
Oceans - Europe 2005

Autonomous Underwater Vehicle Control using
Rein for cem e ut Learning Policy

Search Methods
A. El-Fakdi, M, Caner&, N. Palomeras and P. Ridao

Institute of Informatics and Applications
Universit of Girona

Edifici Politecnica 4. E ~ D U S Montilivi EPSl
. I

Girona,’1707f, Spain
ael€&di@eia.udg.es

Abstract - Autonomous Underwater Vehicles (AW,
represent a challenging control problem with complex, noisy,
dynamics. Nowadays, not only the continuous scientific
advances in underwater mboticn but the increasing number
of sub sea missions and its complexity ask for an
automatization of submarine processes. This paper proposes
a high-level control system for solving the action selection
problem of an autonomous mbot. The sysfem is characterized
by the use of Reinforcement Learning Direct Policy Search
methods (RLDPS) for learning the internal statelaction
mapping of some behaviors. We demonstrate its feasibility
with simulated experiments using the model of our
underwater robot URIS in a target following task.

I. INTRODUCTION

A commonly used methodology in robot leaming is
Reinforcement Leaming (U) [I]. In RL, an agent tries to
maximize a scalar evaluation (reward or punishment) obtained as
a result of its interaction with the environment. The goal of a
RL system i s to find an optimal policy which maps the state of
the environment to an action which in turn will maximize the
accumulated future rewards. Most F L techniques are based on
Finire Markov Decision Processes (FMDP) causing finite state
and action spaces. The main advantage of Rc is that it does not
use any knowledge database, so the learner is not told what to do
as occurs in most forms of machine learning, but instead must
discover actions yield the most reward by lrying them.
Therefore, this class of learning is suitable for online robot
learning. f i e main disadvantages are a long convergence time
and the lack of generalization among continuous variables.

In order to solve such problems, most of €U applications
require the use of generalizing function approximators such
artificial neuraI-nehvotks (ANNs), instance-based methods or
decision-trees. As a result, many &based control systems
have been applied to robotics over the past decade. In [2j, an
instance-based leaming algorithm was applied to a real robot in a
corridor-following task. For the same task, in [3] a hierarchical
memory-based RL was proposed. Also, some RL applications
on autonomous helicopter flights [17], optimization of robot
locomotion movements [I91 and robot weightlifting task [18]
have obtained good results as well.

The dominant approach has been the value-function approach,
and although it has demonstrated to work well in many
applications, it has several limitations, too. If the statespace is
not completely observable (POMDP), small changes in the
estimated value of an action cause it to be, or not be, selected;
and this will detonate in convergence problems (41.

Over the past few years, studies have shown that
approximating directly a policy can be easier than working with
value functions, and better results can be obtained [5,6]. Instead
of approximating a value function, new methodologies
approximate a policy using an independent function approximator
with its own parameters, trying to maximize the expected reward.
Examples of direct policy methods are the REINFORCE
algorithm [7], the direct-gradient algorithm [SI and certain
variants ofthe actor-critic fiarnewotk (91.

The advantages of policy methods against value-function
based methods are various. A problem for which the policy is
easier to represent should be solved using policy algorithms [6].
Working this way should represent a decrease in the
computational complexity and, for learning control systems
which operate in the physical world, the reduction in
time-consuming would be notorious. Furthermore, learning
systems should be designed to explicitly account for the resulting
violations of the Markov property. Studies have shown that
stochastic policy-only methods can obtain better results when
workiag in POMDP than those ones obtained with deterministic
value-function methods [lo]. On the other side, policy methods
Ieam much more slowly than R1, algorithms using value function
[5] and they typically find only local optima of the expected
reward [ll].

In this paper we propose an on-line direct policy search
algorithm based on Baxter and Bartlett’s direct-gradient
algorithm OLPOMDP [U] applied to a real leaming control
system in which a simulated model of the A W W S [13]
navigates a two-dimensional world. The policy is represented
by a neural nehvork whose input is a representation of the state,
whose output is action selection probabilities, and whose weights
are the policy parameters. The proposed method is based on a
stochastic gradient descent with respect to the policy parameter
space, it does not need a model of the environment to be given
and it is incremental, requiring only a constant amount of
computation step. The objective of the agent is to compute a
stochastic policy [IO], which assigns a probability over each
action. Results obtained in simulation show the viability of the
algorithm in a real-time system.

