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Abstract

In nerworks with small buffers, such as Optical Packet
Switching based networks, the Convolution Approach is
presented as one of the most accurate method used for the
Connection Admission Control. Admission control and re-
source management have been addressed in other works
oriented to bursty traffic and ATM. This paper focuses on
heterogeneous traffic in OPS based networks. Using hetero-
geneous traffic and bufferless networks the Enhanced Con-
volution Approach is a good solution. However, both meth-
ods (CA and ECA) present a high computational cost for
high number of connections. Two new mechanisms (UMCA
and ISCA) based on Monte Carlo method are proposed to
overcome this drawback. Simulation results show that our
proposals achieve lower computational cost compared to
Enhanced Convolution Approach with an small stochastic
error in the probability estimation.

1. Introduction

One of the dominant solutions for the next generation In-
ternet is expected to be optical technologies [1, 2]. In this
context, bandwidth management and traffic control strate-
gies are necessaries in order to allow for high utilization
of network resources, whilst sustaining and acceptable QoS
for all connections. This paper studies the provision of guar-
anteed QoS in terms of probability of congestion into an
1P over Optical Packet Switching (OPS) network scenario.
Due to the use of OPS, delay is also limited by the utiliza-
tion of small buffers in switches.

Internet traffic is aggregated and carried over optical core
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networks. However, QoS mechanisms proposed in IP net-
works do not have an easy deployment in optical networks.
This is the case of implementating of packet queues for
packet contention resolution. Contention may arise when
two or more packets demand the utilization of the same re-
sources, for instance, when two or more packets have to be
forwarded to the same output link at the same time. In tra-
ditional electronic packet switches, packet queues are 1m-
plented using buffers. Nevertheless, buffers (o implement
optical packet queues do not exist in a similar way. In op-
tical networks Fiber Delay Lines (FDLs) are used to imple-
ment optical packet queues. FDLs are long fiber lines used
to delay the optical signal for a particular period of time in
order to simulate a buffer.

Kaheel [1] presents a classification of the major opti-
cal switching methods: Wavelength Routing (WR), Opti-
cal Packet Switching (OPS) and Optical Burst Switching
(OBS). WR presents low bandwidth utilization because it
does not use statistical sharing of resources [1]. On the
other hand, OPS and OBS networks where packets streams
can be multiplexed statistically, making a more efficient use
of capacity [2].

This work focuses on OPS networks where statistical
multiplexing for bandwidth sharing is used. In addition,
OPS offers fast allocation of channels with fine granular-
ity, high-speed and configurability [2]. These are some of
the important main features needed in the future networks
to support different forms of data [2]. Figure | shows the
optical architecture. Packets are aggregated at the edge of
the network reducing the processing overhead, and then are
routed over a bufferless core network (OPS).

Although admission control and resource management
have been addressed in other works [3, 4], most of them are
oriented to bursty traffic. However, our proposal focuses on
heterogeneous traffic.

The paper is organized as follows. Section 2 presents
basic notions related to CAC and statistical multiplexing
gain. Proposed mechanisms to evaluate the Probability of
Congestion are reviewed and two new mechanisms are pro-
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Figure 1. Optical Architecture

posed in section 3. The simulations and performance results
are presented in section 4. Section 5 concludes the paper.

2. Traffic and Congestion Control

In this section the Connection Admission Control (CAC)
as a traffic and congestion control function is reviewed. Sta-
tistical multiplexing gain, one of the requirements in a CAC
procedure, is also reviewed. In addition, different aproxi-
mations to evaluate the banwidth demanded are depicted.

2.1. Connection Admission Control

In order to avoid congestion, different traffic control
methods exists. Traffic control methods can be divided in
two categories: reactive control and preventive control. Re-
active control methods regulate the traffic flow at the ac-
cess points based on current traffic levels within the net-
work. Preventive control methods provide a fair allocation
of bandwidth by requiring, at times of high network load,
that each connection’s traffic flow remains within specified
bounds appropriate for the supported service [5]. Due to
real time constraints preventive control is more suitable than
reactive control in high-speed networks. Connection Ad-
mission Control (CAC) is one of the traffic and congestion
preventive control function used to maintain the QoS re-
quested. CAC is the procedure responsible for determining
whether a connection request is accepted or rejected. The
main requirements in a CAC can be summarized as follows:

- The network must be protected from overload.

