.org/p/upf/upfgen/1554.html. 

12. Hron K, Filzmoser P, Thompson K. Linear regression with compositional 

explanatory variables. Journal of Applied Statistics. 2012;39(5):1115-1128. 

https://ideas.repec.org/p/upf/upfgen/1554.html


 34 

13. Egozcue JJ, Pawlowsky-Glahn V. Groups of parts and their balances in 

compositional data analysis. Mathematical Geology. 2005;37(7):795-828. 

14. Coenders G, Martín-Fernández JA, Ferrer-Rosell B. When relative and 

absolute information matter: compositional predictor with a total in 

generalized linear models. Statistical Modelling. 2017;17(6):494-512. 

15. Dumuid D, Pedišić Ž, Stanford TE, et al. The compositional isotemporal 

substitution model: A method for estimating changes in a health outcome for 

reallocation of time between sleep, physical activity and sedentary behaviour. 

Statistical methods in medical research. 2019;28(3):846-857. 

16. Mateu-Figueras G, Pawlowsky-Glahn V, Egozcue JJ. The principle of 

working on coordinates. Compositional Data Analysis. 2011:29-42. 

17. Pawlowsky-Glahn V, Egozcue JJ, Lovell D. Tools for compositional data with 

a total. Statistical Modelling. 2015;15(2):175-190. 

18. Clifford SA, Davies S, Wake M. Child Health CheckPoint: Cohort summary 

and methodology of a physical health and biospecimen module for the 

Longitudinal Study of Australian Children. BMJ Open. 2019;9(Suppl 3):3-22. 

19. Wake M, Clifford S, York E, et al. Introducing growing up in Australia's child 

health checkpoint: a physical and biomarkers module for the longitudinal 

study of Australian children. Family Matters. 2014;95:15-23. 

20. Vlok J, Simm P, Lycett K, et al. pQCT bone geometry and strength: 

population epidemiology and concordance in Australian children aged 11–12 

years and their parents. BMJ Open. 2019;9 (Suppl 3):63:74. 

21. Clifford S, Gillespie A, Olds T, Grobler AC, Wake M. Popluation 

epidemiology and concordance in 11-12 year old Australians and their parents. 

BMJ Open. 2019;9 (Suppl 3):95-105. 

22. Blakemore T, Strazdins L, Gibbings J. Measuring family socioeconomic 

position. Australian Social Policy. 2009;8:121-168. 

23. Kuhn M. caret: Classification and Regression Training. R package version 

6.0-85. 2020; https://CRAN.R-project.org/package=caret. 

24. Iwaniec U, Turner R. Influence of body weight on bone mass, architecture and 

turnover. Journal of Endocrinology. 2016;230(3):R115–R130. 

 

 

https://cran.r-project.org/package=caret

