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Abstract - Autonomous Underwater Vehicles (AW, 
represent a challenging control problem with complex, noisy, 
dynamics. Nowadays, not only the continuous scientific 
advances in underwater mboticn but the increasing number 
of sub sea missions and its complexity ask for an 
automatization of submarine processes. This paper proposes 
a high-level control system for solving the action selection 
problem of an autonomous mbot. The sysfem is characterized 
by the use of Reinforcement Learning Direct Policy Search 
methods (RLDPS) for learning the internal statelaction 
mapping of some behaviors. We demonstrate its feasibility 
with simulated experiments using the model of our 
underwater robot URIS in a target following task. 

I. INTRODUCTION 

A commonly used methodology in robot leaming is 
Reinforcement Leaming (U) [I]. In RL, an agent tries to 
maximize a scalar evaluation (reward or punishment) obtained as 
a result of its interaction with the environment. The goal of a 
RL system i s  to find an optimal policy which maps the state of 
the environment to an action which in turn will maximize the 
accumulated future rewards. Most F L  techniques are based on 
Finire Markov Decision Processes (FMDP) causing finite state 
and action spaces. The main advantage of Rc is that it does not 
use any knowledge database, so the learner is not told what to do 
as occurs in most forms of machine learning, but instead must 
discover actions yield the most reward by lrying them. 
Therefore, this class of learning is suitable for online robot 
learning. f i e  main disadvantages are a long convergence time 
and the lack of generalization among continuous variables. 

In order to solve such problems, most of €U applications 
require the use of generalizing function approximators such 
artificial neuraI-nehvotks (ANNs), instance-based methods or 
decision-trees. As a result, many &based control systems 
have been applied to robotics over the past decade. In [2j, an 
instance-based leaming algorithm was applied to a real robot in a 
corridor-following task. For the same task, in [3] a hierarchical 
memory-based RL was proposed. Also, some RL applications 
on autonomous helicopter flights [17], optimization of robot 
locomotion movements [I91 and robot weightlifting task [18] 
have obtained good results as well. 

The dominant approach has been the value-function approach, 
and although it has demonstrated to work well in many 
applications, it has several limitations, too. If the statespace is 
not completely observable (POMDP), small changes in the 
estimated value of an action cause it to be, or not be, selected; 
and this will detonate in convergence problems (41. 

Over the past few years, studies have shown that 
approximating directly a policy can be easier than working with 
value functions, and better results can be obtained [5,6]. Instead 
of approximating a value function, new methodologies 
approximate a policy using an independent function approximator 
with its own parameters, trying to maximize the expected reward. 
Examples of direct policy methods are the REINFORCE 
algorithm [7], the direct-gradient algorithm [SI and certain 
variants ofthe actor-critic fiarnewotk (91. 

The advantages of policy methods against value-function 
based methods are various. A problem for which the policy is 
easier to represent should be solved using policy algorithms [6]. 
Working this way should represent a decrease in the 
computational complexity and, for learning control systems 
which operate in the physical world, the reduction in 
time-consuming would be notorious. Furthermore, learning 
systems should be designed to explicitly account for the resulting 
violations of the Markov property. Studies have shown that 
stochastic policy-only methods can obtain better results when 
workiag in POMDP than those ones obtained with deterministic 
value-function methods [lo]. On the other side, policy methods 
Ieam much more slowly than R1, algorithms using value function 
[5] and they typically find only local optima of the expected 
reward [ll]. 

In this paper we propose an on-line direct policy search 
algorithm based on Baxter and Bartlett’s direct-gradient 
algorithm OLPOMDP [U] applied to a real leaming control 
system in which a simulated model of the A W  W S  [13] 
navigates a two-dimensional world. The policy is represented 
by a neural nehvork whose input is a representation of the state, 
whose output is action selection probabilities, and whose weights 
are the policy parameters. The proposed method is based on a 
stochastic gradient descent with respect to the policy parameter 
space, it does not need a model of the environment to be given 
and it is incremental, requiring only a constant amount of 
computation step. The objective of the agent is to compute a 
stochastic policy [IO], which assigns a probability over each 
action. Results obtained in simulation show the viability of the 
algorithm in a real-time system. 

