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Abstract - This paper deals with the problem of navigation for 
an Unmanned Underwater Vehicle 0 through image 
mosaicking. It represents a first step towards a real-time vision- 
based navigation system for a small-class low-cost W. We 
propose a navigation system composed by: (i) an image mosaicking 
module which provides velocity estimates; and (ii) an Extended 
Kalman Filter based on the hydrodynamic equation of motion, 
previously identified for this particular W. The obtained system 
is able to estimate the position and velocity of the robot, Moreover, 
it is able to deal with visual occlusions that usually appear when the 
sea bottom does not bave enough visual features to solve the 
correspondence problem m a certain area of the trajectory. 

I. INTRODUCTION 

When an autonomous vehicle has to carry out a mission, one 
of the most important asp-=& is its localition within the 
mission area. TEs is a difficult task when the mission takes 
place in an unstructured location, especially in underwater 
environmmts where there is high clutter in the regions of 
interest and visibility is limited. Nevertheless, for a reliable 
long-term Unmanned Underwater Vehicle 0 mission, 
precise position and anitude measurements are required The 
ideal solution is to use absolute measurements. This is easy for 
the heading since gyro-compasses are inexpensive and easy to 
use on-board On the othm band, problems arise when 
measuring the position of the vehicle. In the case of underwater 
vehicles, GPS systems cannot be used while the vehicle is 
submerged A possible solution to this problem consists in using 
a transponder network [l], but this option mises the mission 
cost, since transpondas have to be deployed prior to the mission 
(Long Base Lme) or a mother ship is necessaty Shoa 
Base Line). A low-cost e f f d v e  way to position the UUV 
during a mission consists in using dead reckoning techniques. 
This implies the use of “distance-Wweled sensors”, which 
provide readings relative to previous positions of the vehicle. 
For low-speed robots, wbere acceleration is very small, Inertial 
Navigation Systems ( tNS) are not suitable and Doppler Velocity 
Log @VL) systems are usually preferred. Although DVL is an 
inmesting option, its large size and high cost make it nnsuitable 
for the class of UUV we are dealing with (see section Ill). one 
of the possible dead reckoning approaches is based on visual 

mosaics [6]. ‘Ibis tecbnique consists of the use of a down- 
looking camera carried by the vehicle, which takes images of 
the sea bottom The images are analyzed by a system that 
estimates the motion of the vehicle. 

As a dead reckoning system, the typical drawback of 
visual mosaic is that small errors accumulate at each time 
instant resulting in increased position drift over long periods. 
Moreover, when the UW passes over “blind” regions (e.g. 
dark regions, sand banks, etc.) the mosaicking system does 
not have enough information to estimate the motion of the 
vehicle. In the following sections we will refer to this 
problem as an occlusion. 

We conceive the navigation system for a small-class UW as 
a system composed by an image mosaicking module, a lowsost 
WS (for attitude estimation) and a sonar altimeter (for altitude 
estimation). All these sensors are integrated by means of an 
Extended Kalman Filter 0. This paper presents the first step 
towards this integrated navigation system Our proposal consists 
of using a vision-based sensor (mosaicking) together with the 
hydrodynamic model of the UW and integrate3 through an 
EKF. The filter provides position and velocity estimates 
reducing the noise, having also the role of estimating the motion 
of the vehicle along ‘blind” regions (occlusions)). 

The paper is organized as follows. First, a brief overview of 
the mosaicking system structclre and funaionality is presented. 
Next, URIS UUV is described, detailing its model and the 
implementation of an Extended Kalman filter. Then, some 
experiments are reported, illustrating the obtained results. 
Finally, the conclusions are presented, along with further 
work 

It. THE MOSAICKING SYSTEM 

The creation of the mosaic is accomplished in the following 
stages: First, a detector of inreresf points is used to select the 
most reliable features of the image and the correspondences 
of these features are matched in the next image of the 
sequence. Next, the system identifies the points that describe 
the dominant motion of the image by means of a robust 
outlier-detection algorithm. Once the pairs of features 
describing the dominant motion have been selected, a 2D 
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planar transformation math relating the coordinates of both 
images is computed. Finally, the registered images are 
merged onto a composite mosaic image [6]. 

A. Selection of Interest Points 

‘the first step of the mosaickiog algorithm consists of the 
selection of adequate interest points in the present image to be 
matched in the next b e .  The seledion of robust interest 
points depends, to a large extent, on the technique used to detect 
correspondences. Normally, small windows containing high 
frequencies are quite adequate since they are located at the 
border of different image texhres. For this reason, our interest 
point detector searches for small mnes presenting high sptial 
gradient inf’tion in mre than one direction. To do this, the 
image is convolved with two directional high-pass filters (in the 
x and y directions). When a feature is selected, the algorithm 
goes on to search for any other selected features in its 
neighborhood If a higher-valued feature exists in this 
neighborhood, only the hest feature is selected as an interest 
point. 

