
Proceedings of the 2003 IEEE/RSJ
Inn. Conference on Intelligent Robots and Systems
Las Vegas. Nevada ' October 2003

Semi-online Neural-Qlearning for Real-time Robot Learning

M. Cmeras, P. Ridao and A. El-Fakdi
Institute of Informatics and Applications

University of Girona
Campus Montilivi, G i n a 17071, Spain

marcc@eia.udg.es

Abstract-Reinforcement Learning (RL) is a very suitable
technique for robot learning, as it can learn in unknown
environments and in real-time computation. The main diffi-
culties in adapting classic RL algorithms to robotic systems
am the generalization problem and the correct observation
of the Markovian state This paper attempts to solve the gen-
e d i t i o n problem by proposing the Semi-online Neural-
QJearning algorithm (SONQL). The algorithm uses the
dassie QJearning tecbnique with twu modi6cations. First, a
Neural Network (NN) approximates the Qfunction allowing
the use of continuous states and actions. Second, a database
of the most repmutative learning samples accelerates and
stabilizes the convergence. The term Semi-online is referred
to the fad that the algorithm uses the current but also past
learning samples However, the algorithm is able to learn in
real-time while the robot is interacting with the environment.
The paper shows simulated mults with the "mountain-ear"
benchmark and, also, real results with an underwater robot
in a target following behavior.

I. INTRODUCTION
A commonly used methodology in robot learning is

Reinforcement Learning (RL) [81. In RL, an agent tries
to maximize a scalar evaluation (reward or punishment)
of its interaction with the environment. The goal of a
RL system is to find an optimal policy that maps the
state of the environment to an action, which in turn,
will maximize the accumulated future rewards. Most RL
techniques are based on Finite Markov Decision Processes
(FMDP) causing finite state and action spaces. The main
advantage of RL is that it does not use any knowledge
database, as do most forms of machine learning, makine

breaking in many cases their convergence proofs. Only
some algorithms which use a linear function approximator
have maintained these proofs [91. Neural Networks is a
non-linear method, however, it offers a high generaliza-
tion capability and demonstrated its feasibility in very
complex tasks [IO]. The drawback of Neural Networks
is the interference problem. This problem is caused by
the impossibility of generalizing in only a local zone of
the entire space. Interference occurs when learning in one
area of the input space causes unlearning in another area
[131.

This paper proposes the Semi-online Neural-QJeaming
algorithm (SONQL). This algorithm attempts to solve the
generalization problem combining the QJeaming algo-
rithm with a NN function approximator. This approach
implements the Q-function directly into a NN. This NQL
implementation, known as direct QJearning [l], is the
simplest and straightest way to generalize with a NN. In
order to solve the interference problem, the proposed al-
gorithm introduces a database of the most recent and rep-
resentative learning samples, from the whole statdaction
space. These samples are repeatedly used in the NN
weight update phase, assuring the convergence of the
NN to the optimal Qfunction and, also, accelerating the
learning process. The algorithm was designed to work in
real systems with continuous variables. To preserve the
real time execution, two different execution threads, one
for learning and another for output generation, are used. - I

this class of learning suitable for online robot learning.
The drawbacks are the lack Of among
continuous variables and the difficulties in observing the
Markovian state in the environment. A veq RL
algorithm is the QJearning [I21

The SONQL algorithm was conceived to learn the inter-
nal statdaction mapping of a reactive robot behavior. This
paper demonstrates its feasibility with real experiments
using the underwater robot URIS in a target following
task. Results demonstrate the feasibilim of the deorithm due to its

