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Abstract— This paper proposes MSISpIC, a probabilistic
sonar scan matching algorithm for the localization of an
Autonomous Underwater Vehicle (AUV). The technique uses
range scans gathered with a Mechanical Scanning Imaging
Sonar (MSIS), the robot displacement estimated through dead-
reckoning using a Doppler Velocity Log (DVL) and a Motion
Reference Unit (MRU). The proposed method is an extension
of the pIC algorithm. An Extended Kalman Filter (EKF) is
used to estimate the robot-path during the scan in order to
reference all the range and bearing measurements as well
as their uncertainty to a scan fixed frame before registering.
The major contribution consists of experimentally proving
that probabilistic sonar scan matching techniques have the
potential to improve the DVL-based navigation. The algorithm
has been tested on an AUV guided along a 600m path within an
abandoned marina underwater environment with satisfactory
results.

I. INTRODUCTION

During a long term mission with an autonomous robot
it is necessary to keep the track of the vehicle’s position.
Scan matching is a technique that can be used to estimate
the vehicle displacement using successive range scans. Many
applications in robotics like mapping, localization or tracking
use this technique to estimate the robot’s relative displace-
ment [1], [2]. Scan Matching estimates the robot relative
displacement between two configurations, by maximizing the
overlap between the range scans normally gathered with a
laser or a sonar sensor. Moreover, the scans can then be used
to set up a local map of the robot’s surrounding environment
to be used for reactive/deliberative obstacle avoidance [3].

The existing scan matching techniques can be divided into
groups depending on if they use high-level entities like lines
or planes or otherwise they rely on the raw scan. On one
hand, it is possible to assume the existence of polygonal
structures in structured environments as is supposed in [4]
[5], or even in some underwater applications [6]. However,
extracting simple polygons for representing the environment
is not always possible, particularly in unstructured scenarios
which are the most common in underwater robotics. On
the other hand, there is a second type of algorithms that
work with raw data from the scanner to solve the matching.
Usually, these techniques are based on a two step itera-
tive process which is repeated till convergence. The sensor
displacements are computed by approximating the solution
to the best overlap between two scans by looking for the
closest point for each single data of the scan. After that,

This research was sponsored by the Spanish government (DPI2008-
06545-C03-03) and FREEsubNET (MRTN-CT-2006-036186).

The authors are with the Department of Computer
Engineering, University of Girona, 17071 Girona, Spain
{emilihb,pere,dribas,amallios}@eia.udg.edu

a minimization process to estimate the solution is done.
The process is repeated until convergence. The most popular
technique is the Iterative Closest Point (ICP) algorithm [7]
which has been modified in different ways [8]. Most of the
versions of the ICP algorithm use the Euclidian distance
to estimate the correspondences between scans. However,
this distance does not take into account that small rotations
of the sensor mean large displacements as the distance is
increased. To overcome this limitation several approaches
have been done. The Iterative Dual Correspondence (IDC)
algorithm [9] computes two different minimizations, one for
the translation and another for the rotation. The Metric-based
Iterative Closest Point (MbICP) algorithm [10] establishes a
new distance concept which captures the sensor displacement
and rotation at the same time. However, none of these
algorithms take into account the sensor nor the displacement
uncertainties which are very important, specially when sonar
sensors are used. The probabilistic Iterative Correspondence
(pIC) method [11] explicitly deals with those uncertainties
to decide which points in the reference scan are statistically
compatible with a certain point of the new scan. Moreover,
the minimization process is carried out over the Mahalanobis
distance. Although in this case the algorithm was applied
to laser scans, its probabilistic formulation is able to im-
prove the robustness and accuracy. On the other hand, in
[12] another probabilistic approach is proposed in order
to deal with the noisy and sparse measurements obtained
from conventional time-of-fly sonar sensors of a mobile
robot. This method deals with the sparsity of readings by
grouping sonar measurements along short trajectories. It uses
probabilistic models of ultrasonic and odometry sensors as
well as a method to propagate the error through them in
order to estimate a group of scan positions together with
their uncertainty.

