
Asymmetric Tunnels in P2MP LSPs as a Label Space Reduction Method

F. Solano
Institut d’Informàtica i

Aplicacions
Universitat de Girona,

Spain.
fsolanod@eia.udg.es

R. Fabregat
Institut d’Informàtica i

Aplicacions
Universitat de Girona,

Spain.
ramon@eia.udg.es

Y. Donoso
Departamento de Ingeniería

de Sistemas y Computación,
Universidad del Norte

Barranquilla, Colombia.
ydonoso@uninorte.edu.co

J.L. Marzo
Institut d’Informàtica i

Aplicacions
Universitat de Girona,

Spain.
marzo@eia.udg.es

Abstract - Traffic Engineering objective is to optimize network

resource utilization. Although several works have been published
about minimizing network resource utilization, few works have
been focused in LSR label space. This paper proposes an
algorithm that gets advantage of the MPLS label stack features in
order to reduce the number of labels used in LSPs. Some
tunnelling methods and their MPLS implementation drawbacks
are also discussed. The described algorithm sets up the NHLFE
tables in each LSR creating asymmetric tunnels when possible.
Experimental results show that the described algorithm achieves
a great reduction factor in the label space. The presented works
applies for both types of connections: P2MP and P2P.

Keywords – Asymmetric tunnels, label space, label stack, label

space reduction, longest segment first, NHLFE, traffic
engineering, MPLS.

I. INTRODUCTION

Traffic engineering (TE) is concerned about improving

performance of operational networks usually considering
quality of service (QoS) requirements. The main objective is to
reduce congestion hot spots, improve resource utilization and
provide adequate QoS for final users. These can be achieved
by setting up explicit routes over the physical network in such
a way that the traffic distribution is balanced across several
traffic trunks, giving the best possible service [1].

Multi Protocol Label Switching (MPLS) aims to work with
these TE schemes by setting up label switched paths (LSPs) as
needed to transmit efficiently Internet Service Provider’s (ISP)
customer’s flows with their requirements. Customer
requirements are flow dependent, i.e. delay, packet loss, jitter,
etc. Although this can be achieved in many ways using
different algorithms [2], ISPs must be aware of label switched
router (LSR) internal resources utilization such as the label
space.

Each time a LSP is established, all the LSR that belongs to it
must use a label in order to identify the LSP transiting by it,

This work was partially supported by the MCyT under the project

TIC2003-05567.
The work of Yezid Donoso was supported by the Universidad del Norte

(Colombia) under contract G01 02-MP03-CCBFPD-0001-2001.
The work of Fernando Solano was supported by the Ministry of

Universities, Research and Information Society (DURSI) of the Government
of Catalonia under contract 2004FI-00693 and 2005FIR-00379.

and consequently every packet of this LSP must carry this
label encoded inside it when arriving at that LSR. When a
packet is received by a LSR, the LSR must look for the packet
label and then search for a Next Hop Label Forwarding Entry
(NHLFE) that refer to this label in order to decide which
interface will be used to reach the next hop in the network [3].
Clearly, the more LSPs a LSR support, the more NHLFEs will
exist.

Reference [3] establishes that each label must be encoded in
a 20-bits field, allowing only 220 (1.048.576) possible different
labels in a LSR. Despite this is a sufficient number for label
encoding in a single LSR, large enough NHLFE could cause
long delays while a LSR looks up in its forwarding table for
the next hop LSR each time a packet is received. Therefore, a
smaller forwarding table will reduce LSR memory
requirements and aids LSR to forward packets faster [4], [5]
[6].

Now, considering Multi Protocol Lambda Switching
(MPλS), this problem achieves a greater magnitude. The
MPLS label space is comparatively large (one million per
port), whereas there is a relatively limited number of lambdas
and Time-division Multiplexing (TDM) channels.

To support LSP tunnelling, MPLS defined a label stack for
packets [7] and some stack operations set inside NHLFEs [3].
These operations are: a) replace the label at top for a new one
(label swapping), b) pop the stack, c) replace the label at top
for a new one and then push one or more onto stack.

