
416 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 30, NO. 2, APRIL 2005

A Behavior-Based Scheme Using Reinforcement
Learning for Autonomous Underwater Vehicles

Marc Carreras, Junku Yuh, Fellow, IEEE, Joan Batlle, and Pere Ridao, Member, IEEE

Abstract—This paper presents a hybrid behavior-based scheme
using reinforcement learning for high-level control of autonomous
underwater vehicles (AUVs). Two main features of the presented
approach are hybrid behavior coordination and semi on-line
neural-Q_learning (SONQL). Hybrid behavior coordination
takes advantages of robustness and modularity in the competitive
approach as well as efficient trajectories in the cooperative ap-
proach. SONQL, a new continuous approach of the Q_learning
algorithm with a multilayer neural network is used to learn
behavior state/action mapping online. Experimental results show
the feasibility of the presented approach for AUVs.

Index Terms—Autonomous underwater vehicle (AUV), be-
havior-based control, neural networks, reinforcement learning.

I. INTRODUCTION

WITH continuous advances in control, navigation, artifi-
cial intelligence, material science, computer, sensor and

communication, autonomous underwater vehicles (AUVs) have
become very attractive for various underwater tasks. The au-
tonomy is one of the most critical issues in developing AUVs.
Various control architectures have been studied to help increase
the autonomy of AUVs [1]–[5]. They could be categorized into
three groups: deliberative architecture, behavior-based archi-
tecture, and hybrid architecture. Deliberative architectures are
based on planning using a world model [6]. A mission is speci-
fied to achieve a set of goals and each goal is executed by a con-
trol system. They allow reasoning and making predictions con-
cerning the environment. Data flows from sensors to the world
model, which is used to plan new actions to be undertaken by
the actuator. When dealing with a highly dynamic environment,
the delay in the response time is the main drawback. Behav-
ioral architectures are also known as reactive architectures or
heterarchies [7]. The decomposition is based on the desired be-
haviors for the vehicle and missions are normally described as
a sequence of phases with a set of active behaviors. The behav-
iors continuously react to the situation sensed by the perception
system. The vehicle’s global behavior emerges from the combi-
nation of the elemental active behaviors. The real world acts as a
model to which the vehicle reacts, based on the active behaviors.
As active behaviors are based on the sense-react principle, they

Manuscript received June 12, 2002; revised March 6, 2004; accepted
July 9, 2004. This work was supported by the ONR (N00014-97-1-0961 and
N00014-00-1-0629), KRISO/KORDI via MASE, and the Spanish commission
MCYT (DPI2001-2311-C03-01). Associate Editor: J. Leonard.

M. Carreras, J. Batlle, and P. Ridao are with the Institute of Informatics
and Applications, University of Girona, 17071 Girona, Spain (e-mail:
marcc@eia.udg.es; jbatlle@eia.udg.es; pere@eia.udg.es).

J. Yuh is with the National Science Foundation, Arlington, VA 22230 USA
(e-mail: jyuh@nsf.gov).

Digital Object Identifier 10.1109/JOE.2004.835805

are suitable for dynamic environments. However, since each be-
havior pursues its own goal, reaction actions issued by one be-
havior may cause another behavior to deviate from its respective
goal. As a result, the vehicle behavior is, at times, unpredictable.
Hybrid architectures take advantage of the two previous archi-
tectures while minimizing their limitations [8], [9]. They usually
consist of three layers: the deliberative layer, the behavior-based
layer, and the control execution layer. The deliberative layer has
the goal of breaking down the mission to be accomplished into
a set of tasks. The behavior-based layer has the goal of car-
rying out each task. The deliberative layer also acts over the be-
havior-based layer by configuring the particular set of behaviors
and the priorities among the behaviors. The deliberative layer
determines if the task is being accomplished properly by moni-
toring sensor information and the output of the behavior-based
layer. The behavior-based layer generates outputs as inputs to
the low-level controller in the control execution layer.

This paper focuses on the behavior-based layer of the hy-
brid architecture for high-level AUV control. Various methods
have been proposed to address the common characteristics of
a behavior-based system, such as behavior expression, design,
encoding, and coordination. As the vehicle’s global behavior
emerges from the combination of the elemental active behav-
iors, a coordinator is needed to generate the single output of the
behavior-based layer from the outputs of those active behav-
iors. If the output of the behavior-based layer is chosen from
the output of the selected single behavior, the coordinator is
classified as competitive. If the output is the superposition of
several behavior responses, the coordinator is called coopera-
tive. Carreras et al. [10] discussed advantages and disadvan-
tages of each approach. The competitive method could offer
more robustness than the cooperative method with respect to
the behavior selection and modularity when adding new be-
haviors. The cooperative method with properly tuned parame-
ters could generate more efficient trajectories than the competi-
tive method when there are changes in the dominant behaviors.
Among generic behaviors for AUVs include: transit (moves the
vehicle along the point-to-point local path); repulsion (avoids
obstacles); tracking (follows an object of interest or a sequence
of given points); stroll (wanders around); navigation (generates
the global path—sequence of way-points); and hover (keeps the
vehicle position). The presented behavior-based layer consists
of a set of behaviors and a hybrid coordinator taking advantages
of each of competitive and cooperative approaches [11].