The structure of the paper is as follows. In section n the
direct-policy search algorithm is detailed. In section a
description of all the elements that affect our problem (the world,
the robot and the controller) are commented. The simulated
experiment description and the results obtained ate included in
section IV and finally, some conclusions and further work are
included in section V.

0-7803-9103~9/05/$20.00@2005 IEEE 793

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore. Restrictions apply.

II. THE: RLDPS ALGORITHM

A partially observable Markov decision process (POMDP)
consists of a state space S, afl observation space Y and a control
space U. For each state ;E S there is a deterministic teward
r@. . As mentioned behre, the algor ih ilpplied is designed to work
on-line so at every time step, the leamer (our vehicle) will be given m
observation of the state and, according to the policy followed at that
moment, it will generate a mntrol action, As arcs& I& leama will
be driven to another state and will e v e arewatd associaled to this
new state. This 4 will allow us to update the ambll&
patametas that dehe the policy fokwed at every iteration, resulting
m a fmd policy considered to be optimal or closer to optimal. The
alg0rithmprocedureiSslr“anzed in Table L

TABLE I
AIRorithm: Baxier & Bartlett’s OLPOMDP

1: Gwen:
T>O
Initial parameter values q&
Arbitrary starting state io

2: Setzo = O (Z ~ E R’)
3: fort = 0 to Tdo
4: Observe statey,
5:

6:

Generate control action U, according to current policy

Observe the reuard obtained r(it+J
Y, 1

7:

e,, = e, + di,+,):,*l 8: Set
9: end for

The algorithm works as follows: having initialized the
parameters vector e,, the initial state io and the gradient

zo = 0 , the leaming procedure will be iterated T times. At

every iteration, the parameters gradient Zr will be updated.

According to the immediate r e d received r(i,+,), the new

gradient vector Z,+, and a fixed learning paramenter a, the new

paramenter vector e,, can be calculated. The current

policy /.l, is directly modified by the new parameters becoming a

new policy that will be foflowed next iterdon, getting

closer, as t + T to a final policy& that represents a w m t
solution of the problem.

In order to clarify the steps taken, the next lines will relate
the update parameter procedure of the algorithm closely. The
controller uses a neural neiwork as a function approximator that
generates a stochastic policy. Its weights are the policy
parameters that ate updated on-line every time step. The
accuracy of the approximation is controlled by the
parameter p E [0,1) .

The M step in the weight update procedure is to compute
the ratio:

At any step time c, the term 2, represents the estimated
gradient of the reinforcement sum with respect to the network’s
layer weights. In addition, 4 refers to the local gradient
associated to a single neuron of the ANN and it is multiplied by
the input to that neuron y, . In order to compute these gradients,
we evaluate the soft-max distribution for each possible future
state exponentiating the real-valued ANN outputs

{ 0, , ..., On} being n the number ofneurons of the o a u t layer [14].

State
Input

Fig. 2 Schema of the ANN arquitecture used.

After applying the soft-max function, the outputs of the
neural network give a weighting tj E (o,I) to each of the

vehicle’s thrust combinations. Finally, the probability of the f’
thrust combination is then given by:

(2.3)

==I

Actions have been Iabeled with the associated thrust
Combination, and they are chosen at random h m this probability
distribution.

Once we have computed the output distribution over the
possible control actions, next step is to calculate the gradient for
the action chosen by applying the chain rule; the whole
expression is implemented similarly to error buck propagarion
[15]. Before computing the gradient, the error on the neurons of
the output layer must be calculated. This error is given by
expression (2.4).

(2.4)

The desired output d, will be equal to 1 if the action selected

wits 0, , atld 0 otherwise (see Fig. 3).

e, = dj - PrJ

for every weight of the network In AANs like the one used in
the algorithm the expression defined in step 7 of Table I can be

794

Fig. 3. Soft-Max error computation for every output.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore. Restrictions apply.