Although a large literature exists reporting successful
applications of scan matching to mobile robots, very few
attempts have been done to use sonar scan matching in
underwater applications. In [13] a non-probabilistic variation
of ICP is proposed to achieve on-line performance for reg-
istering multiple views captured with a 3D acoustic camera.
Silver et al. [14], proposed to use a particle filter to deal
with the sonar noisy data. Like us, they use a MSIS but in
their case only simulated results are reported. A very nice
application of sonar scan matching underwater is reported in
[15] were the standard ICP is used for registering bathymetric
sub-maps gathered with a multibeam sonar profiler. In their
work the standard ICP algorithm is used and hence the
uncertainty of the scan points is not taken into account
during the registering. In this paper we propose the MSISpIC,
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an extension of the basic pIC algorithm to deal with data
gathered by an AUV using a MSIS. In our approach, the
robot moves while scanning the environment. Hence, an
EKF using a constant velocity model with acceleration noise,
updated with velocity and attitude measurements obtained
from a DVL and a MRU respectively, is used to estimate
the trajectory followed by the robot along the scan. This
trajectory is used to remove the motion induced distortion
of the acoustic image as well as to predict the uncertainty of
the range scans prior to register them through the standard
pIC algorithm. To the best of the authors knowledge, this is
the first reported application of a probabilistic sonar-based
scan matching technique over a real data dataset gathered
with an AUV using a MSIS.

The paper is structured as follows. In section II the pIC
algorithm is described. Section III details the process to
grab complete scans from the MSIS to be used in our
scan matching algorithm which is described in section IV.
Section V reports the experimental results before conclusions
and future work.

II. PROBABILISTIC ITERATIVE
CORRESPONDENCE

As stated before, the pIC algorithm is a statistical ex-
tension of the ICP algorithm which is able to deal with
sparse sonar data. As detailed in Algorithm 1, the inputs
are the reference scan Sref , the new scan Snew and the
initial relative displacement estimation q̂ between them with
its covariance Pq. The following procedure is iteratively
executed until convergence. First, the points of Snew are
compounded with the robot displacement (qk). The result
are the points of the new scan referenced to the reference
frame (cj). Then, for each cj, a set (Aj) of all the compatible
points in the reference scan (Sref ) is established using a
compatibility test over the Mahalanobis distance. Next step
consists of computing the virtual association point (aj) as the
expectancy over the random variable defined by the set (Aj).
It is worth noting that if q ≡ N(q̂,Pq), nj ≡ N(n̂j,Pnj

)
and ri ≡ N(r̂i,Pri), it is possible to compute the probability
p(ri = cj) for every element (ri) of Aj of being a correct
matching for cj. In order to do so, let us define a random
Gaussian variable (r.g.v.) which describes the error of the
{ri, cj} pairing:

eij = ri − qk ⊕ nj ; eij ∼= N(r̂i − q̂k ⊕ n̂j,Peij
)

Peij
= Pri + JqPqJq

T + JnPnj
Jn

T

with

Jq =
∂ ri − q⊕ nj

∂ q

∣∣∣∣
q̂

,Jn =
∂ ri − q⊕ nj

∂ nj

∣∣∣∣
n̂j

then p(ri = cj) = p(eij = 0) where p(eij = 0) can be
computed as follows:

p(eij = 0) =
feij

(ri − cj)∑
ri∈Aj

feij
(ri − cj)

(1)

where feij
is the probability density function of eij r.g.v.

Once âj has been computed, a similar procedure can be
used to estimate its uncertainty Paj

, before computing the
uncertainty Pej

of the matching error (âj − ĉj). Now, it is
possible to estimate the displacement q̂min which minimizes
the square error of the Mahalanobis Distance between âj and
ĉj. This is done using Least Squares minimization method. If
there is convergence, the function returns, otherwise another
iteration is required.

Algorithm 1 The pIC algorithm
q̂pIC = pIC(Sref , Snew, q̂,Pq) {
k = 0; q̂k = q̂
do {

for(j = 0; size(Snew); j + +) {
ĉj = q̂k ⊕ n̂j

Aj = {ri ∈ Sref/D2
M (ri, cj) ≤ χ2

2,α}
âj =

∑
j r̂ip(ri = cj), ∀ri ∈ Aj

Paj
=
∑

ri∈Aj
[(r̂i−âj)(r̂i−âj)T +Pri ]p(ri = cj)

Pej
= Paj

+ JqPqJq
T + JnPnj

Jn
T

}
q̂min = arg minq

{∑
j

(
(âj − ĉj)TPej

−1(âj − ĉj)
)}

if(Convergence())
q̂pIC = q̂min

else {
q̂k+1 = q̂min; k + +
}
}
while(!Convergence()and k < maxIterations)

}

III. SCAN GRABBING USING A MSIS

The pIC algorithm was conceived to accept as input
parameters two range scans and optionally a rough displace-
ment estimation between them. Moreover, it uses a laser
range finder which gathers scans almost instantaneously.
However, for the underwater environment, commercially
available scan sensors are based on acoustics. Most of
these sensors have a mechanical head that rotates at fixed
angular steps. At each step, a beam is emitted and received,
measuring ranges to the obstacles found across its trajectory.
Hence, getting a complete scan lasts few seconds while the
vehicle is moving, generating deformed scans. Therefore, a
correction taking into account the robot pose when the beam
was grabbed is necessary.