In practice, the design and tune-up of behaviors may not be
an easy task and require a lot of experimentation, especially
in unknown and time-varying environments. To overcome this
difficulty, learning techniques are introduced. Reinforcement

0364-9059/$20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

CARRERAS et al.: REINFORCEMENT LEARNING FOR AUVs 417

Fig. 1. Hybrid control architecture for AUVs.

learning (RL) has been used to learn the internal structure of
the behaviors by mapping the perceived states to control actions
while maximizing the accumulated future rewards [12]–[17].
Moreover, some researchers have used RL to adapt the behavior
coordination system [18]–[22]. Most RL techniques are based
on finite Markov decision processes (FMDP) resulting in finite
state and action spaces. RL techniques are very attractive for
on-line learning since they do not use any knowledge database.
Classic RL algorithms based on FMDP using discrete variables
may have the generalization problem when they are applied
to systems with continuous variables (states or actions). It is
also noted that the learning process could be damaged when
the measured signals are related to the state of the environment
due to noise or delay. Such environments would be consid-
ered as a partially observable MDP [23]. To overcome the
difficulty due to the generalization problem, researchers have
proposed to combine the RL algorithm with other techniques
such as decision trees [24], CMAC function approximator
[25], memory-based methods [26] and neural networks (NN)
[27]. This paper describes a new learning algorithm, semi-
online neural-Q_learning (SONQL) that is used to learn the
internal state/action mapping of each behavior. SONQL uses
the Q_learning algorithm with a NN function approximator.
The Q_learning algorithm has been widely used for RL due to
its good learning capabilities—on-line and off-policy features
[28]. The on-line feature is the capability of learning at the
same time when the learning information is being acquired by
the system. The off-policy feature could be understood as the
capability of learning without following any particular strategy
or policy when the actions are selected. SONQL implements
the -function directly into a NN, known as direct Q_learning
[29]. While neural networks are nonlinear and offer a high
generalization capability for complex tasks [30], learning in
one area of the input space may not maintain the learned data of
all possible areas of the input space known as the interference

Fig. 2. The normalized vehicle control action v and the behavior activation
level a constitute the behavior response r .

Fig. 3. HHCN.

problem [31]. A database of the most recent and representative
learning samples is used to address the interference problem.

This paper presents experimental results on two AUVs, ODIN
and URIS for a target following task, showing the SONQL-
based behavior approach with hybrid coordination promising
for AUV high-level control. The structure of the paper is as fol-
lows. Section II describes the behavior-based scheme with the
hybrid coordination system. Section III describes the Semi-On-
line Neural-Q_learning algorithm. In Section IV, results are pre-
sented for a target following task with two different AUVs. Fi-
nally, the paper is concluded in Section V.

II. BEHAVIOR-BASED SCHEME

This paper considers a hybrid control architecture (Fig. 1),
showing three layers: the deliberative layer, the behavior-based
layer, and the control execution layer. The deliberative layer has

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

418 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 30, NO. 2, APRIL 2005

Fig. 4. Response of HHCN with 2-D l actions. (a) The node acts cooperatively when the dominant behavior is not fully activated. (b) In case the dominant
behavior is completely activated, a competitive action is generated.

the goal of breaking down the mission to be accomplished into a
set of tasks. Each task should be small enough to be described by
the limited number of behaviors depending on various consider-
ations such as computing power. If a task requires more than the
limited number of behaviors, it should be further broken into a
set of smaller tasks.

The behavior-based layer consists of a set of behaviors and a
coordinator. The hybrid coordinator takes advantage of compet-
itive and cooperative approaches [11]. The hybrid coordinator
allows the coordination of a large number of behaviors without
the need of a complex designing phase or tuning phase. The ad-
dition of a new behavior only implies the assignment of its pri-
ority with reference to other behaviors. The hybrid coordinator
uses the priority and behavior activation level to calculate the
output of the layer, which is the desired control action input to
the low-level control system. Therefore, the response of each
behavior is composed of the activation level and the control
action , as illustrated in Fig. 2. The activation level indicates
the degree to which behavior wants to dominate in controlling
the AUV. This degree is expressed by a numerical value from 0
to 1. In this paper, the control action represents the desired AUV
velocity vector. The control action vector is normalized and its
magnitude cannot be greater than 1.

The hybrid coordinator uses the behavior responses to com-
pose a final action input. This process is executed at each sam-
pling time of the high-level controller. The coordination system
is composed of a set of nodes . Each node has two inputs and
generates a response which also has an activation level and a
control action. By using these nodes, the whole coordination
process is accomplished. After connecting node responses, a
final response is generated and reescalated to the velocities of
the vehicle as an input to the low-level AUV control system as
described below.

Each node has a dominant and a nondominant input. The
response connected to the dominant input will have a higher
priority than the one connected to the nondominant. When the
dominant behavior is completely activated , the response
of the node will be equal to the dominant behavior. Therefore,
in this case, the coordination node will behave competitively.
However, if the dominant behavior is partially activated

the two responses will be combined. The idea is that
nondominant behaviors can modify the responses of dominant
behaviors slightly when they are not fully activated. In this case,

the node will behave cooperatively. Finally, if the dominant be-
havior is not activated the response of the node will be
equal to the nondominant behavior. These nodes are called hier-
archical hybrid coordination nodes (HHCN) as its coordination
approach changes depending on the activation level of the be-
haviors and the hierarchy or priority among them.