With the soft-max output error calculation completed, next
phase consists in computing the gradient at the output of the
ANN and back propagate it to the rest of the neurons of the
hidden layers. For a local neuronj located m the output layer we
may express the local gradient for neuron j as:

(2.5)

Where e, is the soft-mu error at the output of neuronj,

pi (0,) corresponds to the derivative of the activation bc t ion

associated with that n e w n and Oj is the function signal at the

output for that neuron. So we do not back propagate the
gradient of an error measure, but instead we back propagate the
soft-max gradient of this error. Therefore, for a neuron j located
in a hidden layer the local gradient is defined as follows:

When computing the gradient of a hidden-layer neuron, the
previously obtained gradient of the following layers must be back

propagated. In (2.6) the term qi. (OJ) represents de derivative

of the activation function associated to that neuron, 0, is the

function signal at the output for that neuron and finally the
summation term hchdes the different gradients of the following
neurons back propagated by multiplying each gradient to its
corresponding weighting (see Fig. 4).

I/
Fig. 4. Gradient computation for a hidden-layer neuron

Having all local gradients of the all neurons calculated, the

expression in (2.2) can be obtained and &ally, the old patameten

are updated following the expression:

T h e vector of parameters 0, represenis the network weights

to be updated, r(i,+,) is the reward given to the learner at every

time step, Z,,, describes the estimated gradients mentioned

before and at last we have y as the learning rate of the RLDPS

algorittm.

m. CASE STUDY: TARGET FOLLOWING

The following lines are going to describe the different
elements that take place in our problem. First, the simulated
world will be detailed, in a second place we will present the
underwater vehicle URIS and its model used in our simulation.
At last, a description of the neurahetwork controller is
presented.

A. The World

As mentioned before, the problem deals with the simulated
model of the AUV URIS navigating a two-dimensional world
constrained in a plane region without boundaries. The vehicIe
can be controlled in two degrees of freedom (DOFs), surge (X
movement) and sway (Y movement) by applying 4 different
control actions: a force in either the positive or negative x
direction, and another force in either the positive or negative y
direction.

The simulated robot was given a reward of 0 if the vehicle
reaches the objective position (if the robot enters inside a
circle of 2 units radius, the target is considered reached) and a
reward equal to -1 in all other states. To encourage the
controller to learn to navigate the robot to the target
independently of the starting state, the AUV position was reset
every 50 (simulated) seconds to a random location in x and y
between [-20, 201, and at the same time target position was set
to a random location within the same boundaries. The
sample time is set to 0.1 seconds.

B. URiS A UP' description

The Autonomous Underwater Vehicle URIS (Fig. 5) is an
experimental robot developed at the University of Girona
with the aim of building a small-sized UUV. The hull is
composed of a stainless steel sphere with a diameter of 350
mm, designed to withstand pressures of 4 atmospheres (30
meters depth).

Fig. 5 . (Left) URIS in experimental test. (Right) Robot reference frame

The experiments canied out use the mathematical model of
URlS computed by means of parameter identification methods
[13]. The whole model has been adapted to the problem so the
hydrodinamic equation of motion of an underwater vehicle with 6
DOFs 1161 has been uncoupled and reduced to modellate a robot
with two DOFs. Let us consider the dynamic equation for the
surge DOF:

795

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore. Restrictions apply.

Then, due to identification procedure [13], expressions in
(3.1) and (3.2) can be rewritten as follows:

/- f

Where $x and cy represent de acceleration in both surge and

sway direction, V , and Vy are the linear velocity in surge and

sway. m e forces excerted by the thrusters in both DOFs are
indicated as Z, and Z,, . The model parameters for both DOFs
are stated as follows: a and p coeficients refer to the linear and
the quadratic damping forces, yrepresent a mass coeficient and
the bias term is introduced b y a . The identified parameters
values of the model are indicated in Table II.

TABLE II
UIUS Model Parameters for Surge and Sway

ar P Y s
Kg-'

Units

Surge -0.3222 0 0.0184 0.0012

Suay -0.3222 0 0.0184 0.0012

C. The Controoller

A one-hidden-layer neural-network with 4 input nodes, 3
hidden nodes and 4 output nodes has been used to generate a
stochastic policy. Two of the inputs correspond to the x
and y vehicle's distance to target and the other two represent
the x and y velocities at the current time-step. Each hidden
and output layer has the usual aditional bias term. The
activation function used for the neurons of the hidden layer
is the hyperbolic tangent type (3.5, Fig. 6), while the output
layer nodes are linear. The four output neurons have been
exponentiated and normalized as explained in section 2 to
produce a probability distribution. Control actions are
selected at random kom this distribution.

(3.5) sinhlz)
tanh(z) = -

cosh(z)

F
-4 -2 2 4 x

Fig. 6. The hyperbolic tangent function.