Although IETF have not decide yet how to set up Point-to-
MultiPoint (P2MP) LSPs in MPLS, this paper proposes an
algorithm that uses the MPLS label stack in a different way to
reduce the label space and hence improve the way MPLS uses
NHLFE in P2MP LSPs. The terminology used in this
document is the one established in [8].

This work has been organized as follows. Some studies
about label space reduction and label stack size are discussed
in section II. Several label space reduction techniques are
explained in section III together with the asymmetric tunnel
concept. An asymmetric tunnelling algorithm for P2MP LSPs
using MPLS label stack is described in section IV. Section V
shows some simulation results with different topologies and
randomly generated P2MP requests. Finally, conclusions and
further studies are presented in section VI.

430-7803-8938-7/05/$20.00 (C) 2005 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 12:11:34 UTC from IEEE Xplore. Restrictions apply.

This work has been focused in P2MP connections since they
can be seen as a general version of P2P connections; thus, the
presented works applies for both types of connections.

II. LABEL SPACE REDUCTION METHODS

The MPLS architecture allows aggregation in Point to Point

(P2P) LSPs. Aggregation reduces the number of labels that are
needed to handle a particular set of flows, and may also reduce
the amount of label distribution control traffic needed [3].

With aggregation, [3] refers to a MultiPoint-to-Point tree
(MP2P) created by merging many P2P LSPs, i.e. a tree rooted
at an egress LSR and has ingress LSRs as leaves. In other
words, if two P2P LSPs follow the same path from an
intermediate LSR to the egress LSR, this method allocates the
same label to both P2P LSPs and thus reduce the number of
used labels. In this case, labels assigned to different incoming
links are merged into one label assigned to an outgoing link.
Fig. 1 shows different P2P connections in which a single
MP2P is established between three ingress LSRs {N1, N5, N8}
and the egress LSR N11.

Fig 1. Several P2P connections merged into a single MP2P.

In the downstream to upstream label assignation process [3],

i.e. downstream LSR assign to previous LSR (upstream LSR)
its outgoing label, N9 confers the same label L1 to N8 and N6
(see section 3.14 of [3] for more information).

In [5], [9] and [10], algorithms that find P2P LSPs which
can be merged into a minimal number of MP2P LSPs are
considered. Reference [10] proves an upper bound of N
(number of nodes) + M (number of links) for the label space.
In these works ([5], [9] and [10]), note that minimising the
label space is a base criterion to find out LSP’ routes. Because
ISP’s customer’s requirements are often measured as QoS
requirements (flow dependent), we think that the label space
should not be considered as an objective function (at most a
model restriction) in any optimisation model that deals with
finding LSP’s path.

To reduce the number of used labels for multicast traffic,
another label aggregation algorithm is presented in [6]. In this
case, if two P2MP LSPs follow entirely the same tree from
ingress LSR to the egress LSR set, the aggregation algorithm
allocates the same labels to both P2MP LSPs. The algorithm
can not reduce the number of labels when equals sub-P2MP
trees1 are considered.

In [4], a comprehensive study of label size versus stack
depth trade-off for MPLS routing protocols on P2P
connections is undertaken. They show that, in addition to LSP
tunnelling, label stacks can also be used to reduce the number
of labels required for setting up LSPs in a network using a
special coding technique; and proved some label space upper
bounds under certain type of conditions. Gupta, Kumar and
Rastogi [4] inferred a lower and upper bound for two basic
problems: (1) FIXED STACK ROUTING: Given a bound on
the stack depth, minimize the number of labels used, and (2)
FIXED LABEL ROUTING: Given a fixed number of labels,
minimize the stack depth in P2P connection, but never
proposed and algorithm which set ups the LSR forwarding
table using the label stack when a set of LSPs are given.

It should be pointed out that so far we have not found an
algorithm that only set ups LSR forwarding tables (i.e. no path
finding algorithm) in order to minimise the number of labels
by using the label stack in P2MP connections. Even more, to
date, there is no literature about the novel asymmetric tunnel
concept.