Fig. 3 shows the equations used to calculate the response of
HHCN. The activation level will be the sum of the activation
levels of the input responses, where the nondominant activation
level has been multiplied by a reduction factor, de-
pending on the activation of the dominant behavior and on the
value of the parameter . If , the activation level linearly
decreases as increases. If more drastic reduction is desired,
the value of can be set to higher values. This parameter does
not have to be tuned for each node and the same value could be
used for all the coordination nodes. If the new activation level
is larger than 1, the level is saturated to 1.

The control action is calculated in the same way as the acti-
vation level. Vector is the sum of and , applying the
corresponding proportional factors. Therefore, each component
of is taken in the proportion of the activation level, with
respect to while each component of is taken in the pro-
portion of the reduced activation level with respect to . If the
module of is larger than 1, the vector is rescaled to a magni-
tude equal to 1. An example of the use of HHCN is illustrated in
Fig. 4. In this example, two different situations are depicted. In
the first situation, the node acts cooperatively generating an ac-
tion that is affected by the nondominant response. In the second
situation, the dominant behavior is completely activated and the
node acts competitively.

As described earlier, the hybrid coordinator is composed of
a set of HHCNs which connect each pair of behaviors or nodes
until a final response is generated. In order to build up this net-
work of nodes, it is necessary to set up the priority among the be-
haviors. This hierarchy will depend on the task to be performed.
Once the priorities are set usually by the mission designer, the
hybrid coordinator is ready to use. Fig. 1 shows an example of
a set of three nodes that coordinate four behaviors. A new be-
havior can be easily added by just setting the priority of the new
behavior with respect to the others. The previous computer sim-
ulation study [32] shows that a behavior-based control architec-
ture using the hybrid coordinator generates more efficient paths
and offers more robustness and modularity in a 3-D AUV navi-

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

CARRERAS et al.: REINFORCEMENT LEARNING FOR AUVs 419

Fig. 5. Q_learning algorithm.

Fig. 6. Diagram of the Q_learning algorithm.

gation mission than four well-known behavior-based control ar-
chitectures (subsumption [33], action selection dynamics [34],
schema-based approach [35], and process description language
[36]).

III. SONQL

SONQL could be considered as a continuous implementation
of the Q_learning [15], [28]. Q_learning is a temporal differ-
ence algorithm based on the FMDP and is suitable for learning
incrementally or on-line. Q_learning is also an off-policy algo-
rithm. The off-policy feature could be understood as the capa-
bility of learning without following any particular strategy or
policy when the actions are selected. This feature is very useful
for AUVs. For example, if the algorithm proposes an action that
would cause a collision, another behavior with higher priority
will prevent it, and the learning algorithm will use the real exe-
cuted action.

Q_learning uses the perceived states , the taken actions
, and the received reinforcements to update the values of

a table, denoted as or -function. If state/action pairs
are continually visited, the values converge to a greedy policy,
in which the maximum value for a given state, points to the
greedy action. When the algorithm converges to the solution,
the greedy policy will correspond to the optimal policy, in which
the maximum value for a given state, points to the optimal ac-
tion. The optimal action is the one that will maximize the accu-
mulated future rewards, and therefore, will solve the reinforce-
ment problem. Fig. 5 shows the Q_learning algorithm and Fig. 6
shows a diagram of its implementation.

There are several parameters that define the learning
evolution:

• : discount rate . Concerning the maximization of fu-
ture rewards. If , the agent maximizes only imme-
diate rewards.

Fig. 7. Reinforcement function of the tracking behavior.

Fig. 8. Implementation of SONQL algorithm.

• : learning rate .
• : random action probability . Exploitation versus

exploration dilemma. An explorative action is taken with
probability instead of the greedy action contained in
the current -function. The final action is called -greedy
action.

A neural network is used to address the generalization
problem of Q_learning. The NN has the state and the action as
inputs, and the one-dimensional (1-D) value as output with
the following approximation function:

(1)

To address the interference problem of the neural network, the
SONQL uses a database of learning samples. The main goal of
the database is to include a representative set of visited learning
samples, which is repeatedly used to update the SONQL algo-
rithm. The database also helps the learning speed.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

420 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 30, NO. 2, APRIL 2005

Fig. 9. ODINs target following task control system.

Fig. 10. Color video camera layout.

Each learning sample is composed of the initial state , the
action , the new state and the reward . During the
learning evolution, the learning samples are added to the data-
base. Each new sample replaces old samples. The replacement is
based on the geometrical distance between vectors
of the new and old samples. If the distance is less than a den-
sity parameter for any old sample, the sample is removed from
the database. The size of the database is, therefore, controlled
by this parameter which has to be set by the designer. Once the
algorithm has explored the reachable state/action space, a ho-
mogeneous representative set of learning samples is contained
in the database.

The reinforcement function determines the policy to be
followed by the behavior. Defining this function requires the
knowledge of a human designer. The function associates each
state with a reward . By associating the
desired states with “ ” and the undesired with “ ,”
the algorithm learns how to act. Fig. 7 shows an example of
the reinforcement function for the tracking behavior. In this
figure in can be observed first the image acquired by the AUV,
which is then used to find the horizontal and vertical position
of the target in the image field. Finally, this position is taken
by the reinforcement function, here represented as three 2-D
regions separated by two circles, to compute the final reward
. The reinforcement function is the only internal part of each

behavior that is experimentally set.
SONQL is implememted with the following steps (Fig. 8):

• LS assembly. The current learning sample (LS) is assem-
bled. The state and the last taken action are received
fromtheenvironment.Thereward iscomputedaccording
to , and, the past state is extracted from a unit delay.

