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Abstract— When Unmanned Underwater Vehicles (UUVs)
perform missions near the ocean floor, optical sensors can
be used to improve local navigation. Video mosaics allow to
efficiently process the images acquired by the vehicle, and
also to obtain position estimates. We discuss in this paper the
role of lens distortions in this context, proving that degenerate
mosaics have their origin not only in the selected motion model
or in registration errors, but also in the cumulative effect of
radial distortion residuals. Additionally, we present results on
the accuracy of different feature-based approaches for self-
correction of lens distortions that may guide the choice of
appropriate techniques for correcting distortions.

I. INTRODUCTION

Exploration of unstructured unknown environments is a
difficult task for a robot. If these environments are located
underwater, close to the sea floor, the task becomes even
more challenging. In the last few years several research
groups have proposed vision-based systems to explore the
ocean floor. Images are usually acquired by a down-looking
camera carried by an underwater robot. Determining the
motion between consecutive images of a sequence acquired
this way can then be used to build image mosaics of the
ocean floor, and to estimate the motion of the underwater
vehicle [1].

Recovering the camera motion between two image
frames is an indispensable prerequisite for mosaicing as well
as vehicle motion estimation. It requires the choice of an
appropriate motion model suitable to adequately describe
changes in the images that result from the movements of
the camera during acquisition. In the literature [2] several
mathematical models for image transformations can be
found whereas euclidean, similarity, affine and projective
transformations are the most important ones. While eu-
clidean transformations allow to model translations and
rotations with 3 degrees of freedom (DOFs), similarity
transformations with 4 DOFs additionally support image
scaling. Affine transformations provide 6 DOFs subsuming
translations, rotations, scaling and sheering. Finally, projec-
tive transformations (also called homographies) yield the
largest flexibility given 8 DOFs which enable the modeling
of projective mappings. Which model to choose mainly
depends on the configuration of the camera and its degrees
of freedom.
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One of the first mosaicing systems for an underwater
robot was proposed by Marks et al. [3]. This system
achieved real-time performance due to the use of special
purpose hardware for image filtering and correlation, allow-
ing the creation of “single column” mosaics in real time.
Since the robot could control its heading, a very restrictive
(translation-only) motion model was assumed, without tak-
ing into account rotation, scaling, perspective distortion, etc.
For the system to work, the robot was programmed to keep
constant altitude. Provided that this system used a 2 DOFs
motion model, no distortions appeared when mosaicing
large sequences. However, when the robot performed either
changes in altitude or motion in roll, pitch or yaw local
misalignments in the final mosaic appeared.

In [4] a visual station-keeping system based on optical
flow was presented. In this case motion was estimated
according to a 2D similarity motion model with 4 DOFs.
When underwater mosaics are built with 4 DOFs, scaling
distortions may appear. If more DOFs are introduced in
the motion model, however, the situation is even worse
since perspective distortions may affect the final mosaic
(especially when using homographies), e.g., resulting in an
extreme shrinkage or expansion of images when they are
mapped onto the mosaic.

Although very little discussion can be found in the lit-
erature about these scaling distortions, they are well known
by researchers in the field of underwater mosaicing. Only
the work presented in [5], based on the previous work of
Sawhney and Kumar [6], deals with the problem of scaling
distortions by adding a term to the function to optimize that
bounds the size of the image diagonals once they are warped
into the mosaic. Moreover, one term (k1) of radial distortion
is taken into account, since lens distortion correction is
embedded in the mosaicing process as proposed in [6].

According to the literature, if a large area of the ocean is
to be mosaiced, it is needed to limit the DOFs of the motion
model, and lens distortion is assumed to have little impact
on the final mosaic or estimated trajectories. However, in
this paper we will show that radial distortions very well
have an important effect on the final quality of a mosaic
image. They should by no means be neglected since just
accounting for related image scalings cannot compensate
for registration errors induced by lens distortions. Moreover,
we will show that lens distortions are one of the main error
sources in image registration and have a serious impact
on motion recovery of an underwater vehicle. Although a
huge amount of calibration and correction techniques exist,
we will also discuss perspectives for an auto-correction of
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distortions, since standard approaches are difficult to apply
in underwater domains.

