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Abstract

This paper presents an automatic vision-based system
Jor UUV siation heeping. The vehicle is equipped with a
down-looking camera, which provides images of the
sea-floor. The station keeping system is based on a
Jeature-based motion detection algorithm, which
exploits standard correlation and explicit textural
analysis to solve the correspondence problem. A visual
map of the area surveyed by the vehicle is constructed
to increase the flexibility of the system, allowing the
vehicle to position itself when it has lost the reference
image. The testing platform is the URIS underwater
vehicle. Experimental results demonstrating the
behavior of the system on a real ewvironment are
Dpresented.

1. Introduction

Underwater vehicles are an important tool when we aim
to inspect man-made underwater structures. Likewise,
some of the tepairing tasks can be performed by means
of Remotely Operated Vehicles (ROVs) without
endangering human lives. In this way, a pilot can
teleoperate the vehicle from the surface, performing the
desired task with little effort, However, maintaining the
position of the vehicle within the working area may be a
difficult task in the presence of underwater currents,
even for experienced pilots. If we add to this factor the
risk of inattention due to long survey missions
performing this tedious task, we can see the necessity of
endowing the vehicle with the capability of detecting
motion and correcting its position to maintain station.
This is accomplished by equipping the vehicle with a
down-looking camera which acquires images of the sea
floor. Our testing platform is the URIS underwater
vehicle (Figure 1), an Autonomous Underwater Vehicle
developed at the University of Girona.
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Figure 1: URIS Underwater Vehicle.

Unfortunately, underwater images are difficult to
process due to the medium transmission characteristics
[1]. These properties provoke a blurring of the elements
of the image, limited range and need of artificial light
which introduces new properties to the image, such as
low contrast, non-uniform illumination, high clutter in
the regions of interest and lack of distinct features.
Negahdaripour et al. [2,3] proposed a station keeping
method based on a “direct method” to compute the
vehicle motion directly from spatio-temporal image
derivatives. This approach requires the motion from one
image to the next to be small, therefore a
multiresclution scheme should be applied to the images
when this assumption is violated. On the other hand,
standard region-correlation techntques have been exten-
sively used to search for correspondences between pairs
of images [4], allowing the detection of motion.
Stanford/MBARI researchers have proposed a correla-
tion-based approach to estimate the motion of the
vehicle relative to the sea floor to accomplish station
keeping [5). Although these approaches lead to
successful matches in well-contrasted images, in some
cases the lack of image features cause the matching pro-
cedure to fail. For this reason we propose an approach
based on region matching and selective texture analysis



is proposed in this paper. The extensive use of textural
operators can highly improve the accuracy of image
correspondences, enabling a better motion estimation,
which is used for station keeping.

The paper is organized as follows. First, section 2
describes how to detect features in one image and
robustly match them in a reference image centered at
the hover paint where the vehicle should maintain its
position. Next, section 3 describes how these features
can be used to estimate the motion of the vehicle,
Finally, experimental results on real images are
presented and analyzed.

2. Feature Matching

2.1 Introduction

In order to estimate and correct the vehicle motion, we
propose a region-based matching method. This method
is based on detecting a set of features in the present
image, and then find their corresponding matches in the
reference image, which is used as hover point, through
texture characterization. However, before performing
this computation, there is an important aspect which
should be taken into account. Due to comstruction,
camera lenses produce a geometric distortion (radial
and tangential) in the image-formation process.
Moreover, the underwater environment produces ray
diffractions at the camera housing interface. For all
these reasons, the first step to be achieved in order to
perform measurements with our camera consists of the
estimation of a number of intrinsic camera parameters
to correct lens distortion {6].

Then, the undistorted image can be used to select the
adequate features in the present image to be matched in
the reference frame. Therefore, the selection of robust
features depends, to a large extent, on the technigue
used to detect correspondences. Nommally, small
windows containing high frequencies are quite adequate
since they are located in the border of different image
textures. For this reason, our feature detector searches
for small zones presenting high spatial gradient
information in more than one direction, as performed by
some comer detectors [7,8). To do this, the image is
convolved with two directional high-pass filters (in the
x and y directions). The areas with the highest gradient
in both directions are selected. When a feature is
selected, the algorithm goes on to search for any other
selected features in its neighborhood. If a higher-valued
feature exists in this neighborhood, only the best feature
is selected as an interest point. This avoids the selection
of other features in the same neighborhood and ensures
a reasonable disiribution of the interest points within the
image.