, ~~~ ~~~-~~~~~~ ~

~~~~~~ ~ ~ ~ ~~~~ ~~~ ~ ~ 

in a real-time system. The paper also demonstrates the learning capabilities: online and off-policy. 
Many RL-based systems have been applied to robotics 

over the past few years and most ofthem have attempted to 
convergence of the algorithm in a well-known generalin. 
tion benchmark. Simulation results of the "MountGn-Car" 

solve the generalization problem. To accomplish this, clas- 
sic RL algorithms have been usually combined with other 
methodologies. The most commonly used methodologies 
are decision trees [ 1 I], CMAC function approximator 
[6],  memory-based methods [7] and Neural Networks 
(NN) [31. These techniques modify the RL algorithms 

task [51 are 

The structure of this paper is as follows. In Section 11, 
the SONQL algorithm is detailed. The experimental results 
are included in Section llI. And the conclusions and future 
work are presented in Section lV. 

0-7W3-7e60-l/W$17.00 @ 2003 IEEE 662 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:07:28 UTC from IEEE Xplore.  Restrictions apply. 



11. SEMI-ONLINE NEURAL-QLEARNING 
Next subsections describe the basic features of the 

Semi-online Neural-Qdeaming algorithm (SONQL). First 
of all, the original Qdearning technique is introduced. 
Then, the modifications found in the SONQL are pre- 
sented. And finally, the phases of the algorithm and some 
implementation aspects are detailed. 

A. Qlearning 
Qlearning [I21 is a temporal difference algorithm, see 

[SI, designed to solve the reinforcement learning problem 
(RLP). Temporal difference algorithms solve the RLP 
without knowing the transition probabilities between the 
states of the Finite Markov Decision Problem (FMDP), 
and therefore, in our context, the dynamics of the robot 
environment does not have to be known. Temporal dif- 
ference methods are also suitable for learning incremen- 
tally, or real-time robot learning. The importance of real- 
time learning resides in the possibility of executing new 
behaviors without any previous phase such as ”on-site 
manual tuning” or ”data collection + offline learning”. 
Another important characteristic of Qlearning is that it is 
an off-policy algorithm, The optimal state/action mapping 
is learnt independently of the policy being followed. This 
is a very important feature in a robotic domain, since 
sometimes, the actions that are proposed by the learning 
algorithm can not be c a n i d  out. For example, if the 
algorithm proposes an action that would cause a collision, 
another behavior with more priority will prevent it, and 
the leaming algorithm will use the real executed action. 

The original Qleaming algorithm is based on FMDPs. 
It uses the perceived states (s), the taken actions (a)  and 
the received reinforcements (7) to update the values of a 
table, denoted as Q(s,a)  or Q-function. If statdaction pairs 
are continually visited, the Q values converge to a greedy 
policy, in which the maximum Q value for a given state, 
points to the optimal action. Figure 1 shows a diagram of 
the Qleaming algorithm. The parameters of the algorithm 
are the discount factor y, the learning rate a and the E 
parameter for the random actions. 

B. Generalization with Neural Networks 
When working with continuous states and actions, as it 

is usual in robotics, the Q-function table becomes too large 
for the required state/action resolution. In these cases, 
tabular QAeaming requires a very long learning time, 
making the implementation of the algorithm in a real-time 
control architecture impractical. This problem is known as 
the generalization problem. 

The use of a Neural Network to generalize among states 
and actions reduces the number of values stored in the Q- 
function table to a set of NN weights. The approximation 
of the Q-function using a feed-forward NN with the back- 
propagation algorithm [4] is known as direct Qdearning 

Fig. 1. Diagram of the Q-learning algorithm. 

[I]. In this implementation, the NN has as inputs the state 
and the action, and as output, the one-dimensional Q value. 
The function that must be approximated is the one shown 
in Equation 1. Other implementations of the Q-function 
with a NN can also be found, although this is the most 
straightforward one. 

Q ( w 0  =rI+y.mM,, , ,Qk+l ,a ,+i)  (1) 

The direct Qdearning approach bas been taken to solve 
the generalization problem. In parthlar, the NN configu- 
ration is composed by one or two bidden layers containing 
a set of neurons, and the output layer, which has one 
neuron. The number of layers and neurons, depends on 