IV. SIMULATED RESULTS

The controller was trained, as Fommmented in section 3, in
an episodic task Robot and target positions are reseted every 50
seconds so the total amount of reward per episode percieved
varies depending on the episode. Even though the results
presented have been obtained as explained in section 3, in order
to clarify the graphical results of time convergence of the
algorithm, for the plots below some constrains have been applied
to the simulator: Target initial position is fixed to (0,O) and robot
initial location has been set to four random locations,
x = fl0 and y = +20, therefore, the total amount per episode
when converged to minima will be the same.

The number of episodes to be done has been set to 100.000.
For every episode, the total amount of reward percieved is
calculated. Fig. 7 represents the performance of the
neural-network vehicle Fontroller as a function of the. number of
episodes, when trained using OLPOMDP. The episodes have
been averaged over bins of 50 episodes. The experiment has
been repeated in 100 independent runs, and the results presented
are a mean over these runs.

The simulated experiments have been repeated and compared
for different values of a and ,8 .

For a = 0.000001 :

D 2w ux) em aoo IMO im 1400 i6w IBW 2000
Groups of 50 Episodes

Fig. 7. Performance of the neural-network puck controller as a function of
the number of episodes. Performance estimates were genarated by
simulating 100.000 episodes, and averaging them over bins of 50

episodes. Precess repeated in 100 independent m s . The results are a
mean of these IUS. Fixed a = 0.OOOOOI , and f l= 0.999,

p = 0.99 and ,8 = 0.97.

796

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore. Restrictions apply.

For a=0.00001

total R per EQisode, Averaged over blns of 50 Episodes (Alfa 0.OOOal)
1 , , , , , , , , ,

Groups of 50 Episodes

Fig. 8. Performance of the neural-network puck controller as a function of
the number of episodes. Performance estimates were genarated by
simulaiing 100.000 episodes, and averaging them over bins of 50

episodes. Process repeated in 100 independent tuns. The results are a
mean of these runs. Fixed a= 0.00001, and P = 0.999,

/?=0.99ad p-0.97.

For a=0.0001:

Total R per Episode, Averaged over bins of 50 Episodes (a h O.ODO1)
-1 w

-150

g cw

3 3M

0 ._

L

a
E -

1
Ea50
c
m
ZJW

450

-0 2W 400 600 Boo loo0 IF300 1400 1600 1800 2wo
Groups of 50 Episodes

Fig, 9. Performance of the neural-network puck conboller BS a function of
the number of episodes. Performance estimates were genarated by
simulating 100.000 episodes, and averaging them over bins of 50

episodes. Process repeated in 100 independent runs. The results are a
mean of these runs. Fixed a = 0.0001, and B = 0.999,

p = 0.99 and p = 0.97.

As it can bee apreciated in the figure above (see Fig. S), the
optimal performance (within the neural network controller used
here) is around -100 for this simulated problem, due to the fact
that the puck and target locations are reset every 50 seconds and
for this reason the vehicle must be away from target a taction of
the time. The best results are obtained when a=0.00001aad
,B = 0.999, see Fig. 8.

Figure 10 represents the behavior of the trained robot
controller. For the purpose of the illustration, only target
location has been reseted to random location, not the robot
location.

Target Following Task,Results After Learning

- URlSTrajectory

X Location

Fig. 10. Behavior of the trained robot controller, results of target
following task &er leaming period is completed.

v. coNcLusIoNs

An on-line direct policy search algorithm for AUV control
based on Baxter a d Barllett’s direct-gradient algorithm
OLPOMDP has been proposed. The method has been applied to a
real learning control system in which a simulated model of the
A W URIS navigates a two-dimensional world in a target
following task The policy is represented by a neural network
whose input is a representation of the state, whose output is
action selection probabilities, and whose weights are the policy
parameters. The objective of the agent was to compute a
stochastic policy, which assigns a probability over each of the
four possible control actions.

Results obtained c o n f m some of the ideas presented in
section 1. The algorithm is easier to implement compared with
other RL methodologies like value hction algorithms and it
represents a considerable reduction of the computational time of
the algorithm. On the other side, simulated results show a poor
speed of convergence towards minimal solution.

In order to validate the performance of the method proposed,
htute experiments are centered on obtaining empirical results:
the algorithm must be tested on real URIS in a real environment.
Previous investigations wried on in our laboratory with RL
value functions methods with the same prototype URIS [20] will
allow us to compare both results. At the same time, the work is
focused in the development of a methodology to decrease the
convergence time of the RLDPS algorithm.

