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Cryopreservation enables the long-term storage of sperm from 
genetically superior, selected animals (Fickel et al.,  2007; Kumar 
et al.,  2019; Yánez-Ortiz et al.,  2021). While cryopreservation is 
an advantageous technique from several points of view, sperm 
can be damaged during freeze-thawing and, as a result, their qual-
ity, function and fertilizing ability can be impaired (Adamkovicova 
et al., 2016; Díaz et al., 2019). This detrimental impact is the con-
sequence of different processes that take place during freezing 
and thawing, such as the formation of ice microcrystals, which may 
induce mechanical damage to biological membranes; and the gen-
eration of excessive amounts of reactive oxygen species, which 

may increase DNA fragmentation and induce lipid peroxidation 
thus altering sperm structure and function (Upadhyay et al., 2021; 
Waterhouse et al.,  2010). Yet, preserving mitochondrial function-
ality during cryopreservation is crucial for maintaining sperm fer-
tilizing ability and guaranteeing the reproductive success (Amaral 
et al., 2013; Khan et al., 2021).

In recent years, different strategies aimed at minimizing mito-
chondrial cryodamage, such as the enrichment of freezing media 
with antioxidants, proteins or cryoprotective agents (Hezavehei 
et al., 2018). Red-light stimulation could be a potential strategy to 
improve sperm cryotolerance, as this procedure has been reported 
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Abstract
This study evaluated the bioenergetic map of mitochondria metabolism in cryopre-
served bovine sperm. The detected oligomycin-sensitive basal respiration supported 
ATP production; frozen–thawed spermatozoa were found to have a coupling effi-
ciency higher than 0.80. Cell respiration, however, was not stimulated by the proto-
nophoric action of FCCP, as its titration with 1, 2, 4 and 6 μM did not stimulate the 
uncoupling activity on oxidative phosphorylation as highlighted by unresponsive oxy-
gen consumption. The unusual effect on the stimulation of maximal respiration was 
not related to fibronectin- or PDL-coated plates used for cellular metabolism analysis. 
Conversely, irradiation of frozen–thawed bovine sperm with the red light improved 
mitochondrial parameters. In effect, the maximal respiration of red-light-stimulated 
sperm in PDL-coated plates was higher than the non-irradiated. In spite of this, red-
light irradiation had no impact on membrane integrity and mitochondrial activity eval-
uated by epifluorescence microscopy.
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to have a positive impact on sperm motility and fertilizing ability 
(Yeste et al., 2018). This appears to be the result of an improvement 
at the mitochondrial level, accelerating respiration and ATP synthe-
sis (Gao & Xing,  2009). In particular, the mechanism of photobio-
modulation from red to near-infrared light has been attributed to 
the activation of mitochondrial respiratory chain components, such 
as cytochrome c oxidase (Blanco-Prieto et al.,  2020). The latter is 
an integral membrane protein that has strong absorbance at the 
far-red to near-infrared spectral range (Beauvoit et al., 1995). This 
could stimulate an increase in electron transfer to cytochrome c ox-
idase (Pastore et al., 2000), increasing mitochondrial activity (Eells 
et al., 2004; Karu, 2010).

Against this background, and because determining the energy 
metabolism may predict the function and survival of cryopreserved 
sperm (Marchetti et al., 2004), this study sought to address whether 
energy production in frozen–thawed bovine sperm was altered fol-
lowing red-light stimulation.

Unless otherwise specified, all chemicals were purchased from 
Sigma-Aldrich (Saint-Louis, MO, USA).

No ethics approval was needed as commercial frozen semen was 
used in this study.