the complexity and the number of dimensions of the 
Qfunction to be approximated. For the hidden layers, 
an hyperbolic tangent function is used as the activation 
function. This function is antisymmetric and accelerates 
the learning process. The output layer has a lineal activa- 
tion function, which allows to the NN to approximate any 
real value. The initialization of lhe NN weights is done 
randomly. 

C. Semi-online Learning 
Neural Networks have a high generalization capability, 

however they suffer from the inteqerence problem [131. 
Interference occurs when learning in one zone of the input 
space causes loss of leaming in other zones. To solve 
the interference problem, the SONQL uses a database of 
leaming samples. The main goal of the database is to 
include a representative set of visited learning samples, 
which is repeatedly used to update the NQL algorithm. 
The immediate advantage of the database, is the stability 
of the learning process and its convergence even in dif- 
ficult problems. Due to the representative set of learning 
samples, the Qfunction is regularly updated with samples 
of the whole visited state/action space, which is one of 
the conditions of the original Qdearning algorithm. A 
consequence of the database is the acceleration of the 

663 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:07:28 UTC from IEEE Xplore.  Restrictions apply. 



learning. This second advantage is most important when 
using the algorithm in a real system. The updating of the 
NQL is done with all the samples of the database and, 
therefore, the convergence is achieved with less iterations. 
The term semi-online is therefore referred to the fact that 
the current and also past samples are used in the learning. 

Each learning sample is composed of the initial state 
s,, the action a,, the new state s,+1 and the reward rf+l .  
During the learning evolution, the learning samples are 
added to the database. Each new sample replaces older 
samples previously introduced. The replacement is based 
on the geometrical distance between vectors (s,,a,,r,+l) 
of the new and old samples. If this distance is less than 
a dens@ parameter f for any old sample, the sample is 
removed from the database. The size of the database is, 
therefore, controlled by this parameter which has to be 
set by the designer. Once the algorithm has explored the 
reachable statdaction space, a homogeneous, and there- 
fore, representative set of learning sample is contained in 
the database. 

D. Algorithm phases 
The proposed Semi-online Neural-QJearning algo- 

rithm can he divided in four different phases, as shown 
in Figure 2. In the first phase, the current learning sample 
is assembled. The state sr+x and the last taken action a, are 
received from the environment. The reward rf is computed 
according to sf+1. and, the past state s, is extracted from 
a unit delay. In the second phase, the database is updated 
with the new learning sample. As has been commented 
on, old samples similar to the new one will be removed. 

The third phase consists of updating the weights of 
the NN according to the back-propagation algorithm and 
Equation 1. If the SONQL algorithm is used in a real- 
time system, such as a robot, this phase is executed in a 
separate thread. This thread has a lower priority and uses 
all the non-used computational power to learn the optimal 
Qfunction. Using these two execution threads, the real- 
time execution of the control system can be accomplished. 

The fourth phase consists of proposing a new action 
a,+l. The policy that is followed is the E -greedy policy. 
With probability (1 - E ) ,  the action will be the one 
that maximizes the. Qfunction in the current state S,+L. 

Otherwise, an random action is generated. Due to the 
continuous action space in the Neural-Qfunction, the 
maximization is accomplished by evaluating a finite set 
of actions. As this evaluation is very fast, the action space 
can be discretized with the necessary resolution without 
an important computational cost. 

111. EXPERIMENTAL RESULTS 

This section shows experimental results of the SONQL 
algorithm in two different domains. The first is the well- 
known ”mountain-car’’ task, in which an extensive set of 

m 
W 
U) a 
2 

w 
U) 

I 
a 
a 

Fig. 2. . phases of the Semi-Online Neural-Qleaming algorithm. 

simulations demonstrate the effectiveness of the algo&un. 
The second domain, is a real task with an underwater 
robot. The algorithm learns how to move the robot in order 
to follow a target. 

A. The Mountain-Car Task 