TABLE I
ODIN TRACKING BEHAVIOR SPECIFICATIONS

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

CARRERAS et al.: REINFORCEMENT LEARNING FOR AUVs 421

Fig. 11. Online learning evolution of the tracking behavior in the X dof. The states, actions, and rewards are shown.

Fig. 12. Performance of the tracking behavior in the X dof. Once the coordinated action equalled the tracking action, the target was reached (state position�= 0)
and the maximum reward was achieved (r = 1).

• Database update. The database is updated with the new
learning samples. Old samples are replaced by new sam-
ples based on the density parameter as described earlier.

• NQL update. The weights of the NN in neural Q_learning
(NQL) are updated according to the back-propagation al-
gorithm and (1).

• Action selection. A new action is computed by fol-
lowing the -policy. With probability , the action
taken is the one that maximizes the -function in the cur-
rent state (greedy action). Otherwise, a random ac-
tion is generated. Since the NN is a continuous function,
the greedy action is practically found by evaluating the
values of a finite set of actions. The one with maximum
value is the action chosen.

IV. CASE STUDY: TARGET FOLLOWING TASK

The feasibility of the hybrid coordinator and SONQL-based
behavior was investigated by experiment for a target following
task. The first test was performed on ODIN that was developed
at the Autonomous Systems Laboratory (ASL), the University
of Hawaii [37], [38]. The ODIN is a sphere shaped AUV with
eight thrusters (4 horizontal and 4 vertical). It is capable of ma-
neuvering with six degrees-of-freedom (dof). The second test
was performed on ODIN’s sister AUV, URIS [39] that was built
at the Institute of Informatics and Applications, the University
of Girona after the fourth author’s visit to ASL. The URIS is
smaller than the ODIN but also a sphere shaped vehicle with
only four thrusters (2 horizontal and 2 vertical). It is a nonholo-
nomic system capable of moving in four dof.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

422 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 30, NO. 2, APRIL 2005

Fig. 13. Performance of the tracking behavior in the Y dof. Once the coordinated action equalled the tracking action, the target was reached (state position�= 0)
and the maximum reward was achieved (r = 1).

Fig. 14. Performance of the tracking behavior in the Z dof. Once the coordinated action equaled the tracking action, the target was reached (state position �= 0)
and the maximum reward was achieved (r = 1).

A. ODIN

The first test was conducted to check the feasibility of the pre-
sented approach, especially SONQL for AUVs. The target fol-
lowing task consists of recovering and tracking an object (target)
by means of a camera. Therefore this task could be accom-
plished with two behaviors: tracking, and recovery. For this test,
the tracking behavior was implemented with the SONQL algo-
rithm and the recovery behavior was manually programmed.
The SONQL behavior receives information about the current
state, usually from sensors, and it also receives the last action
taken. This action is used by the SONQL algorithm to update the
neural network weights. Each behavior generates a 3-D-speed
vector and an activation level, which determined the final output
according to the priority of behaviors. Once the coordination is
done, the output is sent to the low level controller that controls
the yaw angle, the depth and the surge and sway velocities. Fig. 9
shows ODINs target following task control system with two be-
haviors described here.

Tracking: The goal of this behavior is to follow an object using
a video camera pointed toward -axis (Fig. 10). As the mission
is carried out in a pool, a simple segmentation algorithm is used
to detect the position of a tinted target (Fig. 7). The behavior is

Fig. 15. URIS’ underwater vehicle during the target following task in a water
tank.

learned using the SONQL algorithm for each dof . Aside
from the position of the target, its euler derivative is also used as
the input. A reinforcement function was designed to give positive
rewards when the target is around the vehicle’s relative
position , and . Otherwise, values like or

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

CARRERAS et al.: REINFORCEMENT LEARNING FOR AUVs 423

Fig. 16. URIS’ target following task control system in the real experiments.

are given. In this test, since this behavior is considered
as a dominant behavior in the HHCN nodes, its activation level
is 1 only when the target is detected. Otherwise it is 0.

Recovery: The goal of this behavior is to recover an object
when it disappears from the camera view. Considering that the
vehicle motion is relatively slow, a very simple policy can be
used. When the tracking system is losing the target, the behavior
moves the vehicle horizontally and vertically. This behavior is
preprogrammed without using SONQL. The activation level is
contrary to that of the tracking behavior.

The tracking behavior was implemented with three different
SONQL algorithms (one for each dof). SONQL algorithms used
2-layer neural networks that were chosen after many trials. The
number of layers and neurons, depends on the complexity and
the number of dimensions of the -function to be approximated.
For the hidden layers, a hyperbolic tangent function was used as
the activation function. This function is antisymmetric and ac-
celerates the learning process. The output layer had a linear ac-
tivation function, which allows the NN to approximate any real
value. The initialization of the NN weights were done randomly.
In the experiment, 0.8 seconds were used for the sampling time
of the behavior-based layer considering the overall control per-
formance as well as the learning performance of the SONQL al-
gorithm. The internal parameters and configuration used in the
tracking behavior as well as the learned state/action mappings
for each dof are shown in Table I.