A. Beam segmentation and range detection

The MSIS returns a polar acoustic image composed of
beams. Each beam has a particular bearing angle value
and a set of intensity measurements. The angle corresponds
to the orientation of the sensor head when the beam was
emitted. The acoustic linear image corresponding to one
beam is returned as an array of acoustic intensities detected
at certain distances. The beam is then segmented using a
predefined threshold to compute the intensity peaks. Due to
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Fig. 1. The distortion produced by the displacement of the robot while
acquiring data can be corrected with the relative displacement.

the noisy nature of the acoustic data, a minimum distance
between peaks criteria is also applied. Hence, positions
finally considered are those corresponding to high intensity
values above the threshold with a minimum distance between
each other.

B. Trajectory estimation

The pIC algorithm needs a complete scan to be registered
with the previous one in order to estimate the robot’s
displacement. Since MSIS needs a considerable period of
time to obtain a complete scan, if the robot does not remain
static, the robot’s motion induces a distortion in the acoustic
image (Fig. 1). To deal with this problem it is necessary to
know the robot’s pose at the beam reception time. Hence, it is
possible to define an initial coordinate system I to reference
all the range measurements belonging to the same scan. In
our case, this initial frame is fixed at the robot pose where
the first beam of the current scan was read.

The localization system used in this work is a slight mod-
ification of the navigation system described in [16]. In this
system, a Xsense MRU provides heading measurements and
a SonTek Argonaut DVL unit which includes 2 inclinometers
and a depth sensor is used to estimate the robot’s pose during
the scan (navigation problem). MSIS beams are read at 30Hz
while DVL and MRU readings arrive asynchronously at a
frequency of 1.5Hz and 10Hz respectively. An EKF is used
to estimate the robot’s 6DOF pose whenever a sonar beam
is read. DVL and MRU readings are used asynchronously to
update the filter. To reduce the noise inherent to the DVL
measurements, a simple 6DOF constant velocity kinematics
model is used.

The information of the system at step k is stored in the
state vector x

k
with estimated mean x̂

k
and covariance P

k
:

x̂
k
=
[
η̂

B
, ν̂

R
]T

P
k
=E

[(
x

k
− x̂

k

)(
x

k
− x̂

k

)T ]
(2)

with:

η
B = [x, y, z, φ, θ, ψ]T ; ν

R = [u, v, w, p, q, r]T (3)

where, as defined in [17], ηB is the position and attitude
vector referenced to a base frame B, and νR is the linear and
angular velocity vector referenced to the robot’s coordinate
frame R. The coordinate frame B is chosen coincident with
I but oriented to the north, hence the compass measurements
can be integrated in a straight forward manner.

The vehicle’s movement prediction is performed using the
6DOF kinematic model:

x
k
=f(x

k−1 )=

[
ηB

k

νR

k

]
=

[
ηB

k−1
+ J(ηB

k−1
)νR

k−1
T

νR

k−1

]
(4)

J(η)=


cψcθ cψsθsφ−sψcφ cψsθcφ+sψsφ 0 0 0
sψcθ sφsψsθ+cψcφ sψsθcφ−sφcψ 0 0 0
−sθ cθsφ cθcφ 0 0 0
0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφ/cθ cφ/cθ


(5)

Although in this model the velocity is considered to be
constant, in order to allow for slight changes, a velocity
perturbation modeled as the integral of a stationary white
noise v

k
is introduced. The covariance matrix Q

k
of this

acceleration noise is diagonal and in the order of magnitude
of the maximum acceleration increment that the robot may
experience over a sample period.

ν
R

k
= ν̂

R

k
+ v

k
T (6)

E[v
k
] = 0; E[v

k
v

T

j
] = δ

kj
Q (7)

Hence, v
k

is the acceleration noise which is integrated and
added in velocity (6), being nonlinearly propagated to the
position. Finally, the model prediction and update is carried
out as detailed below:

1) Prediction: The estimate of the state is obtained as:

x̂
k

= f(x̂
k−1 ) (8)

and its covariance matrix as:

P
k

= F
k
P

k−1F
T

k
+ G

k
Q

k
GT

k
(9)

where F
k

and G
k

are the Jacobian matrices of partial
derivatives of the non-linear model function f with respect
to the state x

k
and the noise v

k
, respectively.

