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Abstract— This paper presents a complete control architecture
that has been designed to fulfill predefined missions with an
Autonomous Underwater Vehicle (AUV). The control architecture
has three levels of control: mission level, task level and vehicle
level. The novelty of the work resides in the mission level, which is
built with a Petri network that defines the sequence of tasks that
will be executed depending on the unpredictable situations that
may occur. The task control system is composed of a set of active
behaviours and a coordinator that selects the most appropriate
vehicle action at each moment. The paper focuses on the design of
the mission controller and its interaction with the task controller.
Simulations, inspired on an industrial underwater inspection of
a dam grate, show the effectiveness of the control architecture.

I. INTRODUCTION

A mission controller is the part of a control architecture that
is in charge of defining high-level phases to be carried out in
order to fulfil a predefined mission. Autonomous Underwater
Vehicles (AUVs) are usually developed to observe underwater
environments. Due to high costs and severe difficulties in
these kinds of autonomous vehicles, mission controllers must
strongly focus on the security of the vehicle, as well as, on
its performance to fulfil the mission. Several mission control
systems for AUV have been designed over the past decade.
In 1994, the ISR, from Portugal, started the development of
a management system for the AUV MARIUS that contained
a mission management system [1]. The system was based on
Petri nets, and was in charge of activating vehicle primitives,
needed to carry out the mission. Simultaneously, the NPS from
Monterrey was developing a hybrid control system composed
by three layers, using the Prolog language as a rule-based
mission specification in the higher layer [2]. Another control
architecture, which has a mission control system called Helm,
is the MOOS architecture designed by Paul M. Newman [3].
Helm decides the most suitable action commands from a set
of prioritized mission goals and the current state of the navi-
gation process. Other mission controls systems that have been
proposed in the literature are the ”SAUVIM task description
language” by the ASL from Hawaii [4], the ORCA architecture
by Roy M. Turner [5] and the architecture developed by ISE
from Canada [6].

This paper describes a complete control architecture that has
been designed to fulfil predefined missions with an AUV. The
control architecture has three levels of control: mission level,
task level and vehicle level. The mission controller is built with

a Petri Net which defines the sequence of tasks. Each node
of the Petri Net represents a behaviour that is executed on
the task controller. Each behaviour has a simple goal such as:
move to point, keep depth, avoid obstacle Active behaviours
generate a control action on one or more degrees of freedom.
According to the active behaviours and some priorities, the
task controller generates a coordinated control action that is
sent to the vehicle controller. Finally, this low-level controller
implements a classical velocity control loop for each degree
of freedom.

The novelty of this work resides on the design, imple-
mentation and experimentation of the mission control system.
The rest of the control architecture has already been tested
and presented in previous works [7]. The main distinctive
feature of the presented approach, compared with other AUV
mission controllers, is its connection and relation with the task
level controller. The mission controller does not determine the
actions that will guide the robot, but the active behaviours
and configuration which, through the task controller, will be
coordinated to guide the robot. This common structure in
artificial intelligence or in mobile robots, is not usually applied
in AUVs, where more classical control theories are applied.
The missions for which classical AUV mission controllers are
usually developed have unstructured and very large environ-
ments to explore. In such situations, the AUV trajectory is
calculated to optimize the energy efficiency. The proposed
mission controller should have interesting advantages in mis-
sions where the robot reactivity to the environment is more
important, rather than the energy efficiency. For example, an
autonomous inspection of an structured environment, such as a
dam, in which the robot must avoid the walls while following
a trajectory.

This paper presents the design, simulations and preliminary
real results of a mission control system for dam inspection
using an AUV. The goal of the project is to develop a complete
control architecture that is able to autonomously explore the
wall of a dam, see Figure 1, and to build a visual mosaic [8]
of it. Previous work on dam inspection has already showed
interesting applications using a Remotely Operated Vehicle
(ROV) [9]. The use of an AUV having a high accuracy
positioning system could entail a fast procedure, a complete
scanning of the wall and the georeferencing of the images. The
work presented in this paper is centered on the mission control
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Fig. 1. Wall of an empty dam during maintenance works.

system. Simulations show the achievement of a predefined
mission with the Neptune simulator [10]. Preliminary real
results using the GARBI AUV show the control of the robot
in a pool environment.

The paper is structured as follows. After the introduction
section, a detailed description of our control architecture and
mission control system will be given in section 2. Section
3 will summarize the most relevant details about the GARBI
AUV, the software architecture and the Neptune simulator. The
simulated mission and the obtained results will be presented
in section 4. Finally, section 5 will conclude the paper.