Fig. 11 shows that the SONQL algorithm successfully learns
the tracking behavior. The behavior was learned in less than 350
iterations (280 s). During the learning period, random actions
helped the exploration of the space until the optimal policy was
learned and the algorithm found the maximum reward. Once
the 3 dof behaviors were learned, the target following task was
tested. The vehicle was able to learn how to move in 3 dof
achieving the target following task. Figs. 12–14 show ODINs
performance in , and , respectively, including the posi-

TABLE II
URIS TRACKING BEHAVIOR SPECIFICATIONS

tion of the target, the reward of the tracking behavior and the
actions of the tracking behavior and the coordinated response
(all the values are normalized from to 1). It can be observed
that when the coordinated action equals the tracking behavior

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

424 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 30, NO. 2, APRIL 2005

Fig. 17. Behavior convergence for six different learning trials of the Yaw dof.

Fig. 18. Online learning evolution and behavior testing of the tracking behavior in the X dof. The states, action, and reward signals are shown.

action, the target position reaches the 0 value where the reward
becomes maximum . Experimental results show that
the presented approach using SONQL is feasible and promising
for AUV high-level control and encouraged further investiga-
tion with additional behaviors.

B. URIS

The presented approach with four behaviors was tested on
the URIS. Experiments were performed in a water tank that al-
lowed only the movement of the vehicle in the horizontal plane.
Therefore, the controlled dof were the surge and yaw velocities.
The vehicle was also equipped with a forward looking camera
(Fig. 15). It was used by the tracking behavior that was learned
with 2 SONQL algorithms. The recovery behavior was prepro-
grammed using the same strategy to recover the target. For the
repulsion behavior, a preprogrammed state-action mapping was
used, instead of using a SONQL algorithm, to avoid any phys-
ical damage to the vehicle during the learning period. For this
test, the repulsion behavior used the data of a vision-based po-
sitioning system to determine the distance to the walls of the
water tank [40]. A new behavior called teleoperation was de-
fined to command the vehicle from an external human machine

interface (HMI) module. This behavior was used to test the per-
formance of the approach when the vehicle was moved away
from the target. Fig. 16 shows URIS’ target following task con-
trol system with four behaviors.

The parameters of the learning algorithm were initially set
to those used with ODIN. Several trials were then carried out
to find the best parameters for URIS. The vehicle was able to
learn how to move in both dof achieving the target following
task. The parameters and configuration used in the tracking be-
havior as well as the learned state/action mapping for both dof
are shown in Table II. It is noted that these parameters are very
similar to those used for the ODIN.

Fig. 17 shows six consecutive learning attempts of the Yaw
dof. Each curve represents the mean of the last 20 rewards. The
minimum and maximum values correspond to the minimum

and maximum rewards . The figure also shows
that the average reward increased as the behavior was learned.
The algorithm starts exploring the state to find the maximum re-
ward. Once the whole state is explored, the algorithm exploits the
learned state-action mapping and receives the maximum reward.

Figs. 18 and 19 show a typical online learning evolution of
the X and Yaw dof, respectively. The first part of each figure

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

CARRERAS et al.: REINFORCEMENT LEARNING FOR AUVs 425

Fig. 19. Online learning evolution and behavior testing of the tracking behavior in the Yaw dof. The states, action, and reward signals are shown.

shows how the vehicle explores the state during the learning
period. For the X dof, the learning time was 350 iterations
(105 s) and for the Yaw dof was 200 iterations (60 s). This
difference is due to the fact that the mapping for the X dof is
more nonlinear than the one for the Yaw dof (see Table II).
Immediately after the learning period, the vehicle was moved
from the target with the teleoperation behavior. It can be seen
from the figures how the target is recovered and the maximum
rewards are achieved.

When the vehicle gets close to the walls of the water tank,
behavior cooperation between the repulsion and tracking behav-
iors occurs. Whenever the vehicle gets too close to the walls of
the water tank, the repulsion behavior fully dominates. To inves-
tigate the performance of the hybrid coordination system, the
target was placed close to the vehicle so that the vehicle went
backward until the wall was found. As shown in Fig. 20, the re-
pulsion behavior became active and stopped the control action
of the tracking behavior. The coordinated response in the surge
movement was nearly zero, even though the tracking behavior
generated a backward movement as shown in the X dof graph.
The vehicle stopped between the target and the wall of the tank,
as the hybrid coordinator effectively performed.

V. CONCLUSION

This paper described a new reinforcement learning algorithm,
SONQL and a hybrid coordinator for a behavior-based layer of
the hybrid control architecture for AUVs. SONQL is based on
Q_learning with neural networks to overcome the generation
problem and uses a database of learning samples to overcome
the interference problem. The hybrid coordination system takes
advantage of the competitive approach as well as the cooperative
approach.

The presented approach was tested for a target following
task. After the preliminary test on the ODIN with two behaviors

Fig. 20. Performance of the hybrid coordination system.

(tracking and recovery) showing the feasibility of the SONQL
algorithm for AUV high-level control, the additional tests on
URIS were performed with four behaviors (tracking, repulsion,
recovery, and teleoperation). Results show that the presented
approach with SONQL algorithm and the hybrid behavior
coordinator could help increase the autonomy of AUVs. The
future study includes improving the learning capabilities of
the SONQL algorithm and investigating effectiveness of the
approach for more complex tasks.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

426 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 30, NO. 2, APRIL 2005

REFERENCES

[1] E. Coste-Maniere, H. H. Wang, and A. Peuch, “Control architectures:
What’s going on?,” in Proc. US-Portugal Workshop on Undersea
Robotics and Intelligent Control, Lisbon, Portugal, 1995, pp. 54–60.