The structure of  the paper is as follows. In section n the 
direct-policy search algorithm is detailed. In section a 
description of all the elements that affect our problem (the world, 
the robot and the controller) are commented. The simulated 
experiment description and the results obtained ate included in 
section IV and finally, some conclusions and further work are 
included in section V. 
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II. THE: RLDPS ALGORITHM 

A partially observable Markov decision process (POMDP) 
consists of a state space S, afl observation space Y and a control 
space U. For each state ;E S there is a deterministic teward 
r@. .  As mentioned behre, the algor ih ilpplied is designed to work 
on-line so at every time step, the leamer (our vehicle) will be given m 
observation of the state and, according to the policy followed at that 
moment, it will generate a mntrol action, As arcs& I& leama will 
be driven to another state and will e v e  arewatd associaled to this 
new state. This 4 will allow us to update the ambll& 
patametas that dehe  the policy fokwed at every iteration, resulting 
m a fmd policy considered to be optimal or closer to optimal. The 
alg0rithmprocedureiSslr“anzed in Table L 

TABLE I 
AIRorithm: Baxier & Bartlett’s OLPOMDP 

1: Gwen: 
T>O 
Initial parameter values q& 
Arbitrary starting state io 

2: Setzo = O ( Z ~ E  R’ ) 
3: fort = 0 to Tdo 
4: Observe statey, 
5: 

6: 

Generate control action U, according to current policy 

Observe the reuard obtained r(it+J 
Y, 1 

7: 

e,, = e, + di,+,):,*l 8: Set 
9: end for 

The algorithm works as follows: having initialized the 
parameters vector e,, the initial state io and the gradient 

zo = 0 ,  the leaming procedure will be iterated T times. At 

every iteration, the parameters gradient Zr will be updated. 

According to the immediate r e d  received r(i,+,), the new 

gradient vector Z,+, and a fixed learning paramenter a, the new 

paramenter vector e,, can be calculated. The current 

policy /.l, is directly modified by the new parameters becoming a 

new policy that will be foflowed next iterdon, getting 

closer, as t + T to a final policy& that represents a w m t  
solution of the problem. 

In order to clarify the steps taken, the next lines will relate 
the update parameter procedure of the algorithm closely. The 
controller uses a neural neiwork as a function approximator that 
generates a stochastic policy. Its weights are the policy 
parameters that ate updated on-line every time step. The 
accuracy of the approximation is controlled by the 
parameter p E [0,1) . 

The M step in the weight update procedure is to compute 
the ratio: 

At any step time c, the term 2, represents the estimated 
gradient of the reinforcement sum with respect to the network’s 
layer weights. In addition, 4 refers to the local gradient 
associated to a single neuron of the ANN and it is multiplied by 
the input to that neuron y,  . In order to compute these gradients, 
we evaluate the soft-max distribution for each possible future 
state exponentiating the real-valued ANN outputs 

{ 0, , ..., On} being n the number ofneurons of the o a u t  layer [14]. 

State 
Input 

Fig. 2 Schema of the ANN arquitecture used. 

After applying the soft-max function, the outputs of the 
neural network give a weighting tj E (o,I) to each of the 

vehicle’s thrust combinations. Finally, the probability of the f’ 
thrust combination is then given by: 

(2.3) 

==I 

Actions have been Iabeled with the associated thrust 
Combination, and they are chosen at random h m  this probability 
distribution. 

Once we have computed the output distribution over the 
possible control actions, next step is to calculate the gradient for 
the action chosen by applying the chain rule; the whole 
expression is implemented similarly to error buck propagarion 
[15]. Before computing the gradient, the error on the neurons of 
the output layer must be calculated. This error is given by 
expression (2.4). 

(2.4) 

The desired output d, will be equal to 1 if the action selected 

wits 0, , atld 0 otherwise (see Fig. 3). 

e, = dj  - PrJ 

for every weight of the network In AANs like the one used in 
the algorithm the expression defined in step 7 of Table I can be 
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Fig. 3. Soft-Max error computation for every output. 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore.  Restrictions apply. 



With the soft-max output error calculation completed, next 
phase consists in computing the gradient at the output of the 
ANN and back propagate it to the rest of the neurons of the 
hidden layers. For a local neuronj located m the output layer we 
may express the local gradient for neuron j as: 

(2.5) 

Where e, is the soft-mu error at the output of neuronj, 

pi (0,) corresponds to the derivative of the activation bc t ion  

associated with that n e w n  and Oj is the function signal at the 

output for that neuron. So we do not back propagate the 
gradient of  an error measure, but instead we back propagate the 
soft-max gradient of this error. Therefore, for a neuron j located 
in a hidden layer the local gradient is defined as follows: 

When computing the gradient of a hidden-layer neuron, the 
previously obtained gradient of the following layers must be back 

propagated. In (2.6) the term qi. (OJ ) represents de derivative 

of the activation function associated to that neuron, 0, is the 

function signal at the output for that neuron and finally the 
summation term hchdes the different gradients of the following 
neurons back propagated by multiplying each gradient to its 
corresponding weighting (see Fig. 4). 