III. ASYMMETRIC TUNNELS AS A LABEL SPACE

REDUCTION METHOD

To illustrate these label space reduction methods

(aggregation and LSP tunnelling using label stack), suppose
that P2MP1 and P2MP2 are two trees (see Fig. 2) that can be
established on the NSF network.

Fig 2. Two P2MP aggregated at N10-N12-{N8, N13} and “stacked” at

N0-N3-N10.

As P2MP1 and P2MP2 have equal sub-P2MP tree starting at

N10 and ending at {N8, N13} through N12, the aggregation
scheme can be used and therefore a single label is needed in
this sub-P2MP tree. Although {N0→N3→N10} is a path used
by both P2MPs trees, previous aggregation scheme can not be
used here because it will cause either N10 forwards P2MP2
packets to N11 (i.e. packets duplication), or N10 stops
forwarding P2MP1 packets to N11 (i.e. multicast incomplete
replication). To reduce the label space the label stack scheme
can also be used. In this case, N0 can push a label into P2MP1
and P2MP2 packets stack and this label can be popped when
packets reach N10. Using these two reduction methods in the
example, the total amount of labels in the network is dropped
off from 13 to 9.

44

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 12:11:34 UTC from IEEE Xplore. Restrictions apply.

The LSR tables of the example above can be summarised as
follows (Table I) when both reduction methods are applied.

Because the labels are upstream assigned, what should be
regarded to minimise is the number of incoming labels per
LSR, e.g. the number of incoming labels for N3, N11, N12 is 1
and for N10 is 2. Also, note that as the number of incoming
labels is reduced, the number of NHLFEs is reduced too.

TABLE I

ACTIVE LSR’S NHLFES FOR FIGURE 2
LSR Incoming Label Outgoing LSR Operation

P2MP1 N3 Push L1, L0 N0 P2MP2 N3 Push L2, L0
N3 L0 N10 Pop

N11 Swap L4 L1 N12 Swap L3 N10
L2 N12 Swap L3

N11 L4 N11 Pop†
N8 Swap L5 N12 L3 N13 Swap L6

We will refer as a P2MP configuration as a set of P2MP

LSPs that should be configured on a given topology. The
problem of finding a near-optimal label space reduced solution
is not trivial since it can be achieved in many ways.

First at all, branch nodes will be discussed since they are
discarded as a tunnel member in our solution. Each time a
branch LSR needs to forward a packet, in order to assure
P2MP LSPs consistency, the LSR should swap more than once
the label of the incoming packet for those incoming labels of
the downstream LSRs. Because a LSR can not swap a label
that is not at the top of the stack, branch LSRs could not be a
member of any tunnel since it can not assign to the stacked
LSPs of a tunnel the correct label in the replication process.

As an example, consider P2MP configuration in figure 3
with 2 P2MP LSPs and the weak P2MP tunnel in figure 4
which stacks both P2MP LSPs. Without a tunnel, figure 3,
LSR N10 will replace an incoming label by two different
outgoing labels in order to assure correct packet forwarding to
N12 and N11.

In figure 4, LSR N10 forwards both tunnelled P2MP LSPs
by swapping the top label but not the stacked label, hence LSR
N13 and LSR N9 should receive packets with the same labels,
e.g. Lx and Ly in figure 4.

Unless the architecture is changed in order to get an
agreement between many downstream LSRs about their
incoming label, this weakness leads us to consider only P2P
branches in tunnels. To make an easier explanation of other
tunnelling techniques, only 5 LSRs of NSF network are
considered (see figure 5) and 3 P2MP LSPs are contemplated.
All P2MP LSPs forward packets from N0. In a common MPLS
NHLFE set up procedure, each LSR allocates space for 3
incoming labels in memory, since no label space reduction
scheme is considered.

P2MP LSP 1
P2MP LSP 2

N0 N3 N10 N12 N13

N11 N9

Figure 3 P2MP configuration.

