
Admission Control for TCP Flows Using Packet
Classes and Edge-to-edge Measurements of

Aggregates
Lluís Fàbrega, Teodor Jové, Pere Vilà, José Marzo, Liliana Carrillo

Institute of Informatics and Applications (IIiA), University of Girona
Campus Montilivi, 17071 Girona, Spain

Abstract—TCP flows from applications such as the web or ftp are
well supported by a Guaranteed Minimum Throughput Service
(GMTS), which provides a minimum network throughput to the
flow and, if possible, an extra throughput. We propose a scheme
for a GMTS using Admission Control (AC) that is able to provide
different minimum throughput to different users and that is
suitable for “standard” TCP flows. Moreover, we consider a
multidomain scenario where the scheme is used in one of the
domains, and we propose some mechanisms for the interconnec-
tion with neighbor domains. The whole scheme uses a small set of
packet classes in a core-stateless network where each class has a
different discarding priority in queues assigned to it. The AC
method involves only edge nodes and uses a special probing
packet flow (marked as the highest discarding priority class) that
is sent continuously from ingress to egress through a path. The
available throughput in the path is obtained at the egress using
measurements of flow aggregates, and then it is sent back to the
ingress. At the ingress each flow is detected using an implicit way
and then it is admission controlled. If it is accepted, it receives the
GMTS and its packets are marked as the lowest discarding prior-
ity classes; otherwise, it receives a best-effort service. The scheme
is evaluated through simulation in a simple “bottleneck” topology
using different traffic loads consisting of “standard” TCP flows
that carry files of varying sizes. The results prove that the scheme
guarantees the requested throughput to accepted flows and
achieves a high utilization of resources.

Keywords-guaranteed throughput; TCP; admission control

I. INTRODUCTION
Internet traffic is dominated by TCP connections carrying

files generated by applications such as the web, ftp, or other
[1]. The users of these applications expect no errors in the file
transfer and the best possible response time. The source breaks
up the file and sends a flow of packets at a certain sending
rate, which the network delivers to the destination with some
variable delays and some losses. Losses are recovered by TCP
through retransmission, which adds more delay (increasing the
transfer time) and may also cause the reception of duplicated
packets (which are discarded by the destination). From the
point of view of the network, the decisive Quality of Service
parameter is the average receiving rate or network throughput
(including the duplicates).

A basic feature of TCP flows is their elastic nature.
Sources vary the sending rate (up to the capacity of the net-
work input link) to match the maximum available throughput
in the network path. Since the available throughput changes
over time, TCP uses rate-adaptive algorithms that increase and
decrease the sending rate in order to match these variations
and minimize packet loss. TCP increases the sending rate if
packets are correctly delivered and decreases it if packets are

lost [2]. On the other hand, another important feature of TCP
flows is the heavy tail behavior of the file size distribution
observed in traffic measurements [1], that is, most elastic
flows carry short files and a few flows carry very long files.

Although the traditional view is that elastic flows do not
require a minimum throughput, unsatisfied users or high layer
protocols impose a limit on the file transfer time. Aborted
transfers imply a waste of network resources, which can be
even worse if the user tries the transfer again [3]. Moreover, in
commercial Internet, users will pay extra for a desired per-
formance. Hence, there is a minimum throughput required or
desired by users.

Elastic flows are well supported by a Guaranteed Mini-
mum Throughput Service (GMTS), which provides a mini-
mum throughput and, if possible, an extra throughput. There is
an input traffic profile, based on some sending traffic parame-
ters (average rate, peak rate, burst size, etc.), which defines the
desired minimum throughput. If the average sending rate is
within the profile, (“in”) packets have a guaranteed (mini-
mum) delivery, and otherwise (“out”) packets have a possible
(extra) delivery only if there are available resources.

The service delivery between the user and the provider is
ruled by an agreement (Service Level Agreement or SLA).
Since the Internet is made of multiple autonomous domains,
the end-to-end service is the concatenation of the service pro-
vided by each of the domains in the path. Each domain uses its
own way to provide the service and has a user-provider rela-
tionship with its neighbor domains according to an SLA.

We propose a scheme for a GMTS using Admission Con-
trol (AC) that is able to provide different minimum throughput
to different users and that is suitable for “standard” TCP
flows. The paper is organized as follows. In section II we
review the related work. In section III we describe our
scheme, including the AC and the interdomain operation. In
section IV we evaluate the performance of the scheme through
simulation using “standard” TCP flows in a “bottleneck” to-
pology. Finally, we summarize the paper in section V.