II. CONTROL ARCHITECTURE

The finality of a control architecture is to move the robot
autonomously to fulfill a set of goals in a particular order
and with some constraints. The result of the whole process at
every moment is the movement of the robot in each degree of
freedom. Figure 2 shows the schema of the three levels that
form the proposed control architecture.

A. Vehicle level: Velocity controller

Since the final task is the movement of the robot, the control
architecture has, at its lower level, a classic velocity controller.
This controller receives the velocity set points from the task
level controller and the measured or estimated velocities from
a navigation module. The object in charge of doing this task
is the PID velocity controller. This object reads the vehicle
velocity from the Navigator object (see section 3.1) and
receives the velocities set points from the Coordinator Object
(see section 2.2). The control system is based on a classical
PID controller implemented as a matrix, which also contains
the propeller distribution and coefficients [11]. This general
implementation allows an easy adaptation to any AUV model.
The propeller velocities are finally calculated, converted to
voltages and sent to the corresponding electronics.

B. Task level: Behaviours + Coordinator

A common methodology to implement a control architec-
tures is to build a library containing all basic functions that the
robot can make. By joining these basic functions it is possible
to carry out complex tasks. These basic functions have been
named: vehicle primitives, tasks, command primitives... One
of the most popular names to express this concept is behaviour,
which was introduced in 1986 by Brooks [12] and has been
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Fig. 2. Proposed Control Architecture.

extensively used. The task level controller presented in this
paper is based on very simple behaviours. Since more than one
behaviour can be activated, a coordinator is always needed in
all no pre-emptive architectures. The coordinator is the object
in charge of combining the outputs of all active behaviours to
generate a single output.

Each behaviour is an autonomous process with a particular
goal. The input of a behaviour can be taken from any object
of the software architecture (sensors, actuators ). The output
contains:

• Velocity for every DoF: Shows the desired velocity in
every DoF and it is normalized between -1 and 1.

• Activation level: Shows the activation level for every DoF.
This value is normalized between 0 and 1.

• Priority: Every behaviour has a priority level. 0 is the
highest priority and there is an inverse proportionality
between the priority and the value. The activation level
together with the priority is used by the coordinator to
combine the outputs of all behaviours.

• Block: This is a Boolean value that shows if the be-
haviour is blocking the execution thread of the mission
controller.

To initialize a behaviour, besides particular parameters, it is
needed to setup the following values:

• Enable: Boolean variable that indicates if the behaviour
is activated or not and, therefore, if its output will be
considered by the Coordinator.

• Priority: Priority that will have the output of this be-
haviour.

• TimeOut: The time out indicates when the behaviour
will block the execution thread. If TimeOut< 0, the
behaviour blocks the execution thread until its goal is
fulfilled. If TimeOut=0, the behaviour doesn’t block the
execution thread. If TimeOut> 0, the behaviour blocks
the execution thread until TimeOut seconds or until its
goal is fulfilled.
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Take the output 
of all enabled behaviours

Sort the outputs by
Their priority

Combine the outputs two

by two using the formula:

For every degree of freedom do
setpoint = behaviour1.actLevel * behaviour1.setpoint + 

(1 - behaviou1.actLevel) * behavior2.actLevel * behaviour2.setpoint
actLevel = bh1.actLevel + (1 - bh1.actLevel )* bh2.actLevel 

endFor

Fig. 3. Coordinator procedure.

The object Coordinator is in charge of taking all the
enabled behaviour outputs to combine them into a single one,
which will be sent to the velocity controller. To combine
all the outputs, the coordinator follows the schema showed
in Figure 3. Using this coordinator, if the activation value
of all active behaviours is 1 (max. value), the coordinator
output corresponds to the behaviour output with more priority
(preemptive architecture). On the other side, if the activation
values are less than 1, the final output will be the combination
of all active behaviours (collaborative architecture). Since each
DoF is treated separately it is possible, by using activations
levels with value 0, to program behaviours that do not affect
all DoFs. The coordinator output, after combining all active
behaviours, is a vector as large as the number of DoFs of the
robot. Each value corresponds to a normalized velocity.