The remainder of the paper is organized as follows.
Section II reviews the basics of camera geometry. Sec-
tion III looks first at the theoretical background of lens
distortion before introducing some common approaches for
modeling distortion in computer vision. Section IV presents
experimental observations and synthetic results regarding
the influence of distortion in underwater navigation, while
in section V self-correction techniques are discussed. A
conclusion is given in section VI.

II. BASICS OF CAMERA GEOMETRY

In image-based localization and navigation an indis-
pensable prerequisite for motion recovery is given by the
assumption that 3D scene points are mapped onto different
image planes according to a common imaging model that
holds for all images. Usually this model is given by the
well known pinhole model [2]. Following this model every
3D scene point P is projected onto a 2D image point p̄
according to the following equation:

p̄ = K [ I |~0 ] · P with K =

 αx 0 x0

0 αy y0
0 0 1

 (1)

where matrix K encodes the intrinsic camera parameters
and I denotes the 3 × 3 identity matrix. The calibration
matrix K usually includes 4 parameters which are the focal
length of the camera in x and y direction, αx and αy (which
are both the same if square pixels are given), and its princi-
pal point c0 = (x0, y0). According to (1), which is written
in homogeneous coordinates, 3D points and their images are
related to each other by a linear mapping which significantly
simplifies mathematical tractability of the image acquisition
process and the modelling of camera/vehicle motion.

III. MODELING LENS DISTORTION

The pinhole camera model as introduced in the previous
section assumes an ideal camera geometry which in practice
rarely exists. Real cameras and lenses usually introduce
some kind of distortion to the imaging process. As a
consequence the mappings between 3D world points P
and their projections on the various image planes are no
longer linear, but include some non-linearities. Although
these can be ignored in various applications –e.g., in object
recognition or tracking– they are crucial in motion and
navigation tasks (cf. [7]). The most important distortions
that appear in practical image acquisition are given by radial
and tangential lens distortions that are introduced in the
following paragraphs.

A. Radial and Tangential Distortion

Lens distortions have at first been observed and treated
by researchers from the photogrammetry community [8].
Within computer vision they had been ignored for a long
period of time, however, with growing interest on geometric
scene reconstruction and camera modeling they also gained
more importance in this field. Hence, over the years several

approaches for modeling and correcting lens distortions
have been investigated. The most common model used
today is given by a radial-symmetric non-linear polynomial
mapping between ideal, undistorted image points p̄ and
their distorted correspondences pd = (xd, yd) as they are
observable in acquired images:

pd = c0 + (1 + κ1 · r + κ2 · r2 + . . .)(p̄− c0) (2)

The κi are called distortion coefficients, c0 denotes the
center of radial distortion (which is often assumed to be
identical to the principal point of the camera), and r gives
the Euclidean distance of any point p̄ to the center of distor-
tion defined as r =‖ p̄−c0 ‖. In practice often only the terms
with even exponentials are included. Besides, in several
works (e.g., [6]) it has even been shown that sometimes
already one single distortion term yields satisfying results
for correction. In addition to the very common modeling
of lens distortions by high-order polynomials in the last
years a second kind of models has been investigated termed
division models. The one introduced by Fitzgibbon [7] is
given below:

p̄ =
1

1 + λ · (‖ pd − c0 ‖)
· (pd − c0) (3)

This model is not just an approximation to the common
model in (2), but an alternative way to model lens distortion
which has proven to have comparable power. For complete-
ness it should be noted that, although radial distortions
are the most important class of lens distortions, real lenses
sometimes also exhibit portions of non-radial distortion.
These are usually assumed to be tangential distortion.

In practice, however, tangential lens distortions are usu-
ally ignored since it is difficult and often numerically
instable to estimate these portions from distorted images.
Furthermore most of the time they only improve distortion
correction slightly, compared to a pure radial distortion
correction. Therefore, it does not seem to be worth spending
much time on reconstruction of tangential coefficients.