II. RELATED WORK
The traditional network service in the Internet is the best-

effort service, which together with TCP rate-adaptive algo-
rithms [2], aim to provide a fair throughput service. Another
proposal is the Assured Service [4], defined in the Differenti-
ated Services (Diffserv) architecture [5]. It is a proportional
throughput service able to provide different throughputs to
different users. However, in congestion (when users’ demands
exceed resources), both services cannot provide a desired

Work supported by Spanish Science &Technology Ministry (TIC2003-05567)
and Generalitat of Catalonia’s research support program (SGR 00296).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

760

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:25:44 UTC from IEEE Xplore. Restrictions apply.

minimum throughput to any flow. Congestion could be
avoided using resource overprovisioning, but this is a highly
wasteful solution. If more efficient provisioning is used, con-
gestion can be dealt with by AC. Its goal is to provide a de-
sired minimum throughput to the maximum possible number
of flows in congestion.

A classical distributed AC method with hop-by-hop deci-
sion, based on per-flow state and signaling in the core routers,
is not appropriate for elastic flows because of the low scalabil-
ity and the high overhead of explicit flow signaling messages.
Therefore other kinds of AC methods have been proposed
[6][7][8][9]. They have the following in common: they avoid
the use of per-flow signaling, per-flow state is reduced to the
edge or is not needed, and they are based on measurements.

In the schemes proposed in [6][7] the provided throughput
is the same for all accepted flows, where a flow is defined as a
TCP connection. A single link (or a logical path with a long-
term resource reservation) is considered, and its current load is
estimated from measurements of the queue occupancy. The
scheme does not require per-connection state.

In the scheme proposed in [8] the provided throughput is
the same for all accepted flows, where a flow is defined as a
sequence of related packets (from a single file transfer) within
a TCP connection. A network path is considered, and two
measurement methods are proposed to estimate the available
throughput in a path: one measures the throughput of a phan-
tom TCP flow, and the other measures the current loss rate of
the path to convert it into a throughput estimate. Per-flow state
is kept only at the edge, in a list of active flows updated using
an implicit way, that is, the start of a flow is detected when the
first packet is received, and its end is detected when no packet
is received within some defined timeout interval.

Our alternative scheme for a GMTS in [9] is similar to [8]
in that a flow is a sequence of related packets (from a single
file transfer) within a TCP connection, a network path is con-
sidered and per-flow state is kept at the edge and updated
using an implicit way. However, it is able to provide different
throughput (to flows from different users) since traffic condi-
tioning at the ingress differentiates between the “in” and “out”
traffic of the flow. Moreover, it uses a small set of packet
classes, specifically, four classes plus the best-effort class,
where each one has assigned a different discarding priority.
The AC is based on edge-to-edge per-flow throughput meas-
urements. The first packets of the flow, before the AC deci-
sion is made, are marked at the ingress as one of the R classes
(RIN, ROUT). From these packets, the throughput of the flow is
measured at the egress. The measurement is sent to the in-
gress, where by comparing it with the requested minimum
throughput, the AC decision is made. From now on, the flow’s
packets are marked as one of the A classes (AIN, AOUT) if it is
accepted, or as the best-effort class if it is rejected. The dis-
carding priorities are chosen so that accepted flows are pro-
tected against flows in the AC phase, which roughly means
discarding packets from R classes before packets from A
classes. However, the best performance of the scheme is
achieved using a special modification in the sending rate algo-
rithms of TCP, since the short-term rate fluctuations of a
“standard” TCP source makes the performance get worse.

III. OUR PROPOSED SCHEME
The new scheme we propose here and the scheme in [9]

have some common features: a flow is defined as a sequence
of related packets (from a single file transfer) within a TCP
connection; a network path is considered; per-flow state is
only kept at the edge and updated using an implicit way; the
ability to provide different throughput (to flows from different
users) differentiating between the “in” and “out” traffic; the
use of packet classes (each one with a different discarding
priority); and the use of edge-to-edge measurements.

The main goal of the new scheme in comparison with [9]
is to achieve a better performance for “standard” TCP flows.
In [9] the throughput of each single flow is measured at the
egress during a time period. For a “standard” TCP flow, the
measurement duration must be long in order to average its
short-term rate fluctuations and obtain a correct measurement.
However, a long measurement duration implies that a lot of
flows meet simultaneously during the AC phase and compete
for the resources. The per-flow measurement reflects an equal
sharing of the resources, and therefore, during congestion, the
AC tends to reject too many flows and the resource utilization
decreases.