C. Mission level: Mission Control System

The task controller decides how to guide the robot move-
ments in each situation. However, to carry out medium-high
complex missions it is very difficult to design a unique set
of behaviours that can accomplish it. In these missions, it is
necessary to have an autonomous system able to enable/disable
and reconfigure behaviours. Our mission controller uses a Petri
Net to accomplish the mission plan. A Petri Net has place
nodes, transition nodes, and directed arcs that connect places
with transitions. It is represented as a graph defined by a
quadruple, see Equation 1:

PN = (P, T, I,O) (1)

where P is a finite set of places, T is a finite set of
transitions, I(p, t) is a mapping corresponding to the set
of directed arcs from places to transitions, and O(t, p) is
a mapping corresponding to the set of directed arcs from
transitions to places.

We use a kind of Petri Net called marked graphs which is
a pure ordinary Petri net system where every place has only
one input transition and one output transition, see Equation 2:

∀p ∈ P : |•p| = |p•| = 1 (2)

Fig. 4. GARBIAUV in the laboratory facilities.

where |•p| is the number of inputs of place p and |p•| is
the number of outputs of place p.

In our Petri net, every place corresponds to one behaviour
with a particular configuration. When a place has a token,
this behaviour is enabled. When all places that go towards a
transition are enabled, and their behaviours do not block the
execution thread, the transition is ready to be fired. When a
transition is fired, a token is removed from each of the input
places of the transition and a token is generated in each output
places of the same transition, see Equation 3:

∀pP : M ′(p) = M(p) + O(t, p) − I(p, t) (3)

where M is a n-dimensional integer vector which assigns
a non-negative integer number of tokens to each place of the
net.

A Petri net can be represented as a matrix, see Equation 4,
called the incidence matrix ( C ). In addition, if active
transitions and the actual state are known, it is possible to
calculate the new state, see Equation 5.

Cij = O(tj , pi) − I(pi, tj) (4)

where 1 < i < (sizeofP ) and 1 < j < (sizeofT ).

Mi+1 = Mi + CT (5)

Therefore, the control mission algorithm starts on the initial
state Mi, checks fired transitions, applies Equation 5, and
repeat this process until the final state Mf is reached.

At this moment, the generation of a petri Net and it’s
verification is a manually process carried out by the user. In a
medium term, the system will be redesigned to automatically
plan the missions according to some a priori knowledge.

III. GARBI AUV, SOFTWARE ARCHITECTURE AND

NEPTUNE SIMULATOR

The work presented in this paper has been designed
to be fulfilled with the Autonomous Underwater Vehicle
GARBIAUV . Simulations have been performed using an ac-
curate model of the robot [13]. GARBI is an underwater robot
equipped with several batteries, 5 propellers, two computers,
a DVL navigation sensor, an imaging sonar, a video camera
and a DGPS sensor for global positioning when navigating
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Fig. 5. GARBIAUV Software architecture

at surface (see Figure 4). Also, GARBIAUV has an external
USBL sensor that is used to localize it with high precision, and
to communicate with it using an acoustic modem. This section
describes the software architecture and the used simulator.

A. Software architecture

The software architecture has the task of guaranteeing the
AUV functionality. It is build with a set of CORBA-RT
objects. These objects are executed in the two robot PCs and
an external PC. The architecture is composed by a base system
and a set of objects (see Figure 5). The goal of the base system
is to control all processes and to register data. The base system
is composed by the base objects, which are periodic threads
and logger systems. The threads are inherited by the final
objects that must be executed periodically (for example the
DVL sensor). The logger system is used to acquire data from
sensors, actuators or any other object.

Most of the objects implement sensors or actuators. There
is one object for each propeller. There is also one object for
each real sensors (see Figure 5). Moreover, navigation, percep-
tion or control systems are also implemented as independent
objects. The navigator object has the goal of estimating the
position and attitude of the robot from the DVL and DGPS
sensors. The obstacle detector object has the goal of detecting
horizontal obstacles with the imaging sonar, and the sea
bottom obstacle with the DVL sensor. The control architecture
is implemented as different independent objects. The vehicle
controller is contained in the PID object. The task and mission
controllers are contained in the high-level controller objects.

The software architecture provides a methodology to com-
municate all the systems and to execute them at different
periodic threads.

B. Neptune simulator

Neptune (see Figure 6a) is a simulation software for un-
derwater robots. It allows testing the software developed for
an AUV without using the real robot. Neptune communicates
with the software architecture as a client-server application.
The server is an object called UUVModel which simulates the
dynamics model of an Unmanned Underwater Vehicle (UUV).
This object only requires the parameters of the dynamics,
which are entered with a configuration file [10]. This object
returns the position, velocity and acceleration of the robot,
which is used by the client for graphical representation.
UUVModel also allows the simulation of several sensors.

a) b)

Fig. 6. a) Neptune screen shot during the simulation. b) Predefined mission
schema.