The ”mountain-car” benchmark [5] was designed to 

evaluate the generalization capability of RL algorithms. 
In this problem, a car has to reach the top of a hill, see 
Figure 3. However, the car is not powerful enough to 
drive straight to the goal. Instead, it must first reverse 
up the opposite slope in order to accelerate, acquiring 
enough momentum to reach the goal. The states of the 
environment are two continuous variables, the position p 
and the velocity v of the car. The action a is the force of 
the car, which can be positive and negative. The reward 
is -1 everywhere except at the top of the hill, where it 
is 1. The dynamics of the system can he found in [5].  
The episodes in the mountain-car task start in a random 
position and velocity, and they run for a maximum of 200 
iterations or until the goal has been reached. The optimal 
statdaction mapping is not trivial since depending on the 
position and the velocity, the action has to be positive or 
negative. 

664 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:07:28 UTC from IEEE Xplore.  Restrictions apply. 



, - ., . -  I 

, , , , , \- 

o,8 a1tibMe (a1 goal 
r = 1  

0.6 

Fig. 3. "be "mountain-car" msk domain. 

To provide a performance baseline, the classic 
QJeaming algorithm was applied. The state space was 
finely discretized, with 180 states for the position and 150 
for the velocity. The action space contained only three 
values, -1, 0 and 1. Therefore, the size of the Q table was 
81000 cells. The exploration strategy was an &-greedy 
policy with E set at 30%. The discount factor was y =  
0.95 and the learning rate a = 0.5, which were found 
experimentally. The Q table was randomly generated at 
the beginning of each experiment. In each experiment, a 
learning phase and an evaluation phase were repeatedly 
executed. In the learning phase, a certain number of 
iterations were executed, starting new episodes when it 
was necessary. In the evaluation phase, 500 episodes were 
executed. The efectiveness of learning was evaluated by 
looking the averaged number of iterations needed to finish 
the episode. After running 100 experiments with discrete 
Qlearning, the average number of iterations when the 
optimal policy had been learnt was 50 with 1.3 standard 
deviation. And the number of learning iterations to learn 
this optimal policy was lx107 learning iterations. 

Since the state space had been finely discretized, it 
was assumed that with only three actions, the minimum 
number of iterations to fulfill the goal is 50. The SONQL 
algorithm cannot improve this mark, as it is based on the 
QJearning algorithm. However, it is expected that it can 
reduce the number of iterations required to learn. It is 
interesting to compare this mark with other statdaction 
policies. If a forward action (a = 1) is always applied, the 
average episode length is 86. If a random action is used, 
the average is 110. These averages depend highly on the 
fact that the maximum number of iterations in an episode 
is 200, since in a lot of episodes these policies do not 
fulfill the goal. 

An extensive number of experiments were executed 
with the SONQL algorithm in order to find the best 
configuration. The NN had three layers with 15 neurons 
in the two hidden layers. Only three actions were used, as 
with the Qlearning experiments. The optimal learning rate 
and discount factor were a = O.OOO1 and y =  0.95. And 

0-150 0.85 0.470 D - m  

Fig. 4. Results of the SONQL algorithm with the Mounrain Car ta&. 
Each leaming iteration is a complete SONQL iteration. Different exper- 
iments, with diEmnt database sizes @). are shown. 'Ihe effectiveness 
of the Qleamiog and the random and foruad policies are also shown. 

Fig. 5. 
For the SONQL graphs, each leaming h a t i o n  is a NN update. 

Results of the SONQL algorithm with the Mountain Car task. 

the E parameter was set at 30%. The averaged number 
of learning samples at the end of the experiment, was 
approximately 470. As with the Qlearning algorithm, 
each experiment had a learning and a evaluation phases. 
In the evaluation phase 500 episodes were tested. For 
each experiment with a SONQL configuration, a total 
number of 100 trials were nm. The average episode 
length for the parameters detailed above was 53 with 
2.1 standard deviation. The number of learning iterations 
were only 20000 approximately. This result demonstrates 
that the SONQL is able to converge much faster than 
the Qlearning algorithm, although it is not able to learn 
the optimal policy (53 iterations instead of 50). The 