TABLE II
ACTIVE LSR’S NHLFES FOR FIGURE 3

LSR Incoming
Label Outgoing LSR Operation

P2MP1 N3 Swap L3A N0 P2MP2 N3 Swap L3B
L3A N10 Swap L10A N3 L3B N10 Swap L10B

N11 Swap L11A L10A N12 Swap L12A
N11 Swap L11B N10

L10B N12 Swap L12B
L11A N9 Swap L9A N11 L11B N9 Swap L9B
L12A N13 Swap L13A N12 L12B N13 Swap L13B

N9/13 … … Pop†

P2MP LSP 1
P2MP LSP 2

N0 N3 N10 N12 N13

N11 N9

Fig 4. P2MP tunnel weakness.

TABLE III
ACTIVE LSR’S NHLFES FOR FIGURE 4

LSR Incoming Label Outgoing LSR Operation
P2MP1 N3 Push L3,Lx N0 P2MP2 N3 Push L3,Ly

N3 L3 N10 Swap L10
N11 Swap L11 N10 L10 N12 Swap L12

N11 L11 N9 Pop
N12 L12 N13 Pop

N9/13 Lx/Ly … Pop†

Fig. 5. A P2MP configuration that can be stacked in many ways.

It is clear that the sub-P2MP tree {N10→N12→N13} is the

same from here on and therefore can use a single label since
the P2MP configuration. Preceding sub-P2MP tree
{N0→N3→N10} cannot use the same label because N10
should multicast packets for LSP3 through the sub-P2MP tree
{N10-N11}. This lead us to an initial solution where the sub-
P2MP tree {N0→N3→N10} can be stacked and the sub-P2MP
tree {N10→N12→N13} can be aggregated (figure 6). Despite
the fact that N10 and N12 use a single label to forward the

45

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 12:11:34 UTC from IEEE Xplore. Restrictions apply.

P2MP configuration, N10 should be still using 3 incoming
labels for the configuration.

Fig. 6. Stacking and aggregation.

A more complex and efficient solution can be contemplated
if nested tunnels are considered, i.e. tunnels that are within
another. Figure 7 shows a solution where LSP1 and LSP2 are
stacked across all the topology and LSP3 is stacked in the sub-
P2MP tree {N0→N3→N10} and the sub-P2MP tree
{N10→N12→N13}. Unfortunately this solution can not be set
in MPLS because it does not allow multiple popping of stacked
labels in a NHLFE [3], i.e. popping of more that one label by a
LSR, as N3 and N12 should do.

Fig. 7. Solution involving nested tunnels.

A similar MPLS solution that solves this drawback can be

regarded as an asymmetric tunnel (in figure 8). The
asymmetric tunnel concept comes from the idea that not all the
stacked LSPs are tunnelled along all LSRs. .

Fig 8. Asymmetric tunnel.

In the example, N10 stacks LSP3 by pushing the same label

pushed before by N0 to LSP1 and LSP2. Here, N3 and N10
use 2 incoming labels, but N12 only uses 1. Since there is no
way a LSR can look labels behind the top, all LSP must be
unstacked at the same time and therefore, asymmetric tunnels
will be usually ‘bigger’ at the end than at the beginning.

Next section will present an algorithm that makes tunnels in
a P2MP configuration by selecting the longest P2P branch.

IV. LONGEST SEGMENT FIRST

Consider a P2MP configuration as a set P2MP of P2MP

LSPs. For a m ∈ Ρ2MP consider a P2P decomposition d(m):
(m ∈ Ρ2MP → u(i,j) ∈ Ρ2P) in which each element u(i,j) is a
P2P LSP that connects a subset of LSRs of the P2MP LSP
starting at LSR i (an ingress LSR, bud LSR or branch LSR)
and ending at LSR j (an egress LSR, bud LSR or branch LSR).
In Fig 2, the P2MP LSP that connects the ingress node N0 with
egress nodes N11, N8 and N13 can be decomposed in 5 P2P

LSP: u(0,10), u(10,11), u(10,12), u(12,8) and u(12,13). It is clear that this
decomposition is unique and easy to find.

Let |u(i,j)| be the number of LSRs that u(i,j) uses to forward
the information. The intersection of two P2P LSPs, u(i1,j1) and
u(i2,j2), is the longest u(i,j) that is contained in both. For example,
in figure 1, u(1,11) ∩ u(5,11) = u(6,11).