In our new scheme we use per-aggregates measurements
instead of per-flow measurements. Throughput measurements
of flow aggregates will reduce the impact of the short-term
fluctuations of TCP flows. The aggregated measurement at the
egress is sent to the ingress where it is used to obtain an esti-
mation of the available throughput in the path. Moreover, a
desired consequence is that we eliminate the duration of the
AC phase used in [9], that is, the AC decision is made at once
when a new flow arrives at the ingress since the available
throughput in a path is known in advance. Another difference
between both schemes is that the number of classes here is
three instead of four (plus the best-effort class).

A. The Assumptions of the Scheme
This is a list of the assumptions considered by the scheme:
• There is a multidomain scenario, where neighbor do-

mains have a user-provider relationship, and our
scheme is used in one of the domains.

• The delivery of services between a provider and a user
is defined in a Service Level Agreement (SLA).

• A user may ask for the GMTS for each flow of an ag-
gregation of flows to any destination and for any
flow’s throughput, as long as a contracted value is not
exceeded.

• A flow is a sequence of related packets (from a single
file transfer) in a TCP connection (not a complete TCP
connection, which usually has periods of inactivity).

• The user indicates he is asking for the GMTS for a
flow marking the flow packets with an agreed con-
tracted value.

• In the agreement the user specifies the minimum
throughput of flows, e.g., the same value for all flows,
according to the application (ftp, web, etc.) or other.

• The network uses packet classes, such as the classes in
Diffserv [5].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

761

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:25:44 UTC from IEEE Xplore. Restrictions apply.

• The network uses pre-established logical paths from
ingress points to egress points, such as the Label
Switched Paths on MPLS networks [10], when they
are used without a long-term resource reservation. In-
stead, once a flow is accepted by our AC, resources in
the path are reserved during the flow’s lifetime.

• A list of active flows is maintained at the edge using
an implicit mechanism to detect the start and end of
flows [8].

B. The Architecture of the Scheme
The scheme with the AC (Fig. 1) uses four packet classes:

two A (Acceptance) classes, AIN and AOUT, the PR (Probing)
class and the BE (Best-Effort) class. In the output links of all
routers there is a FIFO queue with discarding priorities per
class in the order (from low to high) AIN, AOUT, BE and PR.

When the first packet of a new flow arrives at the network,
the flow is assigned to a logical path, LP, the list of active
flows at the ingress is updated, and the desired minimum
throughput, RNEW,LP, is read from the user-provider agreement.
The AC evaluates whether its minimum throughput require-
ment can be provided without losing the minimum throughput
guaranteed to the accepted flows. The AC decision is made at
once, since the available throughput in the path LP, THAV,LP, is
known in advance at the ingress. The flow is accepted if
 , ,NEW LP AV LPR TH≤ , (1)
and otherwise is rejected. If it is accepted, it receives the
GMTS, and its packets are marked as A, specifically the “in”
packets as AIN and the “out” packets as AOUT depending on the
comparison between the average sending rate and the desired
minimum throughput. If the flow is rejected, it receives a best-
effort service, and its packets are marked as BE.

In order to discover THAV,LP we use a special probing flow
that is sent continuously through the path LP. It is a Constant
Bit Rate flow with packets marked as PR. The egress node
measures the aggregated throughput of AOUT, BE and PR
classes (i.e., all classes except AIN) of flows assigned to the
path. The obtained measurement, MLP, is an estimation of the
available throughput in the logical path. This information is
sent to the ingress where the AC decision is made. In subsec-
tion C we give details of how THAV,LP is calculated from MLP.

Note that the available (unreserved) throughput in a link is
the portion of the link’s bandwidth that is not used by the
traffic AIN of all the logical paths passing through this link.
This unreserved bandwidth is used by the rest of traffic ac-
cording to the discarding priorities of classes AOUT, BE and PR
(the lowest discarding priority class achieves the resources
firstly, the next class the remaining ones, etc.), and propor-
tionally to the input traffic load of each class and each path.
This means that the available throughput is distributed among

the paths that coincide in the link. The distribution is made in
each link of the logical path until reaching the egress. There-
fore the obtained measurement is an estimation of the avail-
able throughput for the new arriving flows assigned to the
logical path. Note that if the aggregated load of classes AOUT,
BE and PR does not entirely fill the available throughput in
the link, then the measurement would be pessimistic. How-
ever, this can be solved increasing the rate of the probing flow.