B. Correcting Lens Distortion

Lens distortion is an important problem in various com-
puter vision applications and leaving distorted images un-
corrected may lead to completely inaccurate results (cf. sec-
tion IV). To avoid this a huge amount of algorithms for
correcting lens distortions emerged over time. The various
approaches can roughly be divided into three different
classes.

a) Pattern-based approaches where images of cali-
bration patterns that show a rectangular grid of
squares or at least some straight lines, e.g., chess-
boards, are used for calibration [9].

b) Plumb line methods, i.e., algorithms that ground
on assumptions about specific structures in a scene
and their appearance in acquired images e.g., el-
lipsoids that should map to circles; for distortion
calibration images are acquired and distortion pa-
rameters can then be estimated by transforming the
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Fig. 1. Snapshot of UUV operating in the test pool. The floor of the pool
is covered by a poster of real sea floor as to simulate realistic sea floor
images for assessing algorithms.

images as to make the elements appear as they are
supposed to [10].

c) Self-correction techniques that basically rely on
two or more images taken of an arbitrary scene;
distortion parameters are reconstructed based on
fundamental matrix relations or homographies that
should hold between the images. Since these con-
straints are usually not fulfilled between distorted
images the errors in geometric reconstruction yield
valuable hints for distortion estimation[11], [12].

IV. EXPERIMENTAL OBSERVATIONS

In underwater navigation often image sequences are
taken from the seafloor which is monitored by the vehicle
during its operation. The motion of the vehicle can then be
reconstructed from these sequences by estimating param-
eters of an appropriate motion model between subsequent
images of the sequence. In our framework we assume that
the seafloor is more or less planar and the camera motion
can be described by an 8-parameter projective homography
which has proven to be a reasonable model in our case.

A. Real Image Registration

We performed tests on real imagery acquired with our
robot (Fig. 1). On the ground of this pool a huge poster
simulating the sea floor was placed yielding a controlled
environment for test data acquisition. In particular, since
the floor of the pool is perfectly planar and the robot
performs movements in 3D space, camera motion in ac-
quired sequences should be described perfectly by 8-DOF
homographies.

A number of test datasets was acquired by the robot mon-
itoring the poster. We started our experiments on mosaic-
based underwater navigation by applying various mosaicing
algorithms to the data. On the one hand feature-based
approaches were applied where the homography parameters
are robustly reconstructed based on correspondences in both
images formerly detected by a Harris corner detector [13].
On the other hand also a featureless technique that basically
estimates the optical flow between two images constraint by
the projective motion model [14]. Featureless and feature-
based algorithms were both combined with local estimation
strategies while the latter ones were additionally embedded

Fig. 2. Left: exemplary mosaic resulting from registering approximately
40 images of the test dataset. Right: mosaic calculated from the same
images, however, this time after radial lens distortion correction.

in a global framework. By applying a global strategy all im-
ages are processed simultaneously while in local processing
the data is only analyzed incrementally.

Independent of the applied algorithms and strategies we
always got severely distorted images. From the example
mosaic shown on the left of Fig. 2 it can be seen that already
after short periods of time, images were severely scaled and
distorted which is very uncommon in our scenario. Since
the robot is moving approximately parallel to the poster, the
resulting mosaic is expected to be almost undistorted and no
image scaling should appear at all. Such severe distortions
as observed can usually result only if the orientation of the
camera’s image plane is no longer parallel to the seafloor.
Additionally, error accumulation over time which cannot
be avoided in local registration could neither explain these
effects since they also appeared in global registration modes.
Thus, further tests were carried out to discover the reasons
for the distortions.

B. Intensity Residual Analysis

On the one hand a detailed analysis of intensity residuals
in registration was performed to extract error characteristics.
One typical result of this analysis is shown in Fig. 3 where
two registered images are shown with significant residuals
(exceeding a threshold of 10) marked in green. As is appar-
ent from the picture the residuals are unequally distributed
over the image and, concentrate in image corners. Such
error patterns may not appear in case of pure registration
errors due to misalignment, since projective homographies
cannot distort images non-linearly and errors along image
borders should always enforce errors in the image center as
well. The distribution moreover implied some kind of radial
distortion according to the radial-symmetric distribution.