The difference between two P2P LSP, u(i1,j1) and u(i2,j2) where
u(i1,j1) ⊆ u(i2,j2), are two sub-P2P LSP: one starting at i2 and
ending at i1 and the second starting at j1 and ending at j2.

Table V describes, using the notation explained before, a
procedure to find a set of sub-P2P LSPs, PPT 2⊆ , that can be
tunnelled with a single label.

TABLE IV

ALGORITHM TO FIND P2MP LSP TUNNELS.
1

() () () (){ }3,,2| ,,, ≥∈∈∀= bajiba umduMPPmuU U
, and φ=W

2 Find a P2P tunnel ()jit , such that

() () () () () () UuUuuutt babababajiji ∈∈∩=
22112211 ,,,,,, ,,,max

3 If such tunnel was not found, stop.
4 Let φ='U
5 For each () Uu ba ∈, do
6 Find () () ()jibajk tuu ,,,' ∩=
7 If () 3' , <jku then

8
(){ }bauUU ,'' ∪=

9 Else
10

() ()(){ }baji utWW ,, ,∪=
11

() (){ }jkba uuUU ,, ''' −∪=
12 End if
13 Repeat
14 Let 'UU =
15 Repeat from 2

In line 1, a set named U is created which contains all the

P2P LSPs that are part of any P2MP LSP decomposition.
Because a tunnel can not be done with less than 3 LSRs, each
P2P LSP in U should satisfy this constraint. U will be our
working set. W will be a mapping set of tunnelled P2P LSPs,
initialised as empty.

Line 2 finds out a maximum length P2P LSPs, t(i,j), that
intersects at least two P2P LSPs in U. The algorithm iterates
only if this tunnel is found. In all iterations, a new working set
U’ is computed because each tunnel found stacks several P2P
LSPs in U. Line 4 initialize this set as empty.

To compute the new working set, each P2P LSP in U is
regarded in order to see whether it can be aggregated using this
tunnel or not. A P2P LSP u(a,b) can be stacked using this P2P
LSP tunnel t(i,j) if a both LSP intersects in more than 3 LSRs,
u’(k,j). In order to assure asymmetric tunnels, the intersected
LSP should include the last LSR of the tunnel t(i,j). Line 8 safe

46

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 12:11:34 UTC from IEEE Xplore. Restrictions apply.

u(a,b) in the new working set if no intersection could be found.
Otherwise, in line 11 non intersected sub-P2P LSP are
included in the new working set and u(a,b) is included in W as
part of the algorithm response.

Note that to build a tunnel, the penultimate LSR, j – 1, LSR
must do a POP in the stack, the first LSR, i, must do a PUSH
of two labels and all intermediates LSRs, from i + 1 to j - 2,
must do a SWAP.

V. EXPERIMENTAL RESULTS

The algorithm in the preceding section was tested in two

topologies with several P2MP configurations. The network
topologies used are square-like, in which each node is placed
in the cross-points of a rectangular grid of X rows and Y
columns and each node at position (x,y) in the grid has
connecting links to the next column (x,y+1), the upper row
(x+1,y), and the lower row (x-1,y) when possible. In one of the
tested network topology X=5 and Y=10 (50 nodes x 125 links).
In another tested network topology X=10 and Y=10 (100 x
270).

For each experiment on both topologies, a set of randomly
generated P2MP LSPs is created. Each P2MP LSP connects an
ingress LSR with a set of 5 egresses LSRs. The ingress LSR is
chose randomly from the first 5 LSRs in the grid. The 5
egresses LSRs are selected randomly from the last 10 LSRs in
the grid. Once the ingress and egresses LSRs are picked, the
tree is built by selecting a random path for every egress LSRs.
Finally, redundant segments are deleted.

To evaluate the performance of the solution presented here,
it should be stated that the number of labels will increase as the
network load increases, measured as the number of P2MP
LSPs in the network. Each time a simulation was ran, the
reduction factor was computed as the relation between the
amount of labels been dropped-off using tunnels and the
number of labels used without tunnelling.