- Resources must be allocated in such a way that the QoS
requirements are met for all established connections.

- Maximal statistical multiplexing gain should be obtained.
- The required real-time processing should be reasonable.

Maximal statistical multiplexing gain can be achieved if the
network knows the probability density function of the indi-
vidual sources.

2.2, Statistical Multiplexing Gain

Efficiency gain depends on the statistical multiplexing
effect of sources, with the condition that enough sources
are multiplexed and that they are not correlated. Statisti-
cally multiplexing packet loss probability and delay perfor-
mance depend on link utilization and buffer size, as well
as traffic characteristics of the connection on the link. This
assumption is not always fulfilled; neither is it an easy job
o calculate the convolution at every link where different
sources are multiplexed. There are some approximations to
evaluate the bandwidth demanded by a set of connections:

- Linear CAC. It reduces the CAC task to the simple prob-
lem of determining whether the sum of the effective
bandwidth of each of the connections is greater than the
resource capacity; if that is the case the connection is re-
jected, otherwise it is accepted.

- Fluid Flow approximation. This model assumes that the
information arrives uniformly during a burst and that the
server removes the information from the queue in the
same manner. In general, this model is valid when the
buffer capacity is longer than the mean burst duration.

Stationary approximations. In this case the effect of sta-
tistical multiplexing is the dominant factor. It considers
that packets are lost when the instantaneous rate is greater
than the bandwidth provided by the link. Stationary ap-
proaches are Binomial, Gaussian and Convolution.

- Heuristic methods. Heuristic approaches provide a mech-
anism for clustering data obtained from traffic measure-
ments in a structure that constitutes the traffic model. The
neural network and fuzzy logic based approaches are ex-
amples of this kind of approaches [6].

In small buffer networks, the Convolution Approach (CA)
is the most accurate method used in CAC. But it has a con-
siderable computational cost and a high number of accumu-
lated calculations. Nevertheless, in critical near-congestion
situations, the convolution is the only algorithm that gives
enough accuracy. CAC has been widely studied especially
in the context of ATM networks [7, 8, 9]. In our previ-
uos work [7], we proposed and Enhanced Convolution Ap-
proach (ECA) that reduces the computational cost in CA.
A review of these methods is presented in next sections
in order to adapt them to OPS networks and new calcula-
tion mechanisms based on Monte Carlo techniques (Uni-
form Monte Carlo and Importance Sampling) are proposed.

3. Calculation of the Bandwidth Requirements

In this section different methods used to compute the
bandwidth requirements of the superposition of several
sources, including our proposals, are described.
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3.1. Model Formalization

Let suppose that there are ¢ types of sources where each
source s emits in m, states. Each state-i has an associated
rate r§ and probability p$.

For each source s, there are n, connections, then ¢} con-

nections are in state 7. Therefore:
ms—1

Z ¢ =ng, Vs. g}

i=0

Link has a maximum capacity avalaible, C}, 4. Congestion
is produced when the addition of connection rates is greater
than Cpppp-

Figure 2 shows an example of the model used. Two-
types of sources are considered. Source sg and s; have 2
(myo) and 3 (m;) states, respectively. State 2 of source | has
an emission rate of 7} units with a probability of pl. There
are ng connections of type 0 and n, connections of type |.

3.2. Convolution Approach

The Convolution Approach (CA) is based on the convo-
lution expression:

b
PY+X=b=) PV =b-kPX=k. 2
k=0

where V' is the bandwidth requirement of the already es-
tablished connections; X is the bandwidth requirement of a
new connection request, and b denotes the instantaneous re-
quired bandwidth. In fact the CA obtains a probability den-
sity funcion for the offered system load, expressed as the
probability that all traffic sources together are emitting at a
giving rate. The size of the storage [10] required presents
a dimensioning problem. This requirement increases with
the number of connections and possible source states. In
addition, the probability is the result of a large number of
previous calculations.