convergence of the algorithm has also proved to be very 
high, in all the experiments the optimal policy was learnt. 

Figure 4 shows the effectiveness evolution respect 
the number of learning iterations. In the graph labelled 

665 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:07:28 UTC from IEEE Xplore.  Restrictions apply. 



"D=470", after 20000 learning iterations the number of 
iterations required to accomplish the goal are 53. It is 
also observed how the SONQL maintains the effectiveness 
without diverging until the end of the experiments, at 
2oooO learning iterations. Figure 5 shows another repre- 
sentation of the same experiments. In this case, the graph 
" W 7 0  is drawn respect the total number of NN updates. 
Therefore, considering each sample of the database as a 
learning iteration. Evidently, the number of iterations is 
much higher than before, since for each SONQL iteration 
all the samples of the database are learnt. However, the 
number of iterations are also significantly less than with 
the Qleaming algorithm, which is also represented. 

The influence of the database has been analyzed using 
the same SONQL configuration and changing the database 
size. Four sets of experiments with 280, 150, 85 and 1 
samples were executed. The total number of NN updates 
was fixed to &IO6 iterations approximately, as it can be 
seen in Figure 5.  Consequently, having an smaller database 
the number of SONQL iterations increased, see Figure 4. 
Two important conclusions can be extracted. First, the 
database is necessary to ensure the convergence. In the 
graph "D=l" only the current sample was used and, even 
for the same number of NN updates, the algorithm did not 
converge. Second, with a larger database a better learning 
is achieved. The averages of the "D=470, "D=280", 
"D=150" and "E85" experiments are 53, 54, 56 and 
58 respectively. A large database implies a large set 
of learning samples uniformly distributed in the visited 
space. This representative set of samples improves the 
learning capability of the direct Qlearning. These results 
empirically demonstrate the benefit of using the learning 
samples database. 

B. Target Following Behavior 
The use of the SONQL algorithm in a real system was 

also tested. In particular, the task consisted in following 
an artificial target with the Autonomous Underwater Ve- 
hicle URIS. This small underwater robot was designed 
to cany out experiments in a water tank. The robot has 
four propellers which allow the movemen& in X, Z and 
Yaw Degrees Of Freedom @OF). However, due to the 
shallowness of the water tank, the robot can only move 
in X and Yaw. The position and velocity of the robot 
is estimated hy a vision system. And the position of 
the artificial target respect the robot is detected by an 
onboard forward looking camera. A picture of URIS and 
its onboard coordinate frame can he seen in Figure 6. For 
a complete description of the vehicle and the positioning 
system refer to [2]. 

The Iarget following behavior was implemented with 2 
different SONQL algorithms (one for each DOF, X and 
Yaw). In these experiments, only one SONQL algorithm 
was learnt at a time, no simultaneous learning between dif- 

Fig. 6 .  
was following the d c i a l  target. b) Schema of the robot. 

URIS AW. a) Picture of the robot in the water tank while it 

ferent DOFs was tested. Each DOF received information 
about the current state and the last taken action. The state 
was the position of the target in the image as well as its 
velocity. A reinforcement function gave different rewards 
(-1, 0 or 1) depending on the position at which the target 
was detected. 

Several trials were carried out in order to find the best 
learning performance. The sample time of the SONQL 
algorithm was set at 0.3 [SI. The NN had two layers with 6 
neurons in the hidden layer. 21 different actions were used 
for each DOE The leaming rate was a = 0.1, the discount 
factor y = 0.9, and the E parameter was set at 30%. The 
number of learning samples was approximately 50, having 
an independent execution thread to update the NN (phase 
3). The robot was able to learn in real-time how to move in 
both DOFs achieving the target following task. The main 
difficulty in achieving a robust learning was the correct 
estimation of the environment state (the target position and 
velocity). The learnt state/action optimal mappings can be 
seen in figures Figure 7 and Figure 8. Note the obtained 
non-lineal mappings. 

The SONQL algorithm showed a good robustness and 
presented a small convergence time (less than 2 minutes). 