C. The Available Throughput in a Path
At the egress a class classifier selects the packets marked

as AOUT, BE and PR from a logical path LP. The measure-
ments are made in time periods of duration TLP. The measured
aggregated throughput MLP is simply the ratio between the
total bytes of the received packets during the measurement
period divided by TLP. At the end of each measurement period
a signaling packet is sent to the ingress with MLP.

The measurement MLP is not directly the value of THAV,LP.
Once a flow is accepted, the measurement does not immedi-
ately take into account the resulting decrease in the available
throughput. Some time is needed to obtain an updated meas-
urement at the egress, and to carry the updated measurement
to the ingress. Specifically, in a given time t, where MLP is the
last measurement of a path LP received at the ingress at time tI
(tI ≤ t < tI+TLP), we consider that the following accepted flows
are not taken into account in MLP (Fig. 2):

• Accepted flows in LP during the time interval [tI-rttIE-
TLP, tI-rttIE], where rttIE is the ingress-egress round
trip-time, because they are measured in MLP during too
short a time.

• Accepted flows in LP during [tI-rttIE, t], since they are
not measured in MLP.

Note that we just need to take into account the accepted
flows in LP and not the ones accepted in other coincident
logical paths, since MLP is an estimation of the available
throughput only for LP. Our approach is simply subtracting
from MLP the desired minimum throughput of the accepted
flows in LP not taken into account in MLP, and using the re-
sulting value as the new THAV,LP for future AC decisions. On
the contrary, when the accepted flows end, we do not modify
MLP explicitly, but we allow the measurement to adapt to the
traffic changes (a conservative approach). Summing up, the
available throughput in the path LP in a time t is
 , ,() ()AV LP LP ACC LP

i
TH t M R i= − ∑ , (2)

where MLP is the last received measurement, and RACC,LP is the
minimum throughput of accepted flows in [tI-rttIE-TLP, t].

ingress

flow
classif

admission
controller

desired
through

core

class
classif

FIFO &
prio discarding

traffic meter
& marker

class
classif

measured
through

traffic
meter

egress
SLS

ingress

flow
classif

admission
controller

desired
through

core

class
classif

FIFO &
prio discarding

traffic meter
& marker

class
classif

measured
through

traffic
meter

egress
SLS

Figure 1. Functional block diagram of our scheme.

ingress egresstI – rttIE-TLP

tI – rttIE

tI

t

TLP

MLP

M’LP

rttIE

TLP

ingress egresstI – rttIE-TLP

tI – rttIE

tI

t

TLP

MLP

M’LP

rttIE

TLP

Figure 2. The measurement MLP and the accepted flows.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

762

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:25:44 UTC from IEEE Xplore. Restrictions apply.

D. The Interdomain Operation
In a multidomain scenario, the end-to-end service is pro-

vided by the concatenation of the service provided by each of
the domains of the followed path. Each domain uses its own
way to provide the GMTS to the flow (e.g., our scheme) and
has a user-provider relationship with its neighbor domains
according to an agreement. The interdomain operation refers
to questions such as the indication of the required service, the
identification of the flow that requests the service, the indica-
tion of service acceptance or rejection, or other. Fig. 3 shows a
basic scenario with an upstream domain U, our domain O (the
one using our scheme) and the downstream domain D. The
question here is to determine the interconnection needs of our
scheme when acting as a user or as a provider.

The interconnection aspects of our domain O with the up-
stream domain U (U acts as a user and O as a provider) have
been already dealt with in subsection III.A. No per-flow sig-
naling is needed: the start and end of flows is detected using
an implicit way, a mark on the packets indicates the desired
service, and the minimum throughput is specified in the agree-
ment.

To study the interconnection needs of our domain O with
the downstream domain D we consider the following situation
(O acts as a user and D as a provider). Suppose that a flow is
accepted in domain O but it is rejected in domain D, and O
ignores it. The consequences would be two: firstly, domain O
would keep a reservation for the flow that would be useless,
wasting resources that might be used by other flows; secondly,
domain O would wrongly consider that the flow does receive
the service and that the agreement with the upstream domain
U is being satisfied. For these reasons we propose the use of
signaling packets to notify whether domain D can provide the
GMTS to the flow or not. This information is used in domain
O in the following way: if the answer is “yes”, nothing else is
done, but if the answer is “no”, the egress forwards this signal-
ing packet to the ingress, where the AC will reject this previ-
ously accepted flow. This last point requires the egress to have
a list of active and accepted flows (updated the same way as
the list at the ingress) together with its assigned logical path
and corresponding ingress.