One straw of frozen semen (0.5 ml, nine ejaculates from nine dif-
ferent bulls—nine replicates) was thawed for each replicate thawed 
for 30 s at 37°C. In a first phase, we characterized the normal metab-
olism of frozen–thawed bovine sperm: each well of Agilent Seahorse 
XF polystyrene cell culture plates was covered with 10 μl of 1 mg/
ml fibronectin and incubated at 37°C for 90 min. Parallel analyses on 
Agilent Seahorse XF poly-D-lysine (PDL)-coated cell culture plates 

were carried out (Moraes et al.,  2021). Semen was centrifuged at 
800 × g for 2  min, supernatants were removed, and sperm pellets 
were resuspended in Tris-Glucose-Citrate medium (TGC: 313.7 mM 
Tris, 33.3 mM Glucose, 114.5 mM citrate, pH  6.8). Subsequently, a 
suspension of 2 × 106 cells was placed onto each well of the plate 
and centrifuged at 1200 × g for 1 min at 20°C to promote their stick-
iness to the adhesion-promoting agent. Finally, the supernatant was 
removed and replaced with 180 μl of Tyrode's medium (Llavanera 
et al.,  2022) plus 5.56 mM Glucose, 2 mM Glutamine and 1 mM 
Pyruvate. Cellular respiration was determined through the Mito 
Stress Test by Seahorse technology, and the following parameters 
at 37°C were measured: real-time oxygen consumption rate (OCR), 
basal respiration (before the addition of 1.5 μM oligomycin); maxi-
mal respiration (after the addition of 4 μM carbonyl cyanide-p-trif
luoromethoxyphenylhydrazone, FCCP), proton leak (the difference 
between basal respiration and respiration in the presence of oligo-
mycin) and non-mitochondrial respiration (OCR in the presence of 
0.5 μM rotenone plus 0.5 μM antimycin A, the inhibitors of the respi-
ratory chain), which was subtracted from all the above parameters. 
Finally, ATP turnover was obtained from the difference between 
basal respiration and proton leak (OCR in the presence of oligomy-
cin), whereas the spare respiratory capacity, which is the difference 
between maximal and basal respiration, was considered as the abil-
ity to respond to increased energy demand (Bernardini et al., 2021).

To test red-light stimulation effects on substrate oxidation/
mitochondrial respiration, after thawing, straws were irradiated 
with red-light using the Maxicow instrument (IUL S.A., Barcelona, 
Spain), following the schedule: red light (620–630 nm) for 1  min, 

F I G U R E  1  Energy profile of bovine spermatozoa. Oxygen consumption rate (OCR) with 1 μM ( ), 2 μM ( ), 4 μM ( ) and 6 μM ( ) FCCP 
(a, c). Maximal respiration in the presence of 1 μM ( ), 2 μM ( ), 4 μM ( ) and 6 μM ( ) FCCP with fibronectin (b) and PDL (e). Mitochondrial 
parameters (basal respiration, proton leak and ATP production) were obtained before FCCP addition in the plot with fibronectin (c) and PDL 
(f). Data expressed as points (a, c) or columns (b, d) represent the means ± SD (vertical bars) from three experiments carried out on different 
cells preparation.
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non-irradiated for 1  min and irradiated again for 1  min. Another 
straw (non-irradiated control) was kept in the dark for 3 min. In all 
cases, straws were kept at room temperature.

For Seahorse evaluations, all samples were centrifuged as de-
scribed above and resuspended in Tris–glucose–citrate medium. 
Afterwards, each sample was split into two aliquots to evaluate 

F I G U R E  2  Effect of red-light stimulation on the energy profile of bovine spermatozoa. Mitochondrial parameters (basal, proton 
leak, maximal respiration, spare respiratory capacity and ATP production) without ( ) and with ( ) red-light treatment (a, c), and oxygen 
consumption rate (OCR) profile without ( ) and with ( ) red-light treatment in the presence of fibronectin (b) and PDL (d). Data expressed 
as points (b, d) or columns (a, c) represent the means ± SD (vertical bars) from three independent experiments. Effect of red-light stimulation 
on sperm subpopulations following SYBR-14/PI/JC-1 staining on (e) control group, and (f) irradiated spermatozoa  SYBR-14+/PI−/JC1+ 
(viable with active mitochondria),  SYBR-14+/PI−/JC1− (non-viable with inactive mitochondria),  SYBR-14−/PI+/JC1+ (non-viable with active 
mitochondria) and  SYBR-14−/PI+/JC1− (non-viable with inactive mitochondria).
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the OCR value or to assess mitochondrial membrane potential and 
viability, simultaneously, as described in Nesci et al.  (2020). Four 
different sperm populations were identified: viable sperm with ac-
tive mitochondria (SYBR14+/PI−/JC-1+), viable sperm with inactive 
mitochondria (SYBR14+/PI−/JC-1−), non-viable sperm with active mi-
tochondria (SYBR14−/PI+/JC-1+) and non-viable sperm with inactive 
mitochondria (SYBR14−/PI+/JC-1−).