After the detector of features has selected the most
reliable points of the undistorted image, we can already
search for the correspondences of these features in the
reference image. Normally, once the vehicle has
approached the working area in teleoperated mode, the
pilot selects a frame of the sequence to be used as
reference image /. However, as the vehicle moves, the
present image [ may have changed its orientation with
respect to the original reference image Iz, caused by the
vaw motion of the vehicle. In this case, standard
correlation methods may not work properly since they
are sensitive to considerable rotations of the images.
Moreover, a second problem could appear: underwater
currents may displace the vehicle, so that no overlap
exists between 7 and Jp, making impossible the
estimation of motion. For this reason, at every iteration
of the station keeping system, a visual map of the area
surveyed by the vehicle is updated. This visual map is
known as mosaic in the literature [9,10]. Figure 2 shows
the visual map (gray area) which covers the underwater
terrain surveyed by the vehicle. The initial reference
image [y is shown at the top left corner of the map. As
currents take the vehicle away from the hover point, the
station keeping system construcis a mosaic image of the
surveyed area. At every iteration of the algorithm, a
new veference image I' is extracted through bilinear
interpolation from the mosaic image at the previous

~location and orientation of the camera, being its size a
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little bigger than the original images to maximize
overlapping. Since the transformation from the hover
point to the present reference image I' is perfectly
known, adequate confrol signais can be gencrated fo
correct the position of the vehicle towards the imitial
reference image Ip.

Initial Reference Image I,

Present Image /

Figure 2: Extraction of the reference image I’ from the
mosaic image., I'is extracted from the location and orienta-
tion of the previous live image. Its size is slightly bigger than
that of the captured images, maximizing the overlapping area.
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2.2 Similarity Measure

Finding correspondences between images is not an easy
task in computer vision, and even less in underwater
imaging. On that account we pay special attention 1o the
matching process, carrying out a two step approach, as
described in [11]. First, a correlation-based matching
strategy is applied to the images [12], selecting a set of
candidate maiches for a given interest point. Then, a
texture characterization of the points is used for
selecting the best correspondence. For every interest
point 1n the present image I, a correlation score is
computed in reference image [”. This is performed by
comparing a small axn window centered at the interest
point m =[x, y] with all the possible locations of the

feature m’=[x',»'] in the next image. These possible

iocattons of the feature m' are limited to a window of
I’, centered at the coordinates of m in I. The size of
this window depends on the motion between
consecutive images. Equation (1) is used to compute the
correlation score,

corr(m,m’) =

Y3 Hxr iy s T [ 1 4y =T 5] (D)
= gl
n’Jo? (I)-a*(I')

where I(x,y) is the average of the gray-levels in the

nxn neighborhood, and o (1) is the standard deviation

of the image J in the mxn window centered at the
Interest point m, which is given by:

n n 2
PSP E{C7% 7] [
o’ (1}=+JZ" Z’nl[ ] —I(x,y) 2)

In this way, it is possible to find in /' a set of
possible correspondences m; of every feature m

detected in /. To decide which of these matches is the
actual one, the textural characteristics of every feature
are analyzed. Given a feature m, 2 set of statistical-
based texture operators is computed on its
neighborhood. Different configurations of the energy
filters defined by Laws [13], co-cccurrence matrix [14)
and contrast features [15] of Ojala et al. are computed at
the location of feature m. These textural features have
been chosen for their suitability for underwater imaging
and their low cost in terms of computing complexity. A
brief explanation of their main characteristics is given
below.

Texture energy filters require a pre-filtering of the
image with a set of 3x3 masks, giving rise to a
subimage of a size wxn corresponding to the analyzed
area. Then, a serics of statistical measures have to be
computed for every resulting subimage (in our case we
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have used standard deviation and positive/negative
mean);

“7.
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where n’ is the size of the vector which stores the
neighboring pixels, and ¢, is the i element of this

vector.