IV. EVALUATION OF THE SCHEME THROUGH SIMULATION
We have added the functional blocks of our scheme (Fig.

1) to the Diffserv module of the ns simulator [11]: at the in-
gress routers and for each arriving flow, a sending rate meter
suitable for “standard” TCP flows” (based on the Time Sliding
Window algorithm defined in [4]), a marker (with the four
marks) and an admission controller; at the egress routers and
for each path, a throughput meter for classes AOUT, BE and
PR, which counts the total received bytes during the meas-
urement duration, and notifies the measurement to the ingress
router (with the corresponding delay). In the output links of all
routers there is a FIFO queue with priority discarding for the
four packet classes, based on the drop-tail algorithm.

A. Description of the Simulations
In the simulations we use a “standard” TCP source, spe-

cifically TCP New-Reno. We generate TCP flows that carry a
single file from an ingress point to an egress point through a
logical path. Each flow is characterized by the file size and the

starting time. File sizes are obtained from a Pareto distribution
that approximates reasonably well the heavy-tail behavior of
the file size distribution observed in measurements [1]. In all
simulations the tail parameter is 1.1 and the minimum file size
is 10 packets (the packet length is 1,000 bytes). With these
parameters the distribution has an infinite variance. After
generating the values (about 10,000 flows in each simulation)
more than 50% are below 20 packets, the mean σ is about 74
packets and the maximum one reaches 19637 packets. On the
other hand, the starting times are obtained from a Poisson
arrival process, characterized by the average number of arri-
vals per second, λ flow/s. Therefore the average offered traffic
load to a logical path is equal to λσ bps.

The simulations are performed in a “bottleneck” topology
(Fig. 4), with two logical paths, e0-e3 and e2-e3. We generate
flows for each path at an arrival rate of λ flow/s, the value of λ
is the same for both paths. In order to study underloading and
overloading situations in the “bottleneck” link of 2 Mbps, we
vary the average offered traffic load of each path in the range
of 0 to 3 Mbps (the average offered traffic load to the “bottle-
neck” link, 2λσ bps, varies from 0 to 6 Mbps).

To evaluate the performance of the scheme we use three
parameters that measure the utilization of resources as well as
the throughput obtained by flows. We consider the satisfied
flows, defined as the ones that complete the transfer and get at
least 95% of the desired throughput (the throughput is calcu-
lated as the ratio between the total received packets divided by
the flow’s lifetime). Then we obtain, for each logical path, the
following performance parameters: 1) the average “total”
satisfied traffic load, which is the aggregated throughput of all
satisfied flows, taking into account the minimum and the extra
throughput; 2) the average “minimum” satisfied traffic load,
which takes into account the minimum throughput; and 3) the
average throughput of satisfied flows (note that it will always
be a value above 95% of the desired throughput). The first
parameter evaluates the total use of resources, the second one
its reserved use, and the third one indicates how much extra
throughput the satisfied flows get.

destinationsource

domain U domain O domain D

IU EU

SLA

[MLP]
[yes/no]

SLA

IO EO ID ED

[no]

destinationsource

domain U domain O domain D

IU EU

SLA

[MLP]
[yes/no]

SLA

IO EO ID ED

[no]

Figure 3. Interdomain operation of our domain with neighbor domains.

2 Mbps
20 ms

50 packets

e0

e2

c1 e3

s6

Rest of the links:
20 Mbps

20 ms

d5

d7

s4

2 Mbps
20 ms

50 packets

e0

e2

c1 e3

s6

Rest of the links:
20 Mbps

20 ms

d5

d7

s4

Figure 4. Network topology (showing the link’s bandwidth and delay).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

763

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:25:44 UTC from IEEE Xplore. Restrictions apply.

The average values of satisfied traffic load are obtained by
averaging over the simulation time, but without considering
the initial period of the simulation transient phase. In all simu-
lations a minimum of 10,000 flows are generated after this
initial period. We make 10 independent replications of each
simulation, and we estimate the mean value by computing the
sample mean and the 95% confidence interval [12].

B. Simulation Results
In the first place, we compare our scheme with the scheme

in [9] (in both, the measurement duration for the logical paths
is the same, T03 = T23 = 0.5 s) and with the best-effort service.
The desired throughput for all TCP flows is 90 Kbps. In Fig. 5
we show the results for the traffic of the “bottleneck” link (the
sum of the total and the minimum satisfied traffic for both
paths, and the average throughput of satisfied flows in the two
paths, versus the average offered traffic load to the link). Ide-
ally, if the maximum utilization was achieved, the minimum
and the total satisfied traffic would be similar and around 2
Mbps and the average throughput of satisfied flows would be
around the desired throughput of 90 Kbps.

The results in Fig. 5 prove that our scheme is much better
than the best-effort service, and also better than the scheme in
[9] when “standard” TCP flows are used. As expected, in
underloading, when resources are enough to satisfy all flows,
all schemes achieve the same value for the total satisfied traf-
fic, which at the same time is equal to the offered traffic (the
dashed line indicates the equality). In overloading, the utiliza-
tion of the best-effort service tends to zero, similar to the
scheme in [9]. The utilization of our scheme stays almost
constant for the entire range of offered traffic loads (the total
satisfied traffic is about 1.8 Mbps and the minimum satisfied
traffic is about 1.5 Mbps). On the other hand, as expected, the
average throughput of satisfied flows decreases for high val-
ues of the offered traffic because the unreserved resources

decrease (the final value is about 117 Kbps).
In the second place, we study the influence of the meas-

urement duration TLP on the performance (Fig. 6). We use
different values of TLP from 0.1 s to 2.0 s (with T03 = T23).
Again the desired throughput for all flows is 90 Kbps, and the
results shown are for the traffic of the “bottleneck” link. The
measurement duration of 0.5 s achieves the best performance,
and when the measurement duration is shorter (0.2 s and 0.1 s)
or longer (1.1 s and 2.0 s) the performance gets worse since
the utilization decreases. This is because if TLP is too short, the
measurement is sensitive to bursts, but if it is too long, the
measurement does not reflect the changes in the traffic load.

A very important issue is to study in detail if our scheme
guarantees the minimum requested throughput to the accepted
flows. We have analyzed the simulation results to obtain the
percentage of accepted flows that complete the file transfer,
the percentage of accepted flows that are satisfied (the ones
that complete the file transfer and get at least the threshold
throughput –95% of the desired minimum throughput), and the
frequency distribution of the throughput of the accepted flows
to know how far the accepted and non-satisfied flows are from
the threshold throughput. The results can be summarized as
follows: 1) all accepted flows complete the file transfer, 2) a
high percentage of accepted flows are satisfied, and 3) a high
percentage of the accepted and non-satisfied flows achieve a
throughput close to the threshold. In Fig. 7 we show some of
these results, when the measurement duration is T03 = T23 = 0.2
s and the desired throughput for all TCP flows is 90 Kbps (the
threshold is 85.5 Kbps). The graph on the left shows percent-
ages of accepted flows versus the offered traffic load (to the
“bottleneck” link). The percentage of accepted flows that are
satisfied is 100% for a great range of offered traffic load and
then it decreases slowly for high values. In the graph on the
right we show the frequency distribution of throughput of
accepted flows (the dashed line indicates the threshold

0.1 s 0.2 s 0.5 s 1.1s 2.0 s0.1 s 0.2 s 0.5 s 1.1s 2.0 s
Total Traffic (Mbps) Minimum Traffic (Mbps) Average Throughput (Kbps)

0.0
0.4

0.8
1.2

1.6
2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0
0.4
0.8
1.2
1.6
2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0
100

125

150

175

200

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Offered Traffic (Mbps) Offered Traffic (Mbps) Offered Traffic (Mbps)

Figure 6. The influence of the measurement duration (T03 = T23) in the performance of our scheme. The desired throughput is 90 Kbps.

best-effortour scheme scheme [9]best-effortour scheme scheme [9]
Total Traffic (Mbps) Minimum Traffic (Mbps) Average Throughput (Kbps)

0.0
0.4
0.8
1.2
1.6
2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0
0.4

0.8
1.2

1.6
2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0
100
150
200

250
300
350

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Offered Traffic (Mbps) Offered Traffic (Mbps) Offered Traffic (Mbps)

Figure 5. Comparison of our scheme with the scheme in [9] (in both T03 = T23 = 0.5 s) and with the best-effort service. The desired throughput is 90 Kbps.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

764

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:25:44 UTC from IEEE Xplore. Restrictions apply.

765

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:25:44 UTC from IEEE Xplore. Restrictions apply.