[2] P. Ridao, J. Batlle, J. Amat, and G. N. Roberts, “Recent trends in control
architectures for autonomous underwater vehicles,” Int. J. Syst. Sci., vol.
30, no. 9, pp. 1033–1056, 1999.

[3] K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G. A.
Demetriou, “Control architectures for autonomous underwater vehi-
cles,” IEEE Contr. Syst. Mag., vol. 17, no. 6, pp. 48–64, 1997.

[4] P. Ridao, J. Yuh, K. Sugihara, and J. Batlle, “On AUV control architec-
ture,” in Proc. Int. Conf. Robots and Systems, Japan, 2000.

[5] J. G. Bellingham and J. J. Leonard, “Task configuration with layered
control,” in Proc. IARP 2nd Workshop on Mobile Robots for Subsea En-
vironments, Monterey, CA, 1994, pp. 193–302.

[6] A. M. Meystel and J. S. Albus, Intelligent Systems, Architecture, Design
and Control. New York: Wiley, 2002.

[7] R. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press,
1998.

[8] R. C. Arkin, “Path planning for a vision-based autonomous robot,” in
Proc. SPIE Conf. Mobile Robots, Cambridge, MA, 1986, pp. 240–249.

[9] E. Gat, “Reliable goal-directed reactive control for real-world au-
tonomous mobile robots,” Ph.D., Virginia Polytech. State Univ.,
Blacksburg, 1991.

[10] M. Carreras, J. Batlle, P. Ridao, and G. N. Roberts, “An overview on
behavior-based methods for AUV control,” in MCMC2000, 5th IFAC
Conf. Manoeuvring and Control of Marine Crafts, Aalborg, Denmark,
2000.

[11] M. Carreras, J. Batlle, and P. Ridao, “Hybrid coordination of reinforce-
ment learning-based behaviors for AUV control,” in IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, HI, 2001.

[12] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artif. Intell., vol. 55, pp.
311–365, 1992.

[13] M. Ryan and M. Pendrith, “RL-TOPs: An architecture for modularity
and Re-Use in reinforcement learning,” in 15th Int. Conf. Machine
Learning, Madison, WI, 1998.

[14] J. Shackleton and M. Gini, “Measuring the effectiveness of reinforce-
ment learning for behavior-based robotics,” Adapt. Behav., vol. 5, no.
3/4, pp. 365–390, 1997.

[15] R. Sutton and A. Barto, Reinforcement Learning, an Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[16] Y. Takahashi and M. Asada, “Vision-guided behavior acquisition of a
mobile robot by multi-layered reinforcement learning,” in IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 2000.

[17] C. Touzet, “Neural reinforcement learning for behavior synthesis,”
Robot. Autonomous Syst., vol. 22, pp. 251–281, 1997.

[18] D. Gachet, M. Salichs, L. Moreno, and J. Pimental, “Learning emergent
tasks for an autonomous mobile robot,” in Proc. Int. Conf. Intelligent
Robots and Systems, Munich, Germany, 1994, pp. 290–97.

[19] Z. Kalmar, C. Szepesvari, and A. Lorincz, “Module-based reinforcement
learning: Experiments with a real robot,” in Proc. 6th Eur. Workshop on
Learning Robots, 1997.

[20] P. Maes and R. Brooks, “Learning to coordinate behaviors,” in Proc. 8th
AAAI, 1990, pp. 796–802.

[21] E. Martinson, A. Stoytchev, and R. Arkin, “Robot behavioral selection
using Q_learning,” in IEEE/RSJ Int. Conf. Intelligent Robots and Sys-
tems, Lausanne, Switzerland, 2002.

[22] B. Lee and R. C. Arkin, “Adaptive multi-robot behavior via learning
momentum,” in IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2003.

[23] B. Bakker, F. Linaker, and J. Schmidhuber, “Reinforcement learning in
partially observable mobile robot domains using unsupervised event ex-
traction,” in IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Lau-
sanne, Switzerland, 2002.

[24] W. T. B. Uther and M. M. Veloso, “Tree based discretization for contin-
uous state space reinforcement learning,” in Proc. 15th National Conf.
Artif. Intell., 1998.

[25] J. C. Santamaria, R. S. Sutton, and A. Ram, “Experiments with rein-
forcement learning in problems with continuous state and action spaces,”
Adapt. Behav., vol. 6, pp. 163.218–163.218, 1998.

[26] W. D. Smart, “Making reinforcement learning work on real robots,”
Ph.D., Dept. Computer Science, Brown Univ., RI, 2002.

[27] C. Gaskett, “Q_learning for robot control,” Ph.D., Australian National
Univ., 2002.

[28] C. J. C. H. Watkins and P. Dayan, Q_Learning Machine Learning, 1992,
vol. 8, pp. 279–292.

[29] K. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Machine Learning: 12th Int. Conf., San Francisco,
CA, 1995.

[30] G. J. Tesauro, “Practical issues in temporal difference learning,” Ma-
chine Learning, vol. 8, no. 3/4, pp. 257.277–257.277, 1992.

[31] S. Weaver, L. Baird, and M. Polycarpou, “An analytical framework for
local feedforward networks,” IEEE Trans. Neural Netw., vol. 9, 1998.

[32] M. Carreras, “An overview of behavior-based robotics with simulated
implementations on an underwater vehicle,” Univ. Girona, Spain. Infor-
matics and Applications Institute, Res. Rep.: IIiA 00-14-RR, 2000.