Acknowledgments

This research was esponsored by the spanish commission MCYT
@PI2001-2311C03-U1). I w d d like to give my special thanks to
Mr. Douglas Alemda Aberdeen of the Aushalim National
University for his help.

REFERENCES

111 R. Sutton and A. Barto, Reinforcement Learning, an
Introduction. MIT Press, 1998.

[21 W.D. Smart and L.P Kaelbling, “Practical reinforcement
leaming in continuous spaces”, International Conference on
Machine Learning, 2000.

[3] N. Hernandez and S. Mahadevan, “Hierarchical
memory-based reinforcement learning”, F$eenth

797

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore. Restrictions apply.

International Conhrence on Neural Information Processing
Systems, Denver, USA, 2000.

[4] D.P. Batsekas and J.N. Tsitsiklis, New-Dynamic
Programming. Athena Scientific, 1996.

[5] R. Sutton, D. McAllester, S. Sin& and Y. Mansour, ‘Tolicy
gradient methods for reinforcement leaming with function
approximation’’ in Advances in Neural Information
Processing Systems 12, pp. 1057-1063, MIT Press, 2000.

[6] C. Anderson, “Approximating a policy can be easier than
approximating a value function” Computer Science Technical
Report, CS-00-101, February 10,2000.

[7] R. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning’’ in Machine

[XI J. Baxter and P.L. Bartlett, “Direct gradient-based
reinforcement leaning” IEEE Inrernariond Symposium on
Circuits and Systems, May 28-31, Geneva, Switzerland, 2000.

[9] V.R Konda and J.N. Tsitsiklis, “On actor-critic algorithms”,
in SIAM Joumal on Control and Optimization, vol. 42, No. 4,

[1O]S.P. S i g h , T. Jaakkola, M.I. Jordan, “Learning without
stateestimation in partially observable Markovian decision
processes”, in Proceedings of the] Irh Inferna~ional
Conference on Machine Learning, pp. 284-292, 1994.

[IllN. Medeau, L. Peshkin and K. Kim, “Exploration in
gmdient-based reinforcement leaming”, Technical report AI
Memo 2001403,April3,2001.

[12]J. Baxter and P.L. Bartletf “Direct gradient-based
reinforuzment teaming I: Gradient estimation algorithms”
Technical Report. Australian National University, 1999.

[13]P. R i b , A. Tiano, A. El-Fakdi, M. Cameras, A. Zirilli, “On
the identification of non-linear models of unmanned
underwater vehicles” in Control Engineering Practice, vol. 12,

[14]D. A., Aberdeen, Pol iq Gradient Algurirhnis for Partially
Observable Markov Decision Processes, PhD Thesis,
Australian National University, 2003.

[IS]% Haykin, Neural Networh, a comprehensive foundarion,
Prentice Hall, Upper Saddle River, New Jersey, USA, 1999.

[IqT,I., Fossen, Guidance and Control of Ocean Vehicles, John
Wiley and Sons, New York, USA, 1994.

[17]J. A. Bagnell, J. G Schneider, “Autonomous Helicopter
C o n t d using Reinforcement Learning Policy Search
Methods”, in Proceedings of the IEEE International
Conference on Robotics and Automation (ICM), Seoul,
Korea, 2001.

[lX]M. T. Rosenstein, A. G Barto, “Robot Weightlifting by
Direct Policy Search”, in Procaedings of the International
Joint Conference on Artificial Intelligence, 2002.

[19]N. Kohl, P. Stone, “Policy Gradient Reinforcement Leaming
for Fast Quadrupedal Locomotion”, in Proceedings of the
IEEE International Conference on Robotics and Autoniation
(ICRA), 2004.

[20]M. Carrem, P. Ridao, A. El-Fakdi, “Semi-Online
Neural-Q-Learning for Real-Time Robot Learning’’, in
Proceedings of the IEEE/RSJ Jnteriiationul Conference on
Infelligent Robots and Systems (IROS), Las Vegas, USA,
2003.

Learning, 8, pp. 229-256, 1992.

pp. 1143-1166,2003.

pp. 1483-1499,2004.

798

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:37:42 UTC from IEEE Xplore. Restrictions apply.