Our results indicated that frozen–thawed bovine sperm, regard-
less of whether they were examined in fibronectin- (Figure  1a) or 
PDL-coated plates (Figure 1d), did not respond to the decoupling ac-
tion of FCCP at any of the concentrations tested (1, 2, 4 and 6 μM). 
The mitochondrial respiration profile was devoid of maximal respi-
ration. The OCR in the presence of FCCP was below the basal respi-
ration and, consequently, these cells did not have spare respiratory 
capacity. However, in fresh and frozen sperms, the absence of spare 
respiratory capacity has already been ascertained in the presence 
of relatively large glucose concentrations (around 5 mM) in the reac-
tion system (Moraes et al., 2021). Based on these data, one may infer 
that the damage caused to mitochondrial membranes during freeze-
thawing hampers the uncoupling effect of FCCP on oxidative phos-
phorylation. The reduced maximum respiratory capacity (Figure 1b,e) 
could result from impaired substrate oxidation, and the lack of spare 
respiratory capacity could indicate a mitochondrial dysfunction that 
could not be particularly apparent under basal conditions. The basal 
respiration, proton leak and ATP production were not found to be 
dependent on FCCP titration in the OCR profile. While sperm at-
tached to fibronectin-coated plates showed higher mitochondrial 
respiration than those in PDL-coated plates (Figure 1c,f), mitochon-
dria produced a coupling efficiency fairly high of approximately 0.80 
and 0.85 a.u. in the presence of fibronectin or PDL, respectively (the 
maximum value is 1.0 a.u. under ideal conditions when all the basal 
mitochondrial oxygen is used for ATP synthesis). Accordingly, proton 
leak of sperm mitochondria attained a 20% or 15% OCR value of the 
basal OCR with fibronectin or PDL, respectively.

Under the state of oligomycin-insensitive respiration controlled 
by proton leak kinetics, the mitochondrial activity was potentially 
unaffected by changes in substrate oxidation; a modest change in 
leak rate was likely to be caused by altered substrate oxidation. This 
hypothesis could corroborate the lack of effect from FCCP.

Light stimulation did not exert beneficial effects on mito-
chondrial activity of frozen–thawed bovine sperm when they are 
examined in fibronectin-coated plates (Figure  2a,b). In fact, all 
mitochondrial parameters after sperm irradiation were drastically 
reduced compared with the control (Figure 2a). Surprisingly, when 
the analysis was performed on PDL-coated plates, irradiated sperm 
showed an increase in mitochondrial parameters (Figure 2c,d), es-
pecially the maximal respiration which, despite remaining below 
the basal activity, increased compared with non-irradiated cells 
(Figure  2c). The ability of frozen–thawed bovine sperm to coun-
teract the impairment of maximal respiration after red-light stim-
ulation would be explained if the damage to the electron transfer 

chain is inflicted before reaching the cytochrome c during substrate 
oxidation.

Finally, red-light stimulation did not alter the percentages 
of sperm subpopulations following SYBR14-14/PI/JC-1 staining 
(Figure 2e,f).

The loss of response to FCCP would suggest that the alteration 
of the respiratory complexes structure induced by cryopreservation 
impaired mitochondrial function, which became bioenergetically in-
efficient. In line with other authors, this could be explained by the 
high resilience of bovine sperm to these conditions and their ability 
to rely on anaerobic metabolism to maintain cell homeostasis and 
motility (Bulkeley et al., 2021). Those authors showed that the se-
lection of frozen–thawed bovine sperm through swim-up resulted 
in sperm with higher motility, OCR and ECAR. This would also sup-
port the hypothesis that bovine sperm cells have a manageable 
metabolic interplay between aerobic and anaerobic pathways, thus 
maintaining their fertilizing capacity even after the stress induced by 
cryopreservation.
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