The Co-occurrence Matrix operator defined by
Haralik et al. in [14] searches the repeated occurrence
of pairs of gray-level configurations in the image
according to two parameters: the distance and the angle
defined by the pair of points. Consider J as the distance
between two pixe! positions. The immediate neighbors
of any pixel can lie on four possible directions:
8 {0°,45°,90°,135°} . The co-occurrence matrix

computes the probability of two given gray-levels to
appear in the image at a distance d and angle &. Then,
for a given d and 9 the rows and columns of the matrix
represent the different gray levels of the image, and
every position of the matrix corresponds to the
frequency of occurrence of that combination of
intensities. Like in the case of the Energy Filters, once
the co-occurrence matrix has been computed, a set of
statistics is computed form the matrix, obtaining the
textural characteristics of the image. We have obtained
the best results constructing a matrix of 4x4 with
distance 1, angle 0 and the entropy statistical measure,
as shown in equation (6).

n-1
Entropy = Z m, - log(m,) (6)
fy=0

where m, is the element of row / and column j of the

£o-oCcurtence matrix.

Qjala and Pietikflinen [15] proposed a confrast
feature to be used jointly with Local Binary Patterns.
The contrast operator consists of performing a gray-
scale differentiation in the region which is being
congidered. The neighboring pixels ate compared with
the selected point, computing the average of those
neighbors with a gray-value higher than that of the
center pixel. A second average is computed with the
neighbors with an intensity value below the selected
pixel. Then, the difference of both averages is



computed. This value is known as contrast of the
texture.

These three texture operators result in a vector of
texture values characterizing every interest point of the
present image /, including four measures of the Energy
Filter, one of the co-occurrence matrix and another of
the contrast measure, giving rise to a 6-component
vector which characterizes the texture of every feature,
Once this vector of 6 parameters has been computed for
a given interest point of the present image J, it is then
computed for every candidate match in J'. Afler a
process of normalization, the texture vector of the
interest point is compared with the textural properties of
all the possible matches by means of the weighted
Euclidean distance. A texture similarity measure is then
obtained for every possible correspondence.

~ After this process, every candidate match has two
measures of similarity: (i) a block-matching correlation
score obtained through equation (1); and (ii} a texture
score produced by feature characierization. By
averaging these two values, the best correspondence is
" selecied. Therefore, for every interest point in the
present image I a unique match is obtained in the
reference image /',

3. Motion Estimation and Station Keeping

Once 2 set of pairs have been detected in the present
and reference images, the station keeping system has to
identify the points which describe the dominant motion
of the image. A 2D transformation matrix H which

relates the coordinates of a feature in I’ with its
coordinates in image { is computed:
x scosf) -ssinf | | x
m=H-m' or )y |=|ssind scos@ ¢t | |y i(D
1 0 0 1 1

where m=(x,, y,.,l)ir and @' = {x/,y;,})” denote a cor-
respondence point in images / and [*. The matrix H,
which performs this transformation, is known as
“homography”, and can be computed by Singular Value
Decomposition if 2 or more pairs of matches are
available. The similarity transformation described by
matrix H has 4 degrees of freedom. A more general
motion model {e.g. affine or projective) could be used
[16]. However, our vehicle has been designed to be
passively stable in pitch and roll (its center of gravity is
below the center of buoyancy). For this reason, rolling
and pitching motion of the vehicle are very small, and
therefore better results are obtained with a similarity
motion model.

Although an accurate texture analysis is devoted to
the matching procedure, moving objects of the scene
(algae, fishes, etc.) could produce some matches
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describing a motion different from the motion-iess sea-
floor correspondences which describe the vehicle
motion. For this reason, a robust estimation method has
to be applied. The Least Median of Squares (LMedS)
algorithm (17] is used for finding the matrix H which
minimizes the median of the squared residuals M, _:

M, = med(d” (@, Hiit)))+ (@ (@), H ', )) (8)

where d*(ih,, Hift)} is the square Euclidean distance
from a point m,, defined on image I, to the projection
on the same image plane of its correspondence m;.
Hence, the error is defined by the distance of a point to
the projection of its correspondence.