[33] R. A. Brooks, “Robust layered control system for a mobile robot,” IEEE
J. Robot. Automat., vol. RA-2, no. 1, pp. 14–23, 1986.

[34] P. Maes, “Situated agents can have goals,” Robot. Automat. Syst., vol. 6,
pp. 49–70, 1990.

[35] R. C. Arkin, “Motor schema-based mobile robot navigation,” Int. J.
Robotica Res., vol. 8, no. 4, pp. 92–112, 1989.

[36] L. Steels, “Building agents with autonomous behavior systems,” in The
Artificial Route to Artificial Intelligence. Building Situated Embodied
Agents. New Haven, CT: Lawrence Erlbaum, 1993.

[37] S. K. Choi, J. Yuh, and G. Y. Takashige, “Development of the omni-
directional intelligent navigator,” IEEE Robot. Automation Mag., pp.
44–53, 1995.

[38] J. Nie, J. Yuh, E. Kardash, and T. I. Fossen, “Onboard sensor-based
adaptive control of small UUV’s in the very shallow water,” in Proc.
IFAC-Control Applications in Marine Systems, Fukuoka, Japan, 1998,
pp. 201–206.

[39] M. Carreras, A. Tiano, A. El-Fakdi, A. Zirilli, and P. Ridao, “On the
identification of non linear models of unmanned underwater vehicles,”
in 1st IFAC Workshop on Guidance and Control of Underwater Vehicles
GCUV ’03, Wales, U.K., 2003.

[40] M. Carreras, P. Ridao, R. Garcia, and T. Nicosevici, “Vision-based lo-
calization of an underwater robot in a structured environment,” in IEEE
Int. Conf. Robotics Automation ICRA’03, Taipei, Taiwan, 2003.

Marc Carreras was born in Spain in 1975. He re-
ceived the Ms.C. degree in industrial engineering in
1998 and the Ph.D. degree in computer engineering
in 2003, both from the University of Girona, Spain.

His research activity is mainly focused on robot
learning and control of autonomous underwater
vehicles. He joined the Institute of Informatics and
Applications, University of Girona, in September
1998, and has been an Associate Lecturer with
the Department of Electronics, Informatics and
Automation, since October 2002. He is involved in

some governmental projects about underwater robots.

Junku Yuh (F’05) received the B.S. degree from
Seoul National University, Korea, in 1981 and the
M.S. and Ph.D. degrees from Oregon State Univer-
sity in 1983 and 1986, respectively.

He joined the National Science Foundation,
Arlington, VA, in 2001 as a Program Director of
Robotics Program and Computer Vision Program,
Division of Information and Intelligent Systems after
17 years as a Professor of mechanical engineering
with the University of Hawaii, where he still directs
the Autonomous Systems Laboratory. His main

research interests include intelligent navigation and guidance, and underwater
robotic vehicle control. He has published more than 120 technical articles and
edited/coedited 10 books in the area of robotics, including Underwater Robots
(Boston, MA: Kluwer, 1996) and Underwater Robotic Vehicles: Design and
Control (Albuquerque, NM: TSI, 1995).

Dr. Yuh received a 1991 Presidential Young Investigator Award from the
National Science Foundation and a 2004 Lifetime Achievement Award from
World Automation Congress. He is listed in Who’s Who in the World, and Men
of Achievement. He has served as an associate editor for several journals in-
cluding the IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION and is on
the Editorial Board of the Journal of Autonomous Robots and the International
Journal of Intelligent Automation & Soft Computing. He has chaired several
conferences including the Program Chair of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). He founded and chairs
the Technical Committee on Underwater Robotics of the IEEE Robotics and
Automation Society.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

CARRERAS et al.: REINFORCEMENT LEARNING FOR AUVs 427

Joan Batlle was born in Spain in 1953. He received
the Ms.C. degree in physics in 1975 from the Univer-
sitat Autònoma de Barcelona, Spain, and the Ph.D.
degree in computer engineering from the Technical
University of Catalonia, Barcelona.

His research activity is mainly focused on
real-time vision and autonomous underwater robots.
He is a Professor of computer science with the
University of Girona, Spain, teaching courses on
computer vision systems, and advanced technolo-
gies. He has been the Director of the Institute of

Informatics and Applications, a research center with 60 full-time researchers.
He has been Head of the Department of Electronics, Informatics and Automa-
tion, University of Girona. He has been a Director of many funded research
projects mainly concerning real-time computer vision and underwater robotics.
He is currently Rector of the University of Girona. He is involved in some
governmental projects about underwater robots and technology transference
to industrial environments. He has published more than 200 international
contributions in journals, workshops, and conferences.

Dr. Batlle is member of the IFAC’s Technical Committee on Marine Systems
and has been a member of the Program Committee of more than 20 international
conferences on computer vision and robotics during the last four years.

Pere Ridao (M’03) was born in Spain in 1969.
He received the Ms.C. degree in computer science
in 1993 from the Technical University of Catalonia,
Barcelona, Spain, and the Ph.D. degree in computer
engineering in 2001 from the University of Girona,
Spain.

His research activity is mainly focused on under-
water robotics in research topics such as control ar-
chitectures, UUV modeling and identification, simu-
lation, and real-time operating systems. He joined the
Institute of Informatics and Applications, University

of Girona, in September 1995. At present, he is a Lecturer with the Depart-
ment of Electronics, Informatics and Automation, University of Girona. He is
involved in some governmental projects about underwater robots and some tech-
nology transference projects about real-time and embedded systems.