Sources Connections
Type 0
lr.,:.p ;) @
\ .
\@/ : Al
"|;~I’|}) @ \

link

Figure 2. Model architecture sample

3.3. Enhanced Convolution Approach

In our previous work [7], we have proposed a faster
method for overcoming the CA drawbacks: the Enhanced
Convolution Approach (ECA). This is carried out by apply-
ing the Multinomial Distribution Function (MDF) [11].

Initially, we assume only one type of source s emit-
ting in my states (homogeneous traffic). We can consider
a my dimensional random variable (ef,ef,...,e;, ;) for
each source s. Therefore a random event that has been re-
peated n4 times (considering all the connections at a time)
has the characteristic (¢, cf, ..., c;, ). Itis necessary to
calculate the probability of e occurring ¢ times, e;, |
occurring c;, ; times. For this purpose the generalized
Bernoulli trials are considered. As in the previous situation,
the probability

()% - (p})°1 .. (D5, ) e (3)

is assigned o the point (ef,ef,...,e5, ;) with

(c§,c,...,c5,, 1) connections.

This is the probability assigned to any specific sequence
having ¢f occurrences of ef varying i = 0,1,...,m; — 1.
Thus, the number of sequences having exactly ¢ connec-
tions in state e, ¢f connections in state ef, ..., and ¢;, |
connections in state e;, ) is:

ns!
51,51 . s 1 “)
cglefl. ey, !

Finally, the probability of this characteristic is, according to
[7]:

P(state ef occurs ¢j times, ..
Cpn, 1 imes)=

i< S -
., slale ej, | occurs

ng! s s s
e T L U R (R T
Note that the probability of each source beginning in the
state e is independent of the probability of the other
sources.

The multinomial probability distribution is applied to
groups of the same type of sources (homogeneous traffic),
and the general state probabilities are evaluated by convolu-
tion of the partial results obtained from the different existing
groups of sources (heterogeneous traffic).

The decision criterion in order to accept a new connec-
tion of j-type when the ECA is used in CAC is:

PC(Y+Xj):P(Y+Xj>’}/'Cmaw)I 6)
Zb>w~CP(Y+Xj :b) <€

Where PC'is the Probability of Congestion; Y is the Band-
width requirement of the already established connections;
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X is the bandwidth requirement of a new j-type connec-
tion; b is the instantaneous rate considered; e is the max-
imum accepted Probability of Congestion due to excess
bandwidth required, set according to the QoS requirements;
and -y is the load factor that one has to pay regard to in or-
der to limit congestion arising from contention resolution
on the packet level. The maximum load is restricted to a
predefined value . This has to be taken care of by a proper
choice of . For the same reason the bandwidth provided
by the link, and not the capacity of the link, determines the
limit of excess.

Figure 3 shows the area evaluated using CA and ECA.
In CA case (Fig. 3a), all the probabiliy density function is
computed. On the other hand, in ECA case (Fig. 3b) only
the probability density function with final rate higher than
Cinaz 18 computed reducing the computational cost. ECA
also uses other mechanisms that reduce the computational
cost as cut-off mechanisms [7].

3.4. Estimation of the Probability of Congestion us-
ing Monte Carlo Methods

This section describes the two proposed mechanisms
based on Monte Carlo methods. In this section we assume
all connection are not grouped according to the same type
of sources. Therefore, we consider n as the number of con-
nections, i.e., number of sources. Note that Zﬁ:o n; = n.

1. Uniform Monte Carlo Convolution Approach
(UMCA). Suppose we have n sources, where
each source s is characterized by the random variable
r® with emission rates {r{,r3,...,r7,...,r5 } with
probabilities {p{, p$,...,pf,...,p},. }. The expected
value of a function of the n random variables r° is
then given by:

E(f(r',....r™) = > flrh . rph

Lronrin

)
We can evaluate with the Monte Carlo method
[12] the sum (7). We have lo select a joint
probability distribution {q!,...,q"}, where q° =

Prob. Prod
| | Congestion
| Non evaluated | Area
: |
! | Evaluation
-~ | N - |
= U i
\ | \ I
~——_
[—— h—‘ : >
1 o I i
Instantaneous Instantaneous
a) Com rate b Crex rate