Once the pairs of features describing the dominant
motion have been selected, a 2D projective
transformation matrix relating the coordinates of both
images is computed. Initially, the reference image
containing the hover point is selected as a base frame.
The mosaic coordinate system is placed at the origin of
this reference frame. Then, when image 7 has to be
added to the mosaic, a 2D planar transformation "H,

provides its best fitiing with respect to the reference
image I', extracted from the mosaic. In order to obtain
a global registration from present image I to the mosaic
reference frame, the following matrix product has to be
performed:

fa H, = n H,- I.Hr &)
where *H, is the homography that produces the
coordinates of a point in the mosaic image, from the
coordinates of the same point in the present image I
This matrix provides a direct measurement of the
vehicle pusition with respect to the initial reference
image Ip.

Finally, the vehicle motion can be recovered. This is
done with the aid of an ulirasonic altimeter and the
knowledge of the intrinsic parameters of the camera. As
the distortion preduced by the camera lenses and the ray
diffractions at the air/camera-housing/water interfaces
has been corrected in the first phase of the station
keeping process (correction of lens distortion), the
processed images are an ideal projective projection of
the ocean floor. That is, the images are an ideal linear
projection of the incident light rays, as shown in Figure
3. Therefore, the metric measure Z provided by the
altimeter, together with the knowledge of the camera
focal length f, can be used to convert the incremental
motion estimation from the camera coordinated system
(in pixels) to the world reference system {metric
information). Applying the geometric law of the
perspective relation, the following equation can be
obtained:

=—, then D=££
f

D
> (10)

e
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When the first image of the sequence is placed in the
mosaic, the world coordinate system {0,} is aligned to
the XY plane defined by this image, and the initial Z is
measured from the altimeter. For every new image, the
subsequent homographies provide a 2D estimation of
the vehicle motion. Considering the picture illusirated in
Figure 3, incremental measure d can be decomposed in
d. and d,, measured with respect t¢ the coordinate
system of the previous image. Therefore, equation (10)
can be decomposed in

d -z

reS = 1
7 y I (1)
where (D,,D)) are the components of the incremental
motion from image [ to I', expressed in wozld
coordinates.

d -z

D, =

Therefore, the 3D position of the vehicle can be
abtained from incremental motion (D,,[},) and absolute
measurement Z.

31D Metion

Figure 3: Motion estimation in world {metric) coordinates.
The incremental motion d is obtained in pixels from the
mosaic. If an estimation of Z is known, e.g. from an altimeter
sonar, and knowing the camera focal length £, a measure D
can be obtained in world coordinates.

4. Experimental Results

We have performed several tests to verify the
behavior of our station keeping approach in a real
environment. The URIS underwater vehicle has been
used for experimental testing of our station keeping
system. For the sake of space only one of the sea
experiments is reported here. Several tests were
performed in Costa Brava (Mediterranean Coast). The
trials consisted in teleoperating the vehicle up to the
hover point, then the pilot clicks a button to start the
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station keeping system in teleoperated mode. This
means that the sensing system starts to compute its
position with respect to the reference image.

" Teleoperation of the wvehicle at this point simulates
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perturbation of the system. Then, the station keeping
system is asked to take control of the vehicle, bringing
the robot to the hover point. Figure 4 shows the 3D
motion estimation from an initial altitude of 3 meters.
The station keeping system is running on an off-board
computer,

The reported trial was performed at low depth (5
meters) in a zone with 3D relief, and the vehicle had to
keep station 3 meters above the sea-floor. The
experiment has been performed on a sunny day. It can
be seen in Figure 5 that the waves produce bright spots
in the sea floor, which translate into changing image
irradiance. However, the station keeping system is able
to detect iis position within the trial and to conduct the
vehicle towards the hover point.

3D Estimated molicn

2 direction L)

¥ dinection im]

X diraction [m]

Figure 4: XYZ trajectory. Motion estimation in world
(metric) coordinates.,

5. Summary

We have described a vision system to automatically
maintain the position of the vehicle when it navigates
near the sea-floor. A down-looking camera carried by
the vehicle provides the images which are processed to
estimate the motion of the vehicle. Since processing
underwater images is a difficult task, a robust feature-
based motion detection technique has been proposed.
The exploitation of textural information encoded in the
image patches, in addition to classical correlation tech-
niques provides a satisfactory degree of robustness in
the estimation of the vehicle position relative to the de-
sired position. Our proposal to solve the correspondence
problem is then a mixture of texture-based operators



and gray-level correlation procedures. Data redundancy
in the detection of correspondences is the key peint to
introduce robustness in the matching procedure.