Figure 9 shows six consecutive learning attempts by the 
target following behavior in the Yaw DOE The figure also 
shows that the averaged reward increased, demonstrating 
that the behavior was being leamt. In this experiment, 
the robot was learning how to mm in order to keep 
the target in the center of the image. It can be seen 
that the algorithm starts exploring the state in order to 
find maximum rewards. Once the whole state had been 
explored, the algorithm exploited the learnt Qfunction and 
obtained the maximum rewards. 

IV. CONCLUSIONS 

This paper has proposed the Semi-online Neural- 
QJearning algorithm (SONQL), which attempts to solve 
the generalization problem with a Neural Network an a 
learning samples database. The approach has been detailed 
an tested in two different domains. In the "mountain-car" 
task, it demonstrated to almost converge to the optimal 

666 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:07:28 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Statelaction mapping leamt for the target following behavior 
in the X DOE The state is the target position f x  and velocity f v x  with 
respect to X axis. The action vf.. is the robot velocity in the X DOE 

Fig. 8. Statelaction mapping 1-1 for the target following behavior in 
the Yaw DOE The state is the target position fu and velocity f v y  with 
respcct to Y axis. The action is the robot velocity in the Yaw DOE 

policy. The benefit of the approach was the substantial 
reduction of the iterations required to converge, compared 
to the classic Qlearning algorithm. It has been demon- 
strated the important role of the database to ensure the 
convergence and performance. The second test domain has 
been a real robotics task. In this case, the fast convergence 
of the algorithm was used to learn a target following 
behavior. The algorithm was able to learn in real time the 
optimal statehction policy. The most important drawback 
in the robotics task was the correct observation of the 
state. Future work will concentrate on learning in Non- 
Markovian environments. 

V. ACKNOWLEDGMENTS 

This research was sponsored by the Spanish commis- 
sion MCYT (DPI2M)1-2311-CO3-Ol). 

VI. REFERENCES 

[l] K. Baird. Residual algorithms: Reinforcement learn- 
ing with function approximation. In Machine Learn- 
ing: Twelfth Irtternotional Conference, San Fran- 
cisco, USA, 1995. 

[2] M. Cameras, P. Ridao, R. Garcia, and T. Nicosevici. 
Vision-based localization of an underwater robot in 
a structured environment. In ZEEE Internotional 

A 
Y *La" erponabn 

Fig. 9. Behavior convergence. Results of six different learning kiak 
of the target following behavior in the Yaw DOF. The averaged w a r d s  
over the last 20 iterations an shown. n e  average of the six experiments 
can also be seen. Aceumulnted rewards increased in the measure that the 
behavior was leamt 

Conference on Robotics and Automation, Taipei, 
Taiwan, 2003. 

131 C. Gasken. Qleaming for Robot Conrml. PhD 
thesis, Australian National University, 2002. 

[4] S .  Haykin. Neural Networks, a comprehensive foun- 
dation. Prentice Hall, 2nd d. edition, 1999. 

[5] A.W. Moore. Variable resolution dynamic program- 
ming: Efficiently learning action maps on multivari- 
ate real-value state-spaces. In Pmceedings of the 
Eighth International Conference on Machine Learn- 
ing, 1991. 

[6] J.C. Santamaria, R.S. Sutton, and A. Ram. Ex- 
periments with reinofrcement learning in problems 
with continuous state and action spaces. Adaptive 
Behavior. 6163-218, 1998. 

171 W.D. Smart. Maldng Reinforcement Leaming Work 
on Real Robots. PhD thesis, Department of Com- 
puter Science at Brown University, Rhode Island, 
May 2002. 

[SI R. Sutton and A. Barto. Reinforcement Learning, w 
introduction. MIT Press, 1998. 

[9] R.S. Sutton. Learning to predict by the method of 
temporal differences. Machine Learning, 3:9-44, 
1988. 

[IO] G.J. Tesauro. Practical issues in temporal difference 
learning. Machine Leaming, 8(3/4):257-277, 1992. 

[ I l l  W.T.B. Uther and M.M. Veloso. Tree. based dis- 
cretization for continuous state space reinforcement 
learning. In Proceedings of the Fijieenzh Natiowl 
Conference on Artificial Intelligence, 1998. 

[12] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine 
Learning, 8:279-292, 1992. 

1131 S .  Weaver, L. Baird, and M. Polycarpou. An Ana- 
lytical Framework for Local Feedforward Networks. 
ZEEE Tmnsactions on Neuml Networks, 9(3), 1998. 

667 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:07:28 UTC from IEEE Xplore.  Restrictions apply. 