Dr. Ridao is member of the IFAC’s Technical Committee on Marine Systems
and a member of some Program Committees including the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems Committee.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:33:52 UTC from IEEE Xplore. Restrictions apply.

	toc
	A Behavior-Based Scheme Using Reinforcement Learning for Autonom
	Marc Carreras, Junku Yuh, Fellow, IEEE, Joan Batlle, and Pere Ri
	I. I NTRODUCTION

	Fig.€1. Hybrid control architecture for AUVs.
	Fig. 2. The normalized vehicle control action $v _{i}$ and the b
	Fig.€3. HHCN.
	II. B EHAVIOR -B ASED S CHEME

	Fig.€4. Response of HHCN with 2-D l actions. (a) The node acts c
	Fig.€5. Q_learning algorithm.
	Fig.€6. Diagram of the Q_learning algorithm.
	III. SONQL

	Fig.€7. Reinforcement function of the tracking behavior.
	Fig.€8. Implementation of SONQL algorithm.
	Fig.€9. ODINs target following task control system.
	Fig.€10. Color video camera layout.

	TABLE I ODIN T RACKING B EHAVIOR S PECIFICATIONS
	Fig.€11. Online learning evolution of the tracking behavior in t
	Fig.€12. Performance of the tracking behavior in the X dof. Once
	IV. C ASE S TUDY: T ARGET F OLLOWING T ASK

	Fig.€13. Performance of the tracking behavior in the Y dof. Once
	Fig.€14. Performance of the tracking behavior in the Z dof. Once
	A. ODIN

	Fig.€15. URIS' underwater vehicle during the target following ta
	Fig.€16. URIS' target following task control system in the real
	TABLE II URIS T RACKING B EHAVIOR S PECIFICATIONS
	Fig.€17. Behavior convergence for six different learning trials
	Fig.€18. Online learning evolution and behavior testing of the t
	B. URIS

	Fig.€19. Online learning evolution and behavior testing of the t
	V. C ONCLUSION

	Fig.€20. Performance of the hybrid coordination system.
	E. Coste-Maniere, H. H. Wang, and A. Peuch, Control architecture
	P. Ridao, J. Batlle, J. Amat, and G. N. Roberts, Recent trends i
	K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G.
	P. Ridao, J. Yuh, K. Sugihara, and J. Batlle, On AUV control arc
	J. G. Bellingham and J. J. Leonard, Task configuration with laye
	A. M. Meystel and J. S. Albus, Intelligent Systems, Architecture
	R. Arkin, Behavior-Based Robotics . Cambridge, MA: MIT Press, 19
	R. C. Arkin, Path planning for a vision-based autonomous robot,
	E. Gat, Reliable goal-directed reactive control for real-world a
	M. Carreras, J. Batlle, P. Ridao, and G. N. Roberts, An overview
	M. Carreras, J. Batlle, and P. Ridao, Hybrid coordination of rei
	S. Mahadevan and J. Connell, Automatic programming of behavior-b
	M. Ryan and M. Pendrith, RL-TOPs: An architecture for modularity
	J. Shackleton and M. Gini, Measuring the effectiveness of reinfo
	R. Sutton and A. Barto, Reinforcement Learning, an Introduction
	Y. Takahashi and M. Asada, Vision-guided behavior acquisition of
	C. Touzet, Neural reinforcement learning for behavior synthesis,
	D. Gachet, M. Salichs, L. Moreno, and J. Pimental, Learning emer
	Z. Kalmar, C. Szepesvari, and A. Lorincz, Module-based reinforce
	P. Maes and R. Brooks, Learning to coordinate behaviors, in Proc
	E. Martinson, A. Stoytchev, and R. Arkin, Robot behavioral selec
	B. Lee and R. C. Arkin, Adaptive multi-robot behavior via learni
	B. Bakker, F. Linaker, and J. Schmidhuber, Reinforcement learnin
	W. T. B. Uther and M. M. Veloso, Tree based discretization for c
	J. C. Santamaria, R. S. Sutton, and A. Ram, Experiments with rei
	W. D. Smart, Making reinforcement learning work on real robots,
	C. Gaskett, Q_learning for robot control, Ph.D., Australian Nati
	C. J. C. H. Watkins and P. Dayan, Q_Learning Machine Learning, 1
	K. Baird, Residual algorithms: Reinforcement learning with funct
	G. J. Tesauro, Practical issues in temporal difference learning,
	S. Weaver, L. Baird, and M. Polycarpou, An analytical framework
	M. Carreras, An overview of behavior-based robotics with simulat
	R. A. Brooks, Robust layered control system for a mobile robot,
	P. Maes, Situated agents can have goals, Robot. Automat. Syst.,
	R. C. Arkin, Motor schema-based mobile robot navigation, Int. J.
	L. Steels, Building agents with autonomous behavior systems, in
	S. K. Choi, J. Yuh, and G. Y. Takashige, Development of the omni
	J. Nie, J. Yuh, E. Kardash, and T. I. Fossen, Onboard sensor-bas
	M. Carreras, A. Tiano, A. El-Fakdi, A. Zirilli, and P. Ridao, On
	M. Carreras, P. Ridao, R. Garcia, and T. Nicosevici, Vision-base