B. Region Matching and Texture Characterization 

Finding correspondences between images is not an easy 
task in computer vision, and even less in underwater imaging. 
On that account we pay special attention to the matching 
process, Canying out a two-step approach. First, a block- 
matching strategy is applied to the gray-level images, selecting 
a set of candidate matcbes for a given interest point. Then a 
texture characterization of the points is used for selecting the 
best correspondence. For every interest point in the present 
image I, a correlation function is computed in the next 
imagel‘. This is performed by comparing a small nxn 
window centered at the interest point m = ( x , y )  with all the 
possible locations of the feature m’ = (x, y )  in the next image. 

ARer a process of normalization, the texture vector of the 
interest point is compared with the textural properties of all the 
possible matches by means of the weighted Euclidean 
distance. A texture similarity measure is then obtained for 
every possible correspondence. 

After this process, every candidate match bas two 
measures of similarity: (1) a block-matching correlation 
score; and (iz] a texture score produced by feature 
characterization. By averaging these two values, the best 
correspondence is selected. 

Once this procedure has been accomplished, a unique 
match is obtained in imageI’ for every interest point in 
image I. 

C. Estimating the Dominant Motion through Outlier 
Rejection 

After the correspondences have been solved, a set of 
displacement vectnrs relating the feahms of two images of the 

sequence is obtained. Every vector relates the wnrdinates of 
the same feature in both images. Our aim is now to recover the 
apparent motion of the camera from these featum. This can be 
done by computing a 2D transfmmation ma th  T which 
relates the mdinates of a scene point in frame I‘with the 
wordioates of the same point in the previous t i m e  I ,  i.e. 
m=T.m’, where m~=(x, .y , , l )~  and m’=(~,’,y~’,I)~ 
denote a correspondence point in two consecutive images; 
and the symbol - indicates that the points are expressed in 
homogeneous coordinates. The matrix that per fom this 
transformation is known as “bomography”, and can be 
computed by S M  if 4 or more pairs of matchings are 
available [4]. 

Although an accnrate texture analysis is devoted to the 
matching procedure, some false matcbes (known as outliers) 
could still appear among the right correspondences. For this 
reason, a robust estimation method bas to be applid The 
L.eust Mediun of Squares (LMedS) algorithm can be used for 
finding the mahix T which minimizes the median of the 
squared residuals [9]. 

D. Mosaic Consttuction 

‘the process of mosaic consbudion selects the initial image 
of the sequence as a base h e .  The mosaic coordinate system 
is placed at the origin of this reference h e .  Then, when 
image @+I) has TO be added to the mosaic, a 2D planar 
transformation ?HI provides its best fitting with respect to the 
previous image. In order to obtain a global regisIration from 
image (kl) to the mosaic reference frame, the following 
matrix product has to be performed: 

‘L = n %+I, (1) 
,-I 1 

where ’TH, is the homography that produces the co-ordinates 
of a point in the mosaic image, from the coordinates of the 
same point in image (Hl) .  

Once a first estimate of the position of the present image 
is known in the mosaic h m e ,  this position c m  be refined by 
registering the image directly with respect to the mosaic 
image, reducing accumulation of drift errors [71. 

m. URIS uuv 
The ~ v i g a t i ~ n  system proposed in this paper has been 

desiped for URIS, a small-class low-cost uu\I developed at 
the University of Girona. The hull is composed of a stainless 
steel spbere with a diameter of 350 mm, designed to 
withstand pressures of 3 atmospheres (30 meters depth). On 
the outside of the sphere there are two video cameras 
(forward and down-looking) and 4 thrusters (2 in the X 
direction and 2 in the 2 direction). Due to the stability of the 
vehicle in pitch and mll, the robot has four degrees of 
fteedom @OF): surge, swoy, heme and y m .  Except for the 
swuy DOF, the other DOFs can be directly controlled. The 
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robot has an onbnard PC-104 computer, running the real- 
time operating system QNX. In this computer, the low and 
high-level controllers are executed. An umbilical wire is used 
for communication, power and video signal transmissions. 
A11 the experiments were carried out in a water tank located 
at ow lab, where an artificial environment was setup. 