Figure 9 shows that the reduction factor experienced in both
topologies.

Reduction factor in 5x10 and 10x10 networks

0,00%
5,00%

10,00%
15,00%
20,00%
25,00%
30,00%
35,00%
40,00%

32
128 224 320 416 512 608 704 800 896

102
4

140
8

of P2MP LSPs

R
ed

uc
tio

n
fa

ct
or

 (%
)

5x10 Network
10x10 Network

Fig. 9. Reduction factor in two tested networks.

 Both topologies reach a stable point when 400 P2MP LSPs

approximately are considered. Since the 10-10 network is
larger that 5-10 network and there are more ways to reach a

destination, the number of intersected LSPs is less and hence
each tunnel will deal with less P2MP LSPs. In the 5-10
network the reduction factor reaches a 32.5% when it gets
stable. In the 10-10 network this factor is about 27.5%.
Therefore, the reduction factor depends on the network
topology, the P2MP configuration, and the network load.

VI. CONCLUSIONS AND FURTHER STUDIES

The presented work stated that the number of used labels

can be dropped dramatically using tunnels in a P2MP
configuration. Among all the discussion presented here, it
should be noticed that there are many ways to do tunnels in
P2MP connections but the better ones are far away from a
feasible implementation with the current IETF standard.
Despite this fact, the novel asymmetric tunnel concept was
discussed and tested in some network topologies with several
P2MP configurations using the longest segment first algorithm
satisfactorily. The simulation of this algorithm showed that the
reduction factor is dependent on network topology, the P2MP
configuration, and especially on the network load.

Asymmetric tunnels solutions, described here, did not
contemplate the aggregation feature in P2P connections.
Moreover, P2MP aggregation, which is beyond the scope of
this paper, presents a good reduction factor. It is possible to
merge these ideas with the one presented here as further work
in order to achieve better results. Since there are many ways to
create asymmetric tunnels, it is also desired to find an
optimization model which finds the best way to create
asymmetric tunnels; our next goal. Also, an algorithm to create
tunnels for on-line requests could be considered for future
study as an extension for RSVP-TE P2MP [11].

REFERENCES

[1] Z. Wang. Internet QoS: Architectures and Mechanisms for Quality

of Service. Morgan Kaufmann Publishers. ISBN 1-55860-608-4.
[2] Y. Donoso, R. Fabregat, F. Solano and J.L. Marzo. “Generalized

Multiobjective Multitree model for Dynamic Multicast Groups”.
IEEE ICC 2005.

[3] E. Rosen, A. Viswanathan, R. Callon. “Multiprotocol Label
Switching Architecture”. RFC 3031. January 2001.

[4] A. Gupta, A. Kumar, R. Rastogi. “Exploring the trade-off between
label size and stack depth in MPLS Routing”. INFOCOM’03.

[5] S. Bhatnagar, S. Ganguly, B. Nath. “Creating multipoint-to-point
LSPs for traffic engineering: NP-completeness and heuristics”.
Workshop oh High Performance Switching and Routing. June
2003.

[6] Y.K. Oh, D.K. Kim, H.J. Yoen, M.S. Do, J. Lee. “Scalable MPLS
multicast using label aggregation in Internet broadcasting
systems”. ICT'03.

[7] E. Rosen, et al. “MPLS Label Stack Encoding”. RFC 3032.
January 2001.

[8] S. Yasukawa, et al. “Signaling Requirements for Point to
Multipoint Traffic Engineered MPLS LSPs”. IETF Draft.
December 2004.

[9] H. Saito, Y. Miyao, M. Yoshida. “Traffic engineering using
multiple multipoint-to-point LSPs”. INFOCOM 2000

[10] D. Applegate, M. Thorup. “Load optimal MPLS routing with N+M
labels”. INFOCOM’03.

[11] R. Aggarwal, D. Papadimitriou, S. Yasukawa. “Extensions to
RSVP-TE for Point to Multipoint TE LSPs”. November 2004.

47

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 12:11:34 UTC from IEEE Xplore. Restrictions apply.