I/ 
Fig. 4. Gradient computation for a hidden-layer neuron 

Having all local gradients of the all neurons calculated, the 

expression in (2.2) can be obtained and &ally, the old patameten 

are updated following the expression: 

T h e  vector of parameters 0, represenis the network weights 

to be updated, r(i,+,) is the reward given to the learner at every 

time step, Z,,, describes the estimated gradients mentioned 

before and at last we have y as the learning rate of the RLDPS 

algorittm. 

m. CASE STUDY: TARGET FOLLOWING 

The following lines are going to describe the different 
elements that take place in our problem. First, the simulated 
world will be detailed, in a second place we will present the 
underwater vehicle URIS and its model used in our simulation. 
At last, a description of the neurahetwork controller is 
presented. 

A. The World 

As mentioned before, the problem deals with the simulated 
model of the AUV URIS navigating a two-dimensional world 
constrained in a plane region without boundaries. The vehicIe 
can be controlled in two degrees of freedom (DOFs), surge (X 
movement) and sway (Y movement) by applying 4 different 
control actions: a force in either the positive or negative x 
direction, and another force in either the positive or negative y 
direction. 

The simulated robot was given a reward of 0 if the vehicle 
reaches the objective position (if the robot enters inside a 
circle of 2 units radius, the target is considered reached) and a 
reward equal to -1 in all other states. To encourage the 
controller to learn to navigate the robot to the target 
independently of the starting state, the AUV position was reset 
every 50 (simulated) seconds to a random location in x and y 
between [-20, 201, and at the same time target position was set 
to a random location within the same boundaries. The 
sample time is set to 0.1 seconds. 

B. URiS A UP' description 

The Autonomous Underwater Vehicle URIS (Fig. 5 )  is an 
experimental robot developed at the University of Girona 
with the aim of building a small-sized UUV. The hull is 
composed of a stainless steel sphere with a diameter of 350 
mm, designed to withstand pressures of 4 atmospheres (30 
meters depth). 

Fig. 5 .  (Left) URIS in experimental test. (Right) Robot reference frame 

The experiments canied out use the mathematical model of 
URlS computed by means of parameter identification methods 
[13]. The whole model has been adapted to the problem so the 
hydrodinamic equation of motion of an underwater vehicle with 6 
DOFs 1161 has been uncoupled and reduced to modellate a robot 
with two DOFs. Let us consider the dynamic equation for the 
surge DOF: 
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Then, due to identification procedure [13], expressions in 
(3.1) and (3.2) can be rewritten as follows: 

/- f 

Where $x and cy represent de acceleration in both surge and 

sway direction, V ,  and Vy are the linear velocity in surge and 

sway. m e  forces excerted by the thrusters in both DOFs are 
indicated as Z, and Z,, . The model parameters for both DOFs 
are stated as follows: a and p coeficients refer to the linear and 
the quadratic damping forces, yrepresent a mass coeficient and 
the bias term is introduced b y a .  The identified parameters 
values of the model are indicated in Table II. 

TABLE II 
UIUS Model Parameters for Surge and Sway 

ar P Y s 
Kg-' 

Units 

Surge -0.3222 0 0.0184 0.0012 

Suay -0.3222 0 0.0184 0.0012 

C. The Controoller 

A one-hidden-layer neural-network with 4 input nodes, 3 
hidden nodes and 4 output nodes has been used to generate a 
stochastic policy. Two of the inputs correspond to the x 
and y vehicle's distance to target and the other two represent 
the x and y velocities at the current time-step. Each hidden 
and output layer has the usual aditional bias term. The 
activation function used for the neurons of the hidden layer 
is the hyperbolic tangent type (3.5, Fig. 6),  while the output 
layer nodes are linear. The four output neurons have been 
exponentiated and normalized as explained in section 2 to 
produce a probability distribution. Control actions are 
selected at random kom this distribution. 

(3.5) sinhlz) 
tanh(z) = - 

cosh(z) 

F 
-4 -2 2 4 x  

Fig. 6. The hyperbolic tangent function. 