IV. HYDRODYNAMIC MODEL 

As described in the literature [5], the non-linear 
hydrodynamic equation of motion of an underwater vehicle 
with 6 DOF, in the body fixed kame, can be conveniently 
expressed as': 

'r+G(q) -D( ' U )  Bu+ rp = 
(2) 

where ' r  is a vector which contains forces and moments 
from the thrusters, G represents the gravity and buoyancy 
forces, includes Roll, Pitch and Yaw angles, D is the 
matrix of linear and quadratic damping coefficients, 'U is 
the acceleration vector of the vehicle,Bu is the velocity 
vector, rp are non-modeled perturbations, 'M, is the 
inertia matrix, MA models the added mass matrix, 'C, is 
the Coriolis matrix of rigid body and CA is the Coriolis 
matrix of added mass. 

Through the manipulation of (2) the robot acceleration 
can he computed. Velocity can he obtained through 
integration and the position rate of change can be computed 
through the following kinematic transformation: 

( B ~ n e + ~ A ) .  %+( B ~ , , ( B ~ ) + ~ A ( B ~ ) ) . B ~  

"rj = J(0). ' U  (3) 

For URIS U W ,  the model can be simplified since it is 
stable in pitch and roll, so it can be formulated in 4 degrees 
of freedom. Section V shows the discrete-time model used 
for the experiments. The dynamic parameters needed in eq. 
(U), where previously identified through exhaustive 
experimentation. Refer to [3] for details about the model 
identification. 

V. EXTENDED W M A N  FILTER 

Due to the non-linear behavior of the dynamics model of 
an UUV, an extended K a h n  filter has been considered as a 
convenient method to formulate the navigation problem [XI: 

2; =f(i,-,,u,,O) (4) 

P; = A,Pk.,A: +WkQ,.,Wr (5) 

K, = P;H:(H,P;H: +V,R,V[)-' (6) 

' MI the equations shown heareafler follow the standard nomencla- 
ture proposed in [SI. 

(7) 
Pk = (I-K,H,)P; (8) 

i - 2 -  
k - i + K k ( z k - K % , O ) )  

Fig. 2 shows the block diagram of !he proposed 
navigation system. The output of the photomosaicking 
system, the velocity estimation, is used as the measmement 
update for the EKF. The other input to the filter is the control 
input U, which is the vector of the angular speed of the 
propellers, from which we calculate the forces and torques 
affecting the robot. These are used as the input to the model 
in order to estimate velocity and position. 

In the following sections, the main components of the 
filter are presented. 

A. Implementation of the filter 

A.1 State vector 

been chosen: 
To implement the filter the following state variables have 

x = ( x  y z y U v w r)' (9) 

The k t  4 components are the 3D position and the 
heading of the vehicle, while the last 4 components are the 
h e a r  velocity vector and the angular speed. 

A.2 Discrete time model 

Adapting eqs. (2) and (3), and simplifymg the model to 4 
degrees of freedom, the discrete time model shown in eq. 
(10) is obtained. 

Fig. 2. Block d i a w  of  the propod navigation system 
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A.3 Matriia ofthefllter 

following matrices: 
To complete the filter is also necessary to determine the 

D A: Jacobian matrix of partial derivatives of the model 
with respect to the state vector. 
W: Jacobian matrix of partial derivatives of the model 
with respect to the process noise vector. 
H: Jacobian matrix of partial derivatives of the sensor 
model respect to the state vector. 
V Jacobian matrix of partial derivatives of the sensor 
model with respect to the measurement noise vector. 

w Q: covariance matrix of process noise. 
D R covariance matrix of measurement noise. 

The set of previously described matrices is not 
reproduced here due to space limitations. However, the 
peculiar behavior of matrix H is detailed below. 

H=diag(O 0 0 0 1 1 0 I) H=O,,, (11) 

Matrix H has two different forms, as can be seen in (1 1). 
The iirst value is used to merge the velocity measures Boom 
the mosaic based sensor with the estimate of the model. Note 
that the mosaic provides information about velocities in the 
(X-Y) plane and angular speed in the yaw DOF. The second 
coniiguration of H isolates the model estimation, or what is 
the same, no measurement update is taken into account to 
correct the prediction of the model. It could be used to 
disconnect a damaged sensor, or as in the experiments 
described in the following section, to deal with an occlusion. 