C. Lens Distortion Correction

To verify this hypothesis we have tried to extract lens
distortion coefficients from the image sequences applying
(2) with only κ2 and assuming the center of radial distortion
equal to the principal point and located in the center of
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Fig. 3. Typical registration result on lens distorted images. The picture
shows significant intensity residuals remaining after registering two images.
They are concentrated along the image borders while in the center only
few errors appear which is very unlikely for projective transformations.

the image. Given a result of κ2 ≈ −1.5e−6 the images
were corrected and mosaiced again. The result, shown on
the right of Fig. 2, was much less distorted and by this
supported our hypotheses. Even on long image sequences
with more than 150 images it became possible to close loops
which was absolutely impossible by just using the original
dataset. Fitzgibbon [7] presented similar results with regard
to path reconstruction of a mobile robot. Nevertheless, to
completely eliminate the possibility that the distortion might
solely be due to perspective effects we further on simulated
effects of radial distortion on synthetic data as outlined in
detail in the next section.

D. Simulations on Synthetic Data

To verify the effects of lens distortion in image regis-
tration we performed synthetic tests. Given the distortion-
free source image of the pool poster we cropped 60 images
from this poster whereas a vertical camera translation was
simulated between each pair of images. This sequence was
then registered applying featureless estimation. As a result
the poster strip could be recovered very well as it can
be seen from Fig. 4, left. Afterwards the images were
distorted by applying the formerly estimated κ2 to each
single image before they were registered again. This time
the resulting poster was severely scaled and distorted, as it
can be seen from Fig. 4, right. The total strip has only half
size compared to the ground truth one, and in horizontal
direction also significant scaling appears. Comparing the
estimated homographies in every registration step an error
in reconstructed translation of approximately 1.5 pixels
appears which in the end results in the severe scaling that
we observed. It should be noted, however, that by analyzing
residual errors in the mosaicing process nearly no residuals
could be detected and patterns like the one shown in Fig. 3
could not be discovered. This led to the conclusion that lens
distortions may sometimes be compensated to a large degree
by the projective motion model which obviously happened
in the synthetic tests (and was later on also verified by
experiments on self-calibration, see next paragraph).

V. ROBUST FEATURE-BASED SELF-CORRECTION

For correcting lens distortions there are basically the
three classes of possible approaches that were outlined in

Fig. 4. Comparison of registration results on synthetic images affected
by lens distortion: on the right the sequence images are distorted with
κ2 = −1.5e−6 (cf. Eq. (2)), on the left they are undistorted. It can clearly
be seen that radial distortion may severely falsify motion estimation results.

section III-B. It has early been stated and proven by various
authors (e.g., [15]) that pattern-based calibration is usually
the best thing one can do. Although also plumb line and
self-calibration techniques yield satisfying results in many
applications, the accuracy of these results is usually not
as good as of pattern-based approaches. Nevertheless, in
many applications it is simply not possible to do pattern-
based calibration. E.g., in our case underwater images are
usually acquired in real world environments where neither
calibration patterns nor specific scene structures may be
assumed. Additionally, zoom and with this also focal length
and distortion coefficients sometimes change during image
acquisition, e.g., due to detailed exploration or even auto-
focus. In these cases the only chance for distortion correc-
tion is self-calibration from motion or geometric constraints.

We have tried to recover radial distortion parameters
by using correspondences between images and related ho-
mographies. Let p̄ = (x, y, 1) and p̄′ = (x′, y′, 1) be
projections of the same 3D point in two different images.
The homography between both images can be calculated by
minimizing the following error function εH(H):

εH(H) =
n∑
i

|p̄′ −H · p̄| (4)

where n is total number of correspondences. This error
function is minimized by employing non-linear iterative op-
timization methods [16]. Since in real images only distorted
points pd and p′d are given, p̄ and p̄′ have to be derived from
these by distortion correction:

p̄ =
(
xc = x0 + (1 + k1 · r2 + k2 · r4) · (xd − x0)
yc = y0 + (1 + k1 · r2 + k2 · r4) · (yd − y0)

)
(5)

where (x0, y0) is center of radial distortion, k1 and k2 are
radial distortion parameters and r2 = (xd − x0)2 + (yd −
y0)2. Embedding corrected points into Eq. 4, allows for
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simultaneous radial distortion parameters and homography
estimation [5].