C. Used behaviours

The mission consists in inspecting a grate mounted on
the wall of a dam using the GARBIAUV and the simulation
software Neptune.

D. Mission description

To verify the state of the grate, the AUV will move to a
initial known position, which is located at surface level over
the grate (see Figure 6b). Then it will submerge until the
highest point of the grate, which is also a known position. In
this movement the AUV will maintain a security distance from
the wall and it will constantly face it to acquire the images
properly. At this point, the robot will start the inspection
movement which consists in a U movement avoiding the
bottom and maintaining the security distance from the wall.
Note that the wall of the dam has an inclination with respect
to the vertical.

set of behaviours. Each of them is in charge of accom-
plishing a simple goal. The control architecture can work
in two modes: REAL and VIRTUAL. Since the mission
was executed in simulation, the architecture was executed in
VIRTUAL mode and the Neptune simulator was required.
However, the implementation of the behaviors does not depend
on the execution mode. This means that the same implemented
behaviours could be used in real experiments. The execution
mode affects the Navigator object, which in VIRTUAL mode
takes the data from Neptune objects, and in REAL mode takes
the data from real sensors.

The implemented behaviour are:

• KeepDepth: Keep a constant depth. Navigator takes the
current depth from the pressure sensor in REAL mode or
from the simulator in VIRTUAL mode.
- Parameters(depth, velocity, priority, timeOut)

• MoveTo2D: Move the vehicle to a specific 2D point.
In REAL mode the position is taken from the DGPS
in surface and from the USBL when the vehicle is
underwater and in VIRTUAL mode the Navigator object
takes the position from the simulator.
- Parameters(X, Y, priority, timeOut)

• KeepAltitude: Maintains the vehicle at a certain distance
from the bottom. Navigator takes the current altitude from
the DVL in REAL mode, and from the simulator in
VIRTUAL mode.
- Parameters(altitude, priority, timeOut)
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Fig. 7. Petri Net used to fulfill the mission

• KeepDistance: Maintains the vehicle at a certain orien-
tation and at a certain distance from the nearest object
found in that orientation. This behaviour takes the orien-
tation from the Navigator object, that reads the orientation
from the magnetic compass in REAL mode or from the
simulator in VIRTUAL mode, and the distance from
the imaging sonar sensor in REAL mode or from the
simulator in VIRTUAL mode.
- Parameters(distance, orientation, priority, timeOut)

• MoveLateral: Move the vehicle transversally a certain
distance maintaining the current orientation. Takes the po-
sition from the Navigator like the MoveTo2D behaviour.
- Parameterers(distance, velocity, priority, timeOut)

• Recording: Enables the camera. The images taken by
the camera are saved in the hard drive. This is an special
behaviour because it does not affect the vehicle motion.
-Parameters(folderName, priority, timeOut).

E. Mission controller

To implement the mission controller it is required to define
several aspects:

• Petri Net with the sequence of behaviours.

• Parameters of every place/behaviour.

• Initial and final states in the Petri Net.

The Petri Net and the specific behaviours and parameters
of each state are showed in Figure 7. Equation 6 shows the
incidence matrix of the Petri Net (see Epuation 4).
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Fig. 8. Trajectory of the AUV during the simulation.

Ci,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
1 −1 0 0 0 0
1 −1 0 0 0 0
1 0 0 0 0 −1
0 1 0 0 −1 0
0 1 0 0 −1 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The initial and final states are:

Mi = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Mf = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

F. Results

In order to simulate the dam inspection mission, the six
behaviours and the mission controller were implemented and
integrated in the software architecture. In this preliminary
work, the mission was simulated using Neptune. Nevertheless,
some behaviours were tested in reality with the GARBIAUV .

In the simulation, the dynamics parameters of GARBI were
used [13]. The simulation was executed online and it took 6
minutes to accomplish the whole mission. Figures 8 and 6a
show the obtained trajectory and a screenshot from Neptune
during the mission. It must be noted that the designed mission
control system was able to guide the AUV to accomplish the
mission. Figure 8 shows the evolution of active transitions in
the Petri Net.

Figure 9 shows some captured images during the simulation
and the final mosaic generated off-line. Figure 9c shows a
similar result obtained in a previous work on dam inction using
the URIS ROV [9]. Similarity between real and simulated
mosaics shows the reliability of Neptune software.