2) Update using DVL measurements: The model predic-
tion is updated by the standard Kalman filter equations each
time a new DVL measurement arrives:

z
DV L,k

= [u
b
, v

b
, w

b
, uw , vw , ww , φi , θi , ψc , zdepth

]T (10)

where subindex b stands for bottom tracking velocity, w for
through water velocity, i for inclinometers and c represents
the compass. The measurement model is:

z
DV L,k

= H
DV L,k

x
k|k−1 + w

k
(11)

H
DV L

=


03×3 03×3 I3×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3

0 0 1 01×3 01×3 01×3

 (12)

where w
k

(measurement noise) is a gaussian zero-mean
white noise:

E[w
k
] = 0; E[w

k
w

T

j
] = δ

kj
R

DV L,k
(13)

Since the DVL sensor provides a status measurement for
bottom tracking and water velocity, depending on the quality
of the measurements, different versions of the H matrix are
used to fuse one (removing row 2), the other (removing row
1), or both readings (using the full matrix).
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3) Update using MRU measurements: Whenever a new
attitude measurement is available from the MRU sensor,
the model prediction is updated using the standard EKF
equations:

z
MRU,k

= [φ, θ, ψ]T , z
MRU,k

= H
MRU,k

x
k|k−1 + w

k
(14)

H
MRU

=
[

03×3 I3×3 03×6

]
(15)

where w
k

(measurement noise) is a gaussian zero-mean
white noise:

E[w
k
] = 0; E[w

k
, w

T

j
] = δ

kj
R

MRU,k
(16)

C. Scan forming

The navigation system presented above is able to estimate
the robot’s pose, but the uncertainty will grow without limit
due to its dead-reckoning nature. Moreover, we are only
interested in the robot’s relative position (and uncertainty)
with respect to the beginning of the scan (I). Hence a slight
modification to the filter is introduced making a reset in
position (setting x, y, z to 0 in the vector state) whenever
a new scan is started. Therefore, while the filter is working,
the estimated position is always relative to the position where
the first beam of the scan was gathered (I). Note that it is
important to keep the ψ value (it is not reset) because it
represents an absolute angle with respect to the magnetic
north and a reset would mean an unreal high rotation during
the scan. The same thing applies to φ and θ. Since we are
only interested in the uncertainty accumulated during the
scan, the reset process also affects the x, y, and z terms of
the covariance matrix P. Now, the modified filter provides
the robot’s relative position where the beams were gathered
including its uncertainty accumulated during the scan. Hence,
using a similar procedure than in [18], it is possible to
reference all the ranges computed from the beams to the
initial frame I , removing the distortion induced by the robot’s
motion by using the following method.

Let
• ρ ≡ N(ρ̂,Pρ) be a r.g.v. corresponding to the polar

measurement where ρ̂ = (β, r) is the observed mea-
surement and Pρ its corresponding uncertainty.

• xB
R ≡ N(x̂B

R,PBR) be a r.g.v. corresponding to
the robot’s uncertain position where the ρ beam was
gathered. This value is estimated by the EKF and is
represented in the northern referenced frame B.

• xI
B ≡ N(x̂I

B,PIB) be a r.g.v. corresponding to the
transformation needed to map B frame to I frame. In
our particular case, this is a null translation followed by
a rotation used to align B with I .

• xR
S be a deterministic vector that describes the position

and attitude of the sensor frame S with respect to the
robot’s frame R. Note that this is non-random rigid body
transformation.

then, it is possible to compute the position (and uncer-
tainty) of any observed point referenced to the initial frame
I as follows:

Fig. 2. Scan forming process. Point a) represents the position of the robot
at the first beam of the scan, point b) represents it at the position of the
beam k.