IV. SIMULATED RESULTS 

The controller was trained, as Fommmented in section 3, in 
an episodic task Robot and target positions are reseted every 50 
seconds so the total amount of reward per episode percieved 
varies depending on the episode. Even though the results 
presented have been obtained as explained in section 3, in order 
to clarify the graphical results of time convergence of the 
algorithm, for the plots below some constrains have been applied 
to the simulator: Target initial position is fixed to (0,O) and robot 
initial location has been set to four random locations, 
x = fl0 and y = +20, therefore, the total amount per episode 
when converged to minima will be the same. 

The number of episodes to be done has been set to 100.000. 
For every episode, the total amount of reward percieved is 
calculated. Fig. 7 represents the performance of the 
neural-network vehicle Fontroller as a function of the. number of 
episodes, when trained using OLPOMDP. The episodes have 
been averaged over bins of 50 episodes. The experiment has 
been repeated in 100 independent runs, and the results presented 
are a mean over these runs. 

The simulated experiments have been repeated and compared 
for different values of a and ,8 . 

For a = 0.000001 : 

D 2w ux) em aoo IMO im 1400 i6w IBW 2000 
Groups of 50 Episodes 

Fig. 7. Performance of the neural-network puck controller as a function of 
the number of episodes. Performance estimates were genarated by 
simulating 100.000 episodes, and averaging them over bins of 50 

episodes. Precess repeated in 100 independent m s .  The results are a 
mean of these IUS. Fixed a = 0.OOOOOI , and f l=  0.999, 

p = 0.99 and ,8 = 0.97. 
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For a=0.00001 

total R per EQisode, Averaged over blns of 50 Episodes (Alfa 0.OOOal) 
1 , , , , , , , , , 

Groups of 50 Episodes 

Fig. 8. Performance of the neural-network puck controller as a function of 
the number of episodes. Performance estimates were genarated by 
simulaiing 100.000 episodes, and averaging them over bins of 50 

episodes. Process repeated in 100 independent tuns. The results are a 
mean of these runs. Fixed a= 0.00001, and P = 0.999, 

/?=0.99ad p-0.97. 

For a=0.0001: 

Total R per Episode, Averaged over bins of 50 Episodes ( a h  O.ODO1) 
-1 w 
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g cw 

3 3M 

0 ._ 

L 

a 
E -  

1 
Ea50 
c 
m 
ZJW 

450 
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Fig, 9. Performance of the neural-network puck conboller BS a function of 
the number of episodes. Performance estimates were genarated by 
simulating 100.000 episodes, and averaging them over bins of 50 

episodes. Process repeated in 100 independent runs. The results are a 
mean of these runs. Fixed a = 0.0001, and B = 0.999, 

p = 0.99 and p = 0.97. 

As it can bee apreciated in the figure above (see Fig. S), the 
optimal performance (within the neural network controller used 
here) is around -100 for this simulated problem, due to the fact 
that the puck and target locations are reset every 50 seconds and 
for this reason the vehicle must be away from target a taction of 
the time. The best results are obtained when a=0.00001aad 
,B = 0.999, see Fig. 8. 

Figure 10 represents the behavior of the trained robot 
controller. For the purpose of the illustration, only target 
location has been reseted to random location, not the robot 
location. 

Target Following Task,Results After Learning 

- URlSTrajectory 

X Location 

Fig. 10. Behavior of the trained robot controller, results of target 
following task &er leaming period is completed. 

v. coNcLusIoNs 

An on-line direct policy search algorithm for AUV control 
based on Baxter a d  Barllett’s direct-gradient algorithm 
OLPOMDP has been proposed. The method has been applied to a 
real learning control system in which a simulated model of the 
A W  URIS navigates a two-dimensional world in a target 
following task The policy is represented by a neural network 
whose input is a representation of the state, whose output is 
action selection probabilities, and whose weights are the policy 
parameters. The objective of the agent was to compute a 
stochastic policy, which assigns a probability over each of the 
four possible control actions. 

Results obtained c o n f m  some of the ideas presented in 
section 1. The algorithm is easier to implement compared with 
other RL methodologies like value hction algorithms and it 
represents a considerable reduction of the computational time of 
the algorithm. On the other side, simulated results show a poor 
speed of convergence towards minimal solution. 

In order to validate the performance of the method proposed, 
htute experiments are centered on obtaining empirical results: 
the algorithm must be tested on real URIS in a real environment. 
Previous investigations wried on in our laboratory with RL 
value functions methods with the same prototype URIS [20] will 
allow us to compare both results. At the same time, the work is 
focused in the development of a methodology to decrease the 
convergence time of the RLDPS algorithm. 
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