Finally, some part of the control architecture has already
been tested with the real robot. Figure 10 shows an experiment
with the KeepDepth and AltitudeLimit behaviours. It can
be observed that the KeepDepth behaviour was controlling
GARBIAUV until the AltitudeLimit behaviour became active.
In this situation, since the AltitudeLimit behaviour had more
priority, the response of the KeepDepth behaviour was sub-
sumed.
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a) b) c)

Fig. 9. a) Captured images during the simulation. b) Generated mosaic from
captured images. c) Real dam wall mosaic using URIS AUV .

IV. CONCLUSION

This paper has presented a control architecture to carry out
predefined missions with an underwater robot. The work has
been focused in the design of a mission controller that interacts
with a behaviour-based task controller. The mission controller
is easily built with a Petri Net, which determines active
behaviours that execute each task of the mission. The paper has
detailed implementation aspects and showed simulations on a
predefined AUV mission, inspired by a dam inspection appli-
cation. Also, some preliminary real results with two enabled
behaviours have been presented. The obtained results prelude
good effectiveness and robustness of the mission controller in
real experiments. Short term future work consists in preparing
the robot for real experimentation and in a medium term
future work, the mission control system will be redesigned
to automatically plan the missions according to some a priori
knowledge, as other mission control systems do.

ACKNOWLEDGMENTS

This research was sponsored by the Spanish government
(DPI2005-09001-C03-01). The authors would like to thank
the company Endesa Generacion for its collaboration with the
project.

REFERENCES

[1] P. Oloveira, A. Pascoal, V. Silva, and C. Silvestre, “Design, develop-
ment, and testing at sea of the mission control system for the marius
autonomous underwater vehicle,” in Oceans MTS/IEEE, 1996.

[2] D. Marco, A. Healey, and R. Mcghee, “Autonomous underwater vehi-
cles: Hybrid control of mission and motion,” Autonomous Robots, vol. 3,
pp. 169–186, 1996.

[3] P. M. Newman, MOOS - Mission Orientated Operating Suite, Depart-
ment of Engineering Science Oxford University, 2005.

[4] T. W. Kim and J. Yuh, “Task description language for underwater
robots,” in Intl. Conference on Intelligent Robots and Systems, 2003.

[5] R. M. Turner, “Orca: Intelligent adaptive reasoning for autonomous
underwater vehicle control,” in Proceedings of the FLAIRS–95 Inter-
national Workshop on Intelligent Adaptive Systems, Melbourne, Florida,
1995, pp. 52–62.

[6] M. Kao, G. Weitzel, and X. Zheng, “A simple approach to planning and
executing complex auv missions,” 1992.

[7] M. Carreras, P. Ridao, R. Garcia, and J. Batlle., Behaviour Control of
UUVs. G. Roberts and R.Sutton, 2005.

KeepDepth + AltitudeLimit Bahaviours

-4.5

-3.5

-2.5

-1.5

-0.5

0 100 200 300 400 500 600 700

Time (s)

D
ep

th
 (m

)

KeepDepth
Priority 2

AltitudeLimit
Priority 1

Real vehicle 
trajectory

Fig. 10. Real robot trajectory controlled by two enabled behaviours.

[8] R. Garcia, J. Batlle, X. Cufi, and J. Amat, “Positioning an underwater
vehicle through image mosaicking,” in IEEE International Conference
on Robotics and Automation (ICRA), Seoul, Rep.of Korea, 2001, pp.
2779–2784.

[9] J. Batlle, T. Nicosevici, R. Garcia, and M. Carreras, “Rov-aided dam
inspection: Practical results,” in 6th IFAC Conference on Manoeuvring
and Control of Marine Crafts, Girona, Spain, September 2003.

[10] P. Ridao, E. Batlle, D. Ribas, and M. Carreras, “Neptune: A hil simulator
for multiple uuvs,” in Oceans0́4 MTS/IEEE, Kobe, Japan, November 9-
12 2004.

[11] T. I. Fossen, Marine control systems. Marine cybernetics, 2002.
[12] R. A. Brooks, “A robust layered control system for a mobile robot,”

IEEE J. Robot. and Auto., vol. 2, no. 3, pp. 14–23, 1986.
[13] P. Ridao, J. Batlle, and M. Carreras, “Model identification of a low-speed

uuv with on-board sensors,” in IFAC conference CAMS2001, Control
Applications in Marine Systems, Glasgow, Scotland, U.K, 18-20 July
2001.

2556

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:33:37 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