1) pS = P2C(ρ) ⇒ pS = N(P2C(ρ̂)︸ ︷︷ ︸
p̂S

,JSPρJT
S︸ ︷︷ ︸

PS

)

where P2C(ρ) turns polar into Cartesian coordinates

and JS =
∂ P2C(ρ)

∂ρ

∣∣∣∣
ρ̂

2) pR = xR
S ⊕ pS ⇒

pR = N(xR
S ⊕ p̂S︸ ︷︷ ︸

p̂R

,JR⊕PSJT
R⊕︸ ︷︷ ︸

PR

)

where JR⊕ =
∂ xR

S ⊕ pS

∂pS

∣∣∣∣
p̂S

3) pB = xB
R ⊕ pR ⇒

pB = N(x̂B
R ⊕ p̂R︸ ︷︷ ︸

p̂B

,JB1⊕PBRJT
B1⊕ + JB2⊕PRJT

B2⊕︸ ︷︷ ︸
PB

)

where JB1⊕ =
∂ xB

R ⊕ pR

∂xB
R

∣∣∣∣
x̂B
R

,JB2⊕ =
∂ xB

R ⊕ pR

∂pR

∣∣∣∣
p̂R

4) pI = xI
B ⊕ pB ⇒

pI = N(x̂I
B ⊕ p̂B︸ ︷︷ ︸

p̂I

,JI1⊕PIBJT
I1⊕ + JI2⊕PBJT

I2⊕︸ ︷︷ ︸
PI

)

where JI1⊕ =
∂ xI

B ⊕ pB

∂xI
B

∣∣∣∣
x̂I
B

,JI2⊕ =
∂ xI

B ⊕ pB

∂pB

∣∣∣∣
p̂B

First, the function P2C transforms the range and bearing
data ρ = (β, r)T from Polar space to Cartesian space. The
result is the observed point pS referenced to the S frame. As
stated, pS is a r.g.v which mean (p̂S) and covariance (PS)
can be easily computed. Then, by means of a rigid body
transformation, the point is referenced to the robot’s frame
R. Again, the new representation pR is a r.g.v with mean
p̂R and covariance PR. Now, the robot’s relative position
xB
R computed with the EKF is compounded with the robot’s

referenced point pR to get the r.g.v. pB with mean p̂B

and covariance PB. Finally, the last compounding operation
rotates the point to reference it to the initial frame I . As in
the previous cases, pI is a r.g.v. with a known mean (p̂I)
and covariance PI. Fig. 2 illustrates this process while the
scan grabbing process in algorithmic notation is described in
Algorithm 2.

IV. THE MSISPIC ALGORITHM

Once the pIC and the ScanGrabbing algorithms have been
set up, it is very simple to localize the robot. This is the
purpose of the MSISpIC algorithm (see Algorithm 3), which
iteratively grabs two scans and register them using the pIC
algorithm. It is worth noting that the pIC takes as input
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Algorithm 2 Scan grabbing
[Snew, q̂new,Pqnew ] = ScanGrabbing() {
ResetDeadReckoningXY Z()
[x̂I

B,PIB] = GetDeadReckoning()
for all beams {
beam = GetBeam()
beam = Segment(beam)
[ρ̂,Pρ] = LocalMaximaFinder(beam)
[x̂B

R,PBR] = GetDeadReckoning()
//ρ̂ and Pρ from the local frame I
n̂ = x̂I

B ⊕ x̂B
R ⊕ xR

S ⊕ P2C(ρ̂)
Pn = JI1⊕PIBJI1⊕

T + JI2⊕[JB1⊕PBRJB1⊕
T+

JB2⊕JR⊕JS⊕PρJS⊕
TJR⊕

TJB2⊕
T ]JI2⊕

T

Snew = Snew ∪ {[n̂,Pn]}
}
q̂new = x̂B

R; Pqnew = PBR

}

two consecutive scans (Snew and Sref ) and its relative
displacement which coincides with the position occupied by
the robot at the end of the first scan (q̂ref ). The output is an
improved estimation of the robot displacement (q̂new). The
iterative compounding of the relative displacement allows to
track the global robot position.

Algorithm 3 MSISpIC
MSISpIC() {

[Sref , q̂ref ,Pqref
] = ScanGrabbing()

q̂global = 0
while(true) {

[Snew, q̂new,Pqnew ] = ScanGrabbing()
q̂pIC = pIC(Sref , Snew, q̂ref ,Pqref

)
q̂global = q̂global ⊕ q̂pIC

Sref = Snew; q̂ref = q̂new

}
}

V. EXPERIMENTAL RESULTS

The method described in this paper has been used with
a dataset obtained in an abandoned marina located in Sant
Pere Pescador, on the Catalan coast [18]. The experiment was
carried out using ICTINEUAUV [6] traveling along a 600m
path. Because the Differential Global Positioning System
(DGPS) signal is not available when submerged, a surface
buoy equipped with a DPGS receiver was attached to the
robot in order to gather the ground truth trajectory. The
MSIS was configured to scan the whole 360◦ sector and it
was set to fire up to a 50m range with a 0.1m resolution
and a 1.8◦ angular step. Dead-reckoning was computed
using the velocity reading coming from the DVL and the
heading data obtained from the MRU sensor, both merged
using the described EKF. Standard deviation for the MSIS
sensor was set as it is specified by the manufacturer, 0.1m in
range and 1.8◦ in angular measurements. The whole dataset

was acquired in 53min and the off-line execution of the
algorithm implemented in MATLAB took around 16min in
a CoreDuo@1,83GHz laptop.