Figure 3. Probability of Congestion evaluation using a)
Convolution Approach b) Enhanced Convolution Approach

{a},45,....4},-...q;,, }. and sample from this joint
distribution, which can be done by sampling inde-
pendently from each q®. Given N samples from
{d',....a"} {gf--q}}, 1 < § < N, the estima-
tor for the sum (7) will be:

N 1 nY,,1 n

1 f(raar)pp
SRERNRINES oY (A
i=1 j j

®)

A particular case is selecting {q!,...
{p!,...,p"}, and estimator (8) becomes

q"} =

1 <
E(f(r',...,r") ~ N;f(r;,...,r;w ©

2. Importance Sampling Convolution Approach (ISCA).
Estimator (9) is a cheap alternative in terms of comput-
ing cost, but it can give a high error in the estimation if
the value of the function f is not evenly distributed. As
we are free to select the q® probabilities a good alterna-
tive, known as importance sampling technique [12], is
to select these probabilities proportional to each term
in the sum, i.e.,

£

qj - -qf o< f(rj,...,r7) - pi---p} (10)

We are interested in evaluating the expected value
n

of boolean function f(r',....r") = (i, 77 >
Crnaz ) Where Chyq, is the maximum capacity of the
channel. This is, we are interested in estimating the
probability of channel congestion. Selecting probabil-
ities as in expression (10) is not practical for a large
number of sources, as the cost of its evaluation grows
combinatorially. What we will do is to assign a higher
probability to the highest values V. A further assign-
ment for all other values of probability ¢ proportional

to p would allow for a cheap evaluation of quotients %.

4. Performance Evaluation

In this section a complete set of experiments in order
to prove the improvement in performance of the proposed
methods are explained.

4.1. Model Adopted

For this set of experiments, we consider 5-types of
sources. Table 1 shows the associated emission rates and
probabilities of each source.

In order to evaluate mechanism performances we also
consider four scenarios varying proportionally the number
of connections (see Table 2).
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Table 1. Rates and Probabilities of the Sources

s |7 P s | 7 P

i 51 0125 4 5 | 0.145
10 | 0.645 10 | 0.731
20 | 0.23 25 | 0.124

2 5] 0885 || 5 5] 0333
25 | 0.115 15 | 0.601

3 0 | 0.895 30 | 0.066
15 | 0.105

Table 2. Number of connections (n) for each scenario

Scenario Type of Sources n
1 2 n3 n4 n5
A 10 9 11 5 2 37
B 20 18 | 22 10 4 74
C 30 | 27 | 33 15 6 111
D 40 | 36 | 44 | 20 8 148

As explained in section 3.4, ISCA assigns a higher prob-
ability to the highest rates of each source. For this set of ex-
periments we assign a probability of 0.5 to the highest rate

of each source. The rest of rates have a probability equal to
1-0.5
mg—1"

4.2, Figures of Merit

To evaluate the mechanism performances, three figures
of merit are used in the experiments:

1. Computational cost. The drawback of using ECA is
the resulting computational cost when a high number
of connections must be considered. This parameter is
evaluated in different sets of experiments in terms of
time (seconds) for ECA, UMCA and ISCA. All mech-
anisms are implemented on a Linux machine with a
Pentium-4 2.60 GHz processor using the programming
language C.

2. Absolute error. UMCA and ISCA are an alternative
to compute the Probablity of Congestion, but they can
give an error in the estimation. The absolute error is
also considered in order to evaluate the performance of
both mechanisms.

3. Relative efficiency. Although the error produced on
the estimation using UMCA is higher than ISCA, it
results on better computational cost. Comparison be-
tween (wo estimators given by probabilities q*! and
q®? is done in terms of efficiencies. If Vi, Vg, t1, ts
are the respective variances (or expected quadratic er-
rors) and time cost, then relative efficiency of the two
estimators is defined as the quotient

V1Xt1

—_— 11
sztg ( )