Outdoor experiments have been performed to test
the reliability of the system in a real environment. The
sea trials have proved the satisfactory performance of
the stationkeeping system. The system is able to operate
in real time on an off-board computer.

Figure 5: Resulting mosaic image. The white square drawn in
the image corresponds to the position of the initial reference
image. :

6. References

[11C.J. Funk, S.B. Bryant, P.J. Beckman Jr.,
“Handbook of underwater imaging system design”,
Ocean Technology Department, Naval Undersea
Center, 1972.

[2] 8. Negahdaripour and J. Fox, “Underwater optical
station-keeping: improved methods”, Journal of
Robatic Systems, vol. 8, no. 3, pp. 319-338, 1991,

[3]1. Jin, X. Xu, 8. Negahdaripour, “A real-time
vision-based stationkeeping system for underwater
robotics applications”, in Proceedings of the
MTSAEEE OCEANS Conference, vol. 3, pp. 1076-
1081, 1996.

[4]1 A. Giachetti, "Matching techniques to compute
image motion", in Image and Vision Computing,
no, 18, pp. 247-260, 2000.

[5]R.L. Marks, HH. Wang, M.J. Lee and 5.M. Rock,
“Automatic visual station keeping of an underwater
robet,” in Proc. of IEEE/MTS OCEANS, Veol. 2,
pp. 137-142, 1994, '

804

[610.D. Faugeras and G. Toscani, “The calibration
problem for stereo,” in Proc. of the IEEE Computer
Vision and Pattern Recognition, pp. 15-20, 1986.

[71L. Kitchen and A. Rosenfeld, “Gray-Level corner
detection,” Pattern Recognition Letters, vol. 1, no.
2,pp. 95-102, 1982.

[8]C.G. Harris and M.J. Stephens, “A combined
corner and edge detector,” in Proceedings of the
Fourth Alvey Vision Conference, Manchester, pp.
147-151, 1988.

[9]N. Gracias and J. Santos-Victor, “Underwater
Video Mosaics as Visual Navigation Maps”,
Computer Vision and Image Understanding, vol.
79, no. 1, pp. 66-91, 2000.

[10]R. Garcia, J. Batlle, X. Cufi, and J. Amat,
“Positioning an Underwater Vehicle through Image
Mosaicking,” in Proc. IEEE Int. Conf. on Robotics
and Automation, vol. 3, pp. 2779-2784, Seoul,
Rep. of Korea, 2001,

[11]R. Garcia, X. Cufi and J. Batlle, “Detection of
Matchings in a Sequence of Underwater Images
through Texture Analysis,” IEEE Int. Conf on
Image Processing, vol. 1, pp. 361-364,
Thessaloniki, Greece, 2001.

[12] Z. Zhang, R Deriche,. O. Faugeras, Q.T. Luong,
“A robust technique for matching two uncalibrated
images through ‘the recovery of the unknown
epipolar geometry,” INRIA RR-2273, 1994,

[13] K.I. Laws, “Textured Image Segmentation,” Ph.D.
Thesis, Processing Institute, University of Southern
California, Los Angeles, 1980.

[14]R.M. Haralick, K. Shanmugan and I. Dinstein.
“Textural features for image classification,” JEEF
Transactions on Systems, Man and Cybernetics,
vol. 3, no. 6 pp. 610-621, 1973,

[15] T. Ojala and M. Pietikdinen, “Unsupervised texture
segmentation using feature distributions,” Pattern
Recognition, vol. 32, pp. 477486, 1999,

[16]JR. Hartley and A. Zisserman, “Multiple View
Geometry in Computer Vision,” Cambrdge
University Press, 2000.

{17]P. Rousseeuw and A. Leroy, “Robust Regression
and Outlier Detection,” John Wiley & Sons, New
York, 1987.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:20:52 UTC from IEEE Xplore. Restrictions apply.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