Fig. 3.a shows the trajectory of the DGPS and the raw map
plotted on an orthophotomap used as a ground truth. Fig. 3.b
and 3.c show the trajectories and raw maps estimated using
the dead-reckoning method and the MSISpIC algorithm
respectively. It can be clearly appreciated that the dead-
reckoning estimated trajectory suffers from an important drift
which is considerably reduced when the MSISpIC algorithm
is used. Most of the error of the MSISpIC estimated tra-
jectory appears when the robot is traversing an area where
the scan only observes one or two walls parallel to the
robot path, being able to correct the lateral displacement
but still drifting in the forward direction. It is worth noting
that, even in the presence of structures in all the directions,
scan matching algorithms are expected to drift due to its
iterative formulation. Note that we are performing scan to
scan registration and not scan to map registration.

The absolute error of dead-reckoning and MSISpIC trajec-
tories with respect to the DPGS ground truth are depicted in
Fig. 3.d. The results show an important improvement of the
MSISpIC respect to dead-reckoning trajectory, which after
traveling the 600m path differs from DGPS around 40m
while the MSISpIC maximum difference is set at 12m.

Fig. 3.e and 3.f show an occupancy grid map built using
the dead-reckoning and MSISpIC estimated trajectories re-
spectively plotted on the orthophotomap. Both maps are built
using an standard occupancy grid mapping algorithm [19]
with simple range finder model [20] to project the sensor data
into the map. The cell resolution of the map is 0.4m. The
probabilities for the sensor model were set up experimentally
to be 0.3, 0.5 and 0.9 for the free, the unknown and the
occupied cells respectively. The color scale of the maps is
blue for the free space, transparent green for the unknown
area and from yellow to red for the occupied cells.

Using the dead-reckoning trajectory, most of the map
(Fig. 3.e) allows to distinguish the shape of the marina
except at last part (after the corridor) where the points that
should compound the left wall are spread away. The map
generated with the scan matching trajectory (Fig. 3.f) shows
a substantial improvement with respect to the one generated
using dead-reckoning as the walls are clearly less sparse.

VI. CONCLUSIONS

This paper proposes a variation of the pIC algorithm called
MSISpIC which is able to perform underwater scan matching
using a MSIS. To deal with the motion induced distortion of
the acoustic image, an EKF is used to estimate the robot mo-
tion during the scan. The filter uses a constant velocity model
with acceleration noise for motion prediction and velocity
(DVL) and attitude measurements (MRU) for updating the
state. Through the compounding of the relative robot position
within the scan, with the range and bearing measurements
of the beams gathered with the sonar, the acoustic image
gets undistorted. Assuming Gaussian noise, the algorithm is
able to predict the uncertainty of the sonar measurements
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a) b) c)

d) e) f)

Fig. 3. Results: a) b) and c) Raw map and trajectories comparison between DGPS (a), dead-reckoning (b) and the MSISpIC output (c) over the
orthophotomap. d) Dead-reckoning and MSISpIC absolute error respect DGPS. e) and f) Maps generated using dead-reckoning and MSISpIC trajectories
respectively.

with respect to a frame located at the position occupied
by the robot at the beginning of the scan, before applying
the standard pIC algorithm. The proposed method has been
tested with a dataset acquired during a survey mission in an
abandoned marina located in the Girona coast. The results
show substantial improvements in trajectory correction and
map reconstruction.

VII. FUTURE WORK

Once it has been experimentally proven that sonar scan
matching has the potential to improve the DVL-based navi-
gation, we are currently working on the cloning of the robot
pose within the EKF in order to: 1) smooth the trajectory
during the scan and 2) use the result of the scan matching as
a constrain between the boundary poses of the scan in order
to correct the full scan trajectory. Next step will consist of
gathering a new dataset in an unstructured environment to
check how the algorithm performs in such situation.
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