Covariance matrices Q and R describe the process and 
measurement noises. Both are considered diagonal to 
simplify the tuning of the filter. The values in the diagonal 
are the noise variances affecting their corresponding state 
variables. 
Q=diag(ui U; U; U; U,? U: U: 0:) (12) 

VI. EXPERIMENTAL RESULTS 

In this section we present a representative navigation 
experiment carried out in a water tank located at our lab. An 
artificial bottom was set up on the bottom of the water tank 
for this experiment. The robot was teleoperated following an 
approximately circular trajectory. The duration of the 
experiment was 82 seconds. During the experiment, the 
thruster set-points, as well as the images acquired by the 
camera (2,041 images), were saved together with their time 
stamps. Afterwards, using this sampled data, two different 
experiments were carried out offline. The first one consisted 
in estimating the trajectory of the vehicle using only the 
information provided by the image sequence. In the second 
one, an occlusion was simulated discarding a sequence of im- 
ages dnring a certain p e n d  of time, and the trajectory was 
estimated by taking into account all the available data 
(images and navigation data). 

A. Position and velocity estimation 

In the h t  set of experiments the main goal was to tune 
the EKF (i.e. adjust the values in the diagonal of covariance 
matrices Q and R). The images acquired by the mosaicking 
system were processed to estimate the trajectory followed by 
the vehicle. The filter was tuned by fmding a set of 
parameters which provide a response similar to the one 
estimated by the mosaicking system but filtering the noise, 
therefore, obtaining a smooth velocity estimate. To find the 
best set of variance values it was necessaty to perform 
multiple tests and compare its responses. 

As shown in Fig. 3, good velocity estimations were ob- 
tained with the EKF in the surge, swoy and yaw DOF. We 
can observe that the filter is able to reduce the noise, while 
providing a non-delayed estimation. There is, in general, a 
good agreement between the model and the measurements, 
except for swoy velocity. Note that the prediction of the 
model moves towards the positive side while the mosaic 
data oscillates around zero. For movements l i e  the one 
performed in this experiment, where the vehicle describes a 
circular trajectory, we can expect a displacement in the 
sway DOF due to the centrifuge force, so we can consider 
that the model response is reasonable. In the data from the 
mosaic we could not see this behavior; instead we observed 
an oscillation in the sway velocity. The response of the 
resulting mosaic is probably caused by a small oscillation 
in the roll DOF. A “similarity” motion model (with 4 DOF: 
translation in X and Y, rotation and scaling) was assumed 
for building the mosaic, considering roll to be zero. Hence 
this small movement in roll would be interpreted as 
oscillatory sway displacements. 

821 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:10:33 UTC from IEEE Xplore.  Restrictions apply. 



Velocity in surge 

Velocity in sway 

40 
T1. 0 ,  

Velocity in yaw 

I(.m.. ..11.1. 

IO 1 0  1 0  O D  IO I. 
T m .  (.) 

Fig. 3. Velocities obtained from derivation of the pit ion measured witb the mosaic, m dashed line, in comparison with the Kalman filtered o m ,  in 
n o d  he. The model prcdiercd velocity is illustratsd as a dottzd one. 

B. Occlusion test 

The second experiment was performed in order to test the 
capability of the system to navigate in the presence of 
occlusions. In such cases, no measurement update can be 
provided by the mosaicking system, so the only available 
information to estimate the trajectory of the vehicle is the 
data provided by the model. 

We wanted to test whether the dynamic model of the 
vehicle can be used to obtain navigation estimates when no 
other sensor data is available (occlusion situation). The EKF 
provides a natural way to deal with occlusions, since matrix 
B can be switched when no visual information is available. 
Fig. 6 shows the results of the experiment including one 

occlusion, delimited by the two stars. The blind navigation 
took place for 19 seconds (480 kames of the mosaicking 
system). During tbis period of time, the filter followed the 
prediction of the model without taking into account any 
visual information. As expected, a certain deviation takes 
place due to the absence measurements. However, it is 
smaller than the one that would be obtained if a constant 
velocity model was to be used. 

W. CONCLUSIONS 

In this paper we have presented a MVigatiOn system 
based on the integration of a photo-mosaicking sensor and 
the bydrodynamic model of small-class low-cost U W .  An 
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EKF has been used for the integration and it is expected that 
it will allow a simple integration of new sensors (INS, sonar 
altimeter, etc.). The capability of the system to provide un- 
delayed velocity estimates has been shown. Moreover, the 
proposed system has proved to provide good position and 
velocity estimates along “blind” regions. 

WI. FLJRTHER WORK 

One of the problems in the assessment of the proposed 
navigation system is the need of a reference system to 
compare with. In this sense, in [2] we developed a higb- 
accuracy navigation system based in a coded pattern located 
in the bottom of the ~ o o l .  

t h c  
of 

(41 

In the future w e  plan to modify this system by placing 
! pattern on the wall of the pool. In this way, the accuracy 
the system proposed in this paper could be evaluated. 
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