4.3. Simulation Results

1) Computational Cost

Table 3 shows the computational cost in terms of time
(s) varying the maximum capacity of the channel (C\,q2)-
This experiment has been computed over scenario D (high
number of connections). ISCA and UMCA have been com-
puted using 100.000 iterations and they show similar be-
haviour for all cases (around 5.17s and 4.5s respectively).
On the other hand, ECA decreases the computational time
as Ch,qe increases (see section 3.3). Tor instance as shown
in Table 3, the computational cost is equal to 3625s in the
case of Cpue, = 1700 and it is equal to 2391 in the case
of Cinae = 1800. Therefore, there is a computational cost
decrease of around 34%. However, ECA always offers a
higher computational cost than UMCA and ISCA. Next ex-

Table 3. Computational Cost (seconds) varying Ciyqz

Cmax ECA | UMCA | ISCA
900 7631 4.5 5,17
1000 7503 4,5 5,17
1100 5019 4,5 5,17
1200 5902 4,5 5,17
1300 6629 4,5 5,17
1400 6259 4,5 5,13
1500 5305 4,5 5,13
1600 4492 4,5 5,17
1700 3625 4,5 5,17
1800 2391 4,5 5,13

periment evaluates the computational cost of ECA, UMCA
and ISCA for each scenario A, B, C, D. Figures 4a and 4b
show the computational cost obtained considering 100.000
and 500.000 iterations, respectively. UMCA is the faster
mechanism in terms of computational cost (Fig. 4a). How-
ever, when the number of iterations increases, both UMCA
and ISCA have a computational cost higher than ECA for
low number of connections (see Fig. 4b).

10000
ECA
1000 4 |-=UMCA
-+ ISCA
@ 100 1
()
E
= || 1104
1 -
0.1 T T
b) A B C D

Scenario

Figure 4. Computational cost a) 100.000 iterations b)
500.000 iterations
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2) Absolute Error

The absolute error of the Probability of Congestion (PC)
is expressed as the difference between the estimated value
(UMCA and ISCA) and the exact value (ECA). Now, we
evaluate Probability of Congestion of UMCA and ISCA
for scenario A varying the number of iterations. Figure
5 shows PC of ISCA performs in a similar way to ECA
than UMCA. Therefore, as expected, the absolute error of
UMCA is higher than ISCA. In addition, the large is the
number of iterations, the less is the absolute error.

1.00E-08 -

[ —IscA  —umca

Absolute error

1.00E-04

0 2000 4000 6000
Number of iterations

Figure 5. Probability of congestion: absolute error

3) Relative Efficiency

With last two results we obtain that ISCA is better than
UMCA according to the absolute error, but it presents worst
performance than UMCA according to computational cost.
Table 4 shows the variance of ISCA and UMCA and their
respective time cost. Applying formula 11 we obtain that
ISCA is around 50% more efficient than UMCA.

5 Conclusions

In this paper new mechanisms to evaluate the Probability
of Congestion have been presented in a OPS network with
heterogeneous traffic.

The tradeoff between computational cost and accuracy
of the estimation has been analyzed. The presented meth-
ods overcome previous proposals (CA and ECA) in terms

Table 4. Relative Efficiency

Variance Time (s) Efficiency
ISCA UMCA ISCA UMCA
8.77E-08 1.80C-07 | 0.041224 | 0.029683 1.48
8.73E-08 1.29L-07 | 0.051209 | 0.049564 1.43
7.76E-08 1.23E-07 0.06166 0.059556 1.53
7.18C-08 1.18C-07 | 0.080968 | 0.069277 1.41
6.22L-08 1.04L-07 | 0.093113 | 0.078415 1.40
6.06E-08 | 9.88E-08 | 0.102069 | 0.090259 1.44
5.17E-08 | 8.94E-08 | 0.145694 | 0.122221 1.45

of computational cost. The proposed mechanisms (UMCA
and ISCA) compute an estimation of the Probability of Con-
gestion. Simulation results show an improvement in perfor-
mance of our mechanisms in comparison to Enhanced Con-
volution Approach of 3 orders of magnitude, at the penalty
of introducing a small stochastic error in the probability es-
timation. This error is lower in ISCA case though it has a
higher computational cost than UMCA. ISCA, as expected,
is more efficient than UMCA in terms of accuracy and com-
putational cost (50%).

In our future work Monte Carlo simulations will be car-
ried out in parallel minimizing the added cost and maximiz-
ing efficiency.
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