Different synthetic data sets were used in our experi-
ments. We report here the results obtained by taking a grid
of points and applying a known affine homography to obtain
pairs of correspondences, which will serve as ground-truth
(Hreal). The assumed size of the images was 300 × 300.
A radial distortion equivalent to that of the camera of
the underwater robot that was used for experiments was
applied to the original grid and the corresponding distorted
one, inducing a maximum pixel offset of up to 20 pixels
in each grid. Both point sets were corrupted with various
levels of zero-mean Gaussian noise to carry out the different
experiments. We first examined two approaches to recover
the camera motion in terms of an affine transformation H,
ignoring lens distortions completely:

A1: The homography was estimated directly from the
distorted points, ignoring lens distortions com-
pletely (HA1)

A2: Since radial distortion is a function of the distance
from every pixel to the center of distortion in the
image, points that are close to the image corners
are more distorted than points located close to the
distortion center. Therefore, the second approach
only used those correspondences that were inside
the area of a circle with radius r located at center
of distortion (in our case image center).

Given a camera motion between two images, it is not
only possible to recover the motion of the camera, but it
is also possible to recover lens distortions in the images.
The basic idea is to use registration residuals that cannot
be compensated by the camera motion model to estimate
lens distortions. We examined three different approaches
to recover the coefficients k1 and k2 for correcting the
distortions:

B: In this case at first radial distortion parameters
(k1, k2) are estimated by minimizing Eq.4 for
these two parameters. H is taken from applying
method A2 before, and (p, p′) are the noisy dis-
torted points located outside the circle. In this case,
the homography H is fixed during the minimiza-
tion process and only the radial distortion terms
are optimized. Once (k1, k2) have been found, the
noisy distorted correspondences are undistorted
applying the obtained parameters. Finally, HB is
computed from the resulting undistorted corre-
spondences.

C1: Here Eq.4 is minimized given HA2. This time H is
not fixed and it is optimized simultaneously with
(k1, k2), as it is proposed in [5].

C2: Finally, the last approach consists of undistorting
the noisy distorted correspondences with radial
distortion parameters (k1, k2) obtained from C1,
and then computing (HC2) from these undistorted
points.

Fig. 5 illustrates the results. The vertical axis represents the
remaining residuals when applying the estimated homogra-

phies to the set of undistorted ground-truth correspondences
(Eq.4). If the motion is completely and correctly recovered,
εH(H) equals to zero. The bigger the residual is, the worse
is the motion reconstruction. In the graph on the left in
Fig. 5, zero mean Gaussian noise with σ = 1 was applied
to both point sets, while on the right only σ = 0.25 was
chosen. From the results, it can be observed that for very
small radii (up to 25 pixels) HA2 performs worse than
HA1. On the contrary, for bigger radii HA2 outperforms
the blind estimation. If the chosen circle includes all the
correspondences, performance of both methods is same as
they are using the same data to compute the homography.
It should be noted that residuals are always computed
for all the correspondences to allow comparison among
the different approaches. On the other hand, given a high
noise ratio, optimizing together for the homography and the
distortion parameters (B) yields a worse estimation of the
real homography than optimizing only (k1, k2), after fixing
the homography as computed from the central points of the
image (C1). Finally, the good performance of estimating the
homography with just the central, but nevertheless distorted
points of the images (HA2) and (HB), fixing the homog-
raphy, and then estimating radial distortion parameters and
re-estimating the homography, should be outlined. Although
Fig. 5 just shows the results for a given configuration of
test points, and two noise levels, extensive simulations have
been run, showing the same tendency in the results.

VI. CONCLUSIONS AND FUTURE WORK

Growing capabilities of autonomous robots require robust
motion recovery and navigation algorithms. As analyzed in
this paper such techniques significantly rely on good-quality
image data and are very sensitive to lens distortions. Hence,
distortion correction is indispensable.

The idea behind radial distortion estimation from corre-
spondences is to compensate errors that cannot be compen-
sated by homographies and thus, getting a better estimation
of radial distortion parameters. From our experiments, it can
be seen that the results are highly dependent on a good ho-
mography estimation. The better the homography estimation
is, the better radial distortion estimation is and vice-versa.
Our experiments show that instead of simultaneously esti-
mating both homography and radial distortion parameters,
estimating the homography by using the correspondences
that are closer to the distortion center (HA2) then estimating
radial distortion parameters and re-estimating the homogra-
phy, (HB), results in a better estimation.
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Fig. 5. Residuals obtained by the different approaches to recover motion between two images affected by lens distortion. (Left) zero-mean Gaussian
noise with σ = 1 pixel. (Right) σ = 0.25 